A GRAPHICAL REPRESENTATION OF RINGS VIA AUTOMORPHISM GROUPS

N. MOHAN KUMAR AND PRAMOD K. SHARMA

ABSTRACT. Let R be a commutative ring with identity. We define a graph $\Gamma_{\operatorname{Aut} R}(R)$ on R, with vertices elements of R, such that any two distinct vertices x,y are adjacent if and only if there exists $\sigma \in \operatorname{Aut} R$ such that $\sigma(x) = y$. The idea is to apply graph theory to study orbit spaces of rings under automorphisms. In this article, we define the notion of a ring of type n for $n \geq 0$ and characterize all rings of type zero. We also characterize local rings (R, M) in which either the subset of units $(\neq 1)$ is connected or the subset $M - \{0\}$ is connected in $\Gamma_{\operatorname{Aut} R}(R)$.

1. Introduction

Throughout this article, all rings are commutative with identity. We denote by \mathbb{Z}_n , the ring of integers modulo n, and by U(R), the group of units of a ring R. We will also use the notation \mathbb{F}_q to denote a field of q elements, where of course, q is the power of a prime.

In the last decade, study of rings using properties of graphs has attracted considerable attention. In [2], I. Beck defined a simple graph on a commutative ring R with vertices elements of R where two different vertices x and y in R are adjacent, by which we mean as usual that they are connected by an edge, if and only if xy = 0. In [6], the authors defined another graph on a ring R with vertices elements of R such that two different vertices x and y are adjacent if and only if Rx + Ry = R. In this article, we define another graph $\Gamma_{\text{Aut }R}(R)$ with vertices elements of R where two different vertices $x, y \in \Gamma_{\text{Aut }R}(R)$ are adjacent if and only if $\sigma(x) = y$ for some $\sigma \in \text{Aut }R$. It is proved that if $\Gamma_{\text{Aut }R}(R)$ is totally disconnected, which is equivalent to deg x being zero for all $x \in R$, then R is either \mathbb{Z}_n or $\mathbb{Z}_2[X]/(X^2)$. As usual, the degree of a vertex is the number of edges emanating from it. Further, we define the notion of rings of type n and study the structure of rings of type

²⁰⁰⁰ Mathematics Subject Classification. 13M05.

Key words and phrases. Automorphisms of rings, Finite rings, Type of a ring. The first author was partially supported by a grant from NSA.

All correspondences will be handled by the second author.

at most one. We also characterize finite local rings (R, M) with either $U(R) - \{1\}$ connected or $M - \{0\}$ connected as subsets of $\Gamma_{\text{Aut }R}(R)$.

In general, if for a ring R, H is a subgroup of $\operatorname{Aut} R$, then we can define a graph structure on R using H instead of $\operatorname{Aut} R$. We shall denote this graph by $\Gamma_H(R)$. We expect that this approach may be useful in the study of orbit space of R under $\operatorname{Aut} R$.

2. Preliminaries

We recall some basic notions from graph theory.

A simple graph \mathfrak{G} is a non-empty set V together with a set E of unordered pairs of distinct elements of V. The elements of V are called vertices and an element $e = \{u, v\} \in E$ where $u, v \in V$ is called an edge of \mathfrak{G} joining the vertices u and v. If $\{u, v\} \in E$, then u and v are called adjacent vertices. In this case u is adjacent to v and v is adjacent to u. We shall normally denote the graph just by \mathfrak{G} and call |V|, the cardinality of V, the order of \mathfrak{G} . We shall sometimes write $|\mathfrak{G}|$ for the order of \mathfrak{G} . For any vertex $v \in \mathfrak{G}$, degree of v, denoted by deg v, is the number of edges of \mathfrak{G} incident with v.

A subgraph of \mathfrak{G} is a graph having all its vertices and edges in \mathfrak{G} . A graph \mathfrak{G} is called complete if any two vertices in \mathfrak{G} are adjacent. A clique of a graph is a maximal complete subgraph.

A graph \mathfrak{G} is called connected if for all distinct vertices $x, y \in \mathfrak{G}$ there is a path from x to y. A graph \mathfrak{G} is called totally disconnected if there are no edges in \mathfrak{G} . That is, the edge set of \mathfrak{G} is empty.

For a ring R, Aut R operates in a natural way on R. If $S \subset \Gamma_{\operatorname{Aut} R}(R)$ is connected, then for any $a,b \in S$, there is $\sigma \in \operatorname{Aut} R$ such that $\sigma(a) = b$. For any $x \in R$, we denote by O(x) the orbit of x under the action of Aut R. In fact O(x) is the clique of $\Gamma_{\operatorname{Aut} R}(R)$ containing x. Moreover, any clique of $\Gamma_{\operatorname{Aut} R}(R)$ is of the form O(x) for some $x \in R$.

Let K/k be a field extension. Then for any subgroup H of $\operatorname{Aut}(K)$, $k \subset \Gamma_H(K)$ is totally disconnected if and only if $H \subset \operatorname{Aut}_k(K)$.

We record some elementary results.

Lemma 2.1. Let R be an integral domain and $G = \operatorname{Aut} R$. For any $\lambda \in R - R^G$, λ is integral over R^G if and only if the clique of $\Gamma_{\operatorname{Aut} R}(R)$ containing λ is finite.

The proof is standard.

Theorem 2.2. Let R be a Noetherian integral domain such that $\Gamma_{\text{Aut }R}(R)$ has a finite number of cliques. Then R is a finite field.

Proof. The proof follows from [5, Corollary 16].

Next we define the notion of type of a ring R.

Definition 1. A ring R is called of type n if for all $x \in \Gamma_{\operatorname{Aut} R}(R)$, $\deg x \leq n$, and there exists at least one $y \in \Gamma_{\operatorname{Aut} R}(R)$ such that $\deg y = n$.

Remark 1. Assume that the ring R is a direct product of rings A and B. If R is of type n, then A and B are of type n.

Example 1. For any prime p, $R = \mathbb{Z}_p[X]/(X^2)$ is a ring of type p-2. This can be seen as follows. Let us denote by x the image of X in R. If ψ is an automorphism of R, then $\psi(x) = ax$ for some $0 \neq a \in \mathbb{Z}_p$ and conversely, given such an $a \in \mathbb{Z}_p$, we can define an automorphism of R by sending $x \mapsto ax$. Then, it is clear that Aut R has order p-1. Therefore, for any $y \in R$, we have $\deg y = |O(y)| - 1 \leq p - 2$. On the other hand, |O(x)| = p - 1 and thus we see that R is of type p-2.

Example 2. Let n > 1 be an odd integer. Then the ring $R = \mathbb{Z}_n[X]/(X^2)$ is of type $\varphi(n) - 1$, where $\varphi(n)$ denotes the Euler phi function.

As before, let us denote by x the image of X in R. Any element in R can be uniquley written as ax+b with $a,b \in \mathbb{Z}_n$. Let $\psi \in \operatorname{Aut} R$. Notice that $\psi(a) = a$ for all $a \in \mathbb{Z}_n$. Then $\psi(x) = ax + b$ for some $a,b \in \mathbb{Z}_n$. Since ψ is an automorphism, there exists an element $px + q \in R$ with $p,q \in \mathbb{Z}_n$ such that

$$x = \psi(px + q) = p\psi(x) + q = pax + pb + q.$$

Thus we get pa = 1 and so a must be a unit in \mathbb{Z}_n . Further, if $\psi(x) = ax + b$, with $a \in U(\mathbb{Z}_n)$, we must also have,

$$0 = \psi(x^2) = (ax+b)^2 = 2abx + b^2$$

and hence 2ab=0. Since n is odd and a is a unit, we have b=0. So, any automorphism $\psi \in \operatorname{Aut} R$ must have, $\psi(x)=ax$ for some unit $a \in R$. It is easy to see that any such map is indeed an automorphism. Thus we see that $\operatorname{Aut} R \cong U(\mathbb{Z}_n)$, which has order $\varphi(n)$. Thus, as before, we get that $|O(y)| \leq \varphi(n)$ for all $y \in R$ and since $|O(x)| = \varphi(n)$, we see that R is of type $\varphi(n) - 1$.

Example 3. Let Let p be a prime and $n \ge 1$ be any integer. Then for the direct product ring $R = \mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n} \times \cdots \times \mathbb{Z}_{p^n}$ (k-times), where $k < p^n$, Aut $R = S_k$, the symmetric group on k symbols. Thus R is of type k! - 1.

Theorem 2.3. Let (R, M) be a finite local ring which is not a field, such that $\deg x \leq 1$ for all $x \in M$. Then $\operatorname{Aut} R$ is an Abelian group of order 2^m , $m \geq 0$.

Proof. Let $x \in M$. By assumption, $\deg x \leq 1$. Hence for any $\sigma \in \operatorname{Aut} R$, x, $\sigma(x)$, $\sigma^2(x)$ are not all distinct. Thus $\sigma^2(x) = x$ for all $x \in M$. Thus $\sigma^2 = \operatorname{id}$ on M. Hence by [4, Theorem 2.5], $\sigma^2 = \operatorname{id}$. Therefore $\operatorname{Aut} R$ is Abelian of order 2^m , $m \geq 0$.

Example 4. Let (R, M) be a finite local ring which is not a field such that deg $x \le n$ for all $x \in M$. Then for every $\sigma \in \operatorname{Aut} R$, order of σ is $\le (n+1)!$.

Theorem 2.4. Let K be a perfect field of characteristic p > 0. Then K is of type n, if and only if $K = \mathbb{F}_{p^{n+1}}$.

Proof. As K is of type n, order of any $\sigma \in \operatorname{Aut}(K)$ is at most (n+1)! and in particular, the Fröbenius automorphism τ of K has finite order. If order of τ is m, then $x^{p^m} = x$ for all $x \in K$. Hence K is a finite field. As K is of type n, it is clear that $K = \mathbb{F}^{p^{n+1}}$. The converse is obvious.

Corollary 2.5. Let K be a field. Then K is perfect of characteristic p > 0 and is of type $n < \infty$ if and only if $\Gamma_{\operatorname{Aut} K}(K)$ has finite number of cliques.

Proof. The proof is immediate from Theorem 2.4 and [3, Theorem 1.1].

Theorem 2.6. Let $R = A_1 \times A_2 \times \cdots \times A_m$, where A_1, \ldots, A_m are local rings. Then

- (1) If A_i is not isomorphic to A_j for any $i \neq j$, Aut R is isomorphic to $\prod_{1 \leq i \leq m} \operatorname{Aut} A_i$.
- (2) If m > 1, and A_i is isomorphic to A_j for some $i \neq j$, Then Aut $R \neq \text{id}$. Further, if Aut R is finite then it is of even order.

Proof. (1) Local rings have no non-trivial idempotents. Hence any idempotent of R is of the form $a = (a_1, a_2, \ldots, a_m)$ where $a_i = 0$ or $a_i = 1$ for each i. Denote by e_i the element

$$e_i = (0, \dots, 0, 1, 0, \dots, 0) \in R \quad i = 1, 2, \dots, m$$

where 1 is the identity in A_i and is at the ith place. Then e_1, \ldots, e_m are m pairwise orthogonal idempotents in R such that $e_1+e_2+\cdots+e_m=1$. For any $\sigma\in \operatorname{Aut} R$, $1=\sigma(e_1)+\cdots+\sigma(e_m)$ and $\sigma(e_1),\ldots,\sigma(e_m)$ are pairwise orthogonal idempotents in R. Thus $\sigma(e_i)=e_j$ for some j, and hence

$$\sigma(A_i) = \sigma(Re_i) = Re_j = A_j.$$

As A_i is not isomorphic to A_j for $i \neq j$, we conclude that $\sigma(e_i) = e_i$ for all i. Therefore the restriction of σ to A_i is an automorphism of A_i . This proves the first assertion.

(2) Without loss of generality, we may assume that A_1 is isomorphic to A_2 . In fact, we can take $A_1 = A_2$. Then the map $\tau : R \longrightarrow R$ given by

$$a = (a_1, a_2, \dots, a_m) \longmapsto (a_2, a_1, \dots, a_m)$$

is a non identity automorphism of R such that $\tau^2=1$. Hence the second assertion follows.

Remark 2. (1) If Aut R is of odd order, then A_i is not isomorphic to A_i for $i \neq j$.

(2) The Theorem is valid even if we assume that A_i has no non-trivial idempotent for any i, instead of assuming A_i to be local.

Corollary 2.7. Let R, S be two local rings such that R is not isomorphic to S. Assume that for $a \in R$ and $b \in S$, we have $\deg a = m$, and $\deg b = n$. Then for the element $(a, b) \in R \times S$,

$$\deg(a, b) = (\deg a + 1)(\deg b + 1) - 1.$$

Proof. By the Theorem, $\operatorname{Aut}(R \times S)$ is isomorphic to $\operatorname{Aut}R \times \operatorname{Aut}(S)$. Therefore, it is immediate that

$$\deg(a, b) = (\deg a + 1)(\deg b + 1) - 1$$

Corollary 2.8. Let R be a local ring of type m and S be a local ring of type n, $m \neq n$. Then $R \times S$ is of type (m+1)(n+1) - 1.

Proof. The result is immediate from Corollary 2.7. \Box

3. Rings with $\Gamma_{\operatorname{Aut} R}(R)$ totally disconnected

Let R be a finite ring. In this section, we shall study the structure of R with $\Gamma_{\operatorname{Aut} R}(R)$ totally disconnected. Observe that $\Gamma_{\operatorname{Aut} R}(R)$ is totally disconnected if and only if $\operatorname{Aut} R = \operatorname{id}$. By [1, Theorem 8.7], any finite ring R is a direct product of finite local rings uniquely. As $\Gamma_{\operatorname{Aut} R}(R)$ is totally disconnected, each of the factor local ring has trivial automorphism groups. Therefore we will study structure of R when R is local with $\operatorname{Aut} R = \operatorname{id}$.

Theorem 3.1. Let (R, M) be a finite local ring such that $\Gamma_{\text{Aut }R}(R)$ is totally disconnected. Then R is isomorphic to $\mathbb{Z}_{p^{\alpha}}$ or $\mathbb{Z}_2[X]/(X^2)$ where p is a prime.

Proof. As $\Gamma_{\operatorname{Aut} R}(R)$ is totally disconnected, Aut $R = \operatorname{id}$. Since R is a finite local ring, its characteristic is p^{α} for some prime p. Then $\mathbb{Z}_{p^{\alpha}} \subset R$. Thus the characteristic of R/M is p.

If $R = \mathbb{Z}_{p^{\alpha}}$, we have nothing to prove. So we assume that $R \neq \mathbb{Z}_{p^{\alpha}}$. The structure of the proof is as follows.

- (1) We first show that there is a subring $B \subset R$ of the form $\mathbb{Z}_{p^{\alpha}}[T]/(f(T))$ where f(T) is a monic polynomial in $\mathbb{Z}_{p^{\alpha}}[T]$ such that the induced map $B \to R/M$ is onto.
- (2) If B = R then we show that R has non-trivial automorphisms contradiciting our hypothesis.
- (3) If $B \neq R$, we choose a maximal subring $B \subset A \subsetneq R$ and show that R has non-trivial automorphisms over A, again contradicting our hypothesis, except when p = 2 and the only exception being when $R = \mathbb{Z}_2[X]/(X^2)$.

We show that there is a subring $B \subset R$ of the form $\mathbb{Z}_{p^{\alpha}}[a]$ such that the natural map $B \to R/M$ is onto. If $R/M = \mathbb{Z}_p$, we may take $B = \mathbb{Z}_{p^{\alpha}}$. So, let us assume that $R/M \neq \mathbb{Z}_p$. As \mathbb{Z}_p is a perfect field and R/M is a finite separable extension of \mathbb{Z}_p , R/M is a simple field extension of \mathbb{Z}_p and thus $R/M = \mathbb{Z}_p[\overline{x}]$ for some element $0 \neq \overline{x} \in R/M$. Let $f_1(T)$ be the irreducible polynomial of \overline{x} over \mathbb{Z}_p . Choose $f(T) \in R[T]$, a monic polynomial, such that $f_1(T)$ is the image of f(T) in R/M[T]. Since \overline{x} is separable over \mathbb{Z}_p , by Hensel's Lemma, there exists a lift $a \in R$ of \overline{x} such that f(a) = 0. Denote by B the subring $\mathbb{Z}_{p^{\alpha}}[a]$ of R. It is clear that the natural map $B \to R/M$ is onto.

Next We claim that $\mathbb{Z}_{p^{\alpha}}[T]/(f(T))$ is isomorphic to B. Consider the natural $\mathbb{Z}_{p^{\alpha}}$ - epimorphism:

$$\theta: \mathbb{Z}_{p^{\alpha}}[T] \longrightarrow B, \quad T \mapsto a.$$

Then, clearly $f(T) \in \text{Ker } \theta$. Hence θ induces an epimorphism:

$$\overline{\theta}: \mathbb{Z}_{p^{\alpha}}[T]/(f(T)) \longrightarrow B.$$

Notice that, as $\mathbb{Z}_p[T]/(f_1(T))$ is a field, \overline{p} , the image of p in $\mathbb{Z}_{p^{\alpha}}$, generates the unique maximal ideal in $\mathbb{Z}_{p^{\alpha}}[T]/(f(T))$. Consequently, every ideal in $\mathbb{Z}_{p^{\alpha}}[T]/(f(T))$ is generated by a power of \overline{p} . In particular so is $\operatorname{Ker} \overline{\theta}$ and so let this ideal be (\overline{p}^k) for some integer k. Then $\overline{\theta}(\overline{p}^k) = \overline{p}^k = 0$ in R. This implies $k = \alpha$. Thus $\operatorname{Ker} \overline{\theta} = 0$. Hence $\overline{\theta}$ is an isomorphism proving our claim.

We, now, consider the case B = R. In this case R is isomorphic to $\mathbb{Z}_{p^{\alpha}}[T]/(f(T))$ and since we have assumed that $R \neq \mathbb{Z}_{p^{\alpha}}$, we see that the monic polynomial f has degree greater than one. Its image $f_1(T)$ in $\mathbb{Z}_p[T]$ is an irreducible polynomial. Consider the Fröbenius

automorphism τ of $\mathbb{Z}_p[T]/(f_1(T)) = R/M$. Since deg $f_1(T) > 1$ the automorphism τ can not be identity.

For any automorphism β of $\mathbb{Z}_p[T]/(f_1(T))$, the composite map

$$\mathbb{Z}_p[T] \stackrel{\pi}{\longrightarrow} \mathbb{Z}_p[T]/(f_1(T)) \stackrel{\beta}{\cong} \mathbb{Z}_p[T]/(f_1(T))$$

is onto and if $\beta \circ \pi(T) = u$, then $f_1(u) = 0$. We know that $f_1(T)$ is irreducible over \mathbb{Z}_p . Hence u is a simple root of $f_1(T)$. We have $f(X) \in \mathbb{Z}_{p^{\alpha}}[X] \subset R[X]$, and its image is $f_1(X)$ in $\mathbb{Z}_p[X] \subset R/M[X]$. As seen above, by Hensel's Lemma, there exists a lift $a \in R$ of u such that f(a) = 0. Then consider the homomorphism:

$$\psi: \mathbb{Z}_{p^{\alpha}}[T] \to R = \mathbb{Z}_{p^{\alpha}}[T]/(f(T)) \quad T \mapsto a$$

Since f(a) = 0, this map induces an endomorphism

$$\overline{\psi}: R = \mathbb{Z}_{p^{\alpha}}[T]/(f(T)) \longrightarrow R = \mathbb{Z}_{p^{\alpha}}[T]/(f(T))$$

and the diagram:

$$\mathbb{Z}_{p^{\alpha}}[T]/(f(T)) \xrightarrow{\overline{\psi}} \mathbb{Z}_{p^{\alpha}}[T]/(f(T))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}_{p}[T]/(f_{1}(T)) \stackrel{\beta}{\cong} \mathbb{Z}_{p}[T]/(f_{1}(T))$$

is commutative. As β is obtained from $\overline{\psi}$ after tensoring with \mathbb{Z}_p over $\mathbb{Z}_{p^{\alpha}}$, $\overline{\psi}$ is onto. Hence, as R is finite, $\overline{\psi}$ is an automorphism. Finally, taking $\beta = \tau$ and since $\tau \neq \mathrm{id}$, $\overline{\psi} \neq \mathrm{id}$. Thus we arrive at a contradiction to our hypothesis that Aut R is trivial, in this case.

Lastly, we look at the case when $B \neq R$. Then we may choose a subring A of R, with $B \subset A$, $A \neq R$ and maximal with respect to this property. Then A is a local ring with maximal ideal $M_A = M \cap A$, and $R = A[\lambda]$ for every $\lambda \in R - A$.

Since B maps onto R/M, so does A. If $M \subset A$, and in particular, if $M = M_A$, then this would force A = R, which is not the case. So, $M \neq M_A$.

Since R is a finiteley generated module over A, by Nakayama's lemma, we also have $M_AR + A \neq R$. But, $A \subset M_AR + A \subsetneq R$ and $M_AR + A$ is naturally a subring of R and thus by maximality, we must have $A = M_AR + A$ and thus $M_AR \subset A$. Since $1 \notin M_AR$, and $M_A \subset M_AR \subsetneq A$, we see that $M_AR = M_A$. So, we have shown,

$$M_A R = M_A \subset M \tag{1}$$

Choose $\lambda \in M - M_A$ such that $\lambda^2 \in A$. This can always be done as elements of M are nilpotent. Thus $R = A[\lambda]$ where $\lambda \in R - A$ and

 $\lambda^2 \in A$ and in fact in M_A . Now, consider the A-algebra epimorphism:

$$\psi: A[T] \longrightarrow R, \quad T \mapsto \lambda.$$

One clearly has $\psi(T^2 - \lambda^2) = 0$. Similarly, for any element $a \in M_A$, $a\lambda \in M_A$ by equation (1) above. Thus we see that,

$$\operatorname{Ker} \psi \supset (T^2 - \lambda^2, aT - a\lambda) = J$$

where a runs through elements of M_A .

We claim that the above inclusion is an equality. If $f(T) \in \operatorname{Ker} \psi$, then, we can write

$$f(T) = (T^2 - \lambda^2)g(T) + aT - b$$

where g(T), $aT - b \in A[T]$. By assumption,

$$0 = f(\lambda) = a\lambda - b.$$

This forces a to be in M_A , since otherwise a is a unit, and in that case $\lambda = a^{-1}(a\lambda) = a^{-1}b \in A$ contradicting our choice of λ . Thus $aT - b = aT - a\lambda \in J$ establishing our claim. Thus we have,

$$\overline{\psi}: A[T]/J \simeq R.$$

Let **a** be the socle of A. If $\mathbf{a} = A$, then A is a field. From the above isomorphism, we have $R = A[T]/(T^2)$ since $\lambda^2 \in M_A = 0$ and aT - b = 0 since $a, b \in M_A = 0$ and thus $J = (T^2)$. If $u \in A$ is a unit, then $T \mapsto uT$ gives an automorphism of R and it is non-trivial if $u \neq 1$. So, we may assume that 1 is the only unit in A and then $A = \mathbb{Z}_2$, leading us to the exception mentioned in the theorem.

So, from now on, let us assume that $\mathbf{a} \subset M_A$. Now, we show that R has a non-trivial automorphism as A-algebras, proving the theorem.

Define an ideal I of A by,

$$I = (0 : \lambda)_A = \{x \in A \mid x\lambda = 0\}.$$

Since $\lambda \neq 0$ clearly $I \neq A$ and hence $I \subset M_A$. We look at two cases, either **a** is contained in I or not. First we consider the case when $\mathbf{a} \subset I$. Let $0 \neq v \in \mathbf{a}$ and consider the A-algebra automorphism,

$$\alpha: A[T] \to A[T], \quad T \mapsto T + v.$$

We want to show that α respects the ideal J. We have,

$$\begin{split} \alpha(T^2 - \lambda^2) &= (T + v)^2 - \lambda^2 \\ &= (T^2 - \lambda^2) + 2vT + v^2 \\ &= (T^2 - \lambda^2) + (2vT - 2v\lambda) + 2v\lambda + v^2 \\ &= (T^2 - \lambda^2) + (2vT - 2v\lambda) \end{split}$$

since $v^2 = 0$ because $v \in \mathbf{a} \subset M_A$ and $2v\lambda = 0$ since $v \in I$. Thus $\alpha(T^2 - \lambda^2) \in J$. Similarly, for $a \in M_A$,

$$\alpha(aT - a\lambda) = a(T + v) - a\lambda = aT - a\lambda + av = aT - a\lambda$$

since av = 0. Thus, $\alpha(aT - a\lambda) \in J$. So, we get an induced surjective A-algebra homomorphism,

$$\overline{\alpha}: R = A[T]/J \to A[T]/J = R,$$

which then must be an automorphism. Since $T \mapsto T + v$ and $v \neq 0$, this is a non-trivial automorphism.

Lastly, we consider the case when the socle is not contained in I, but the socle is contained in M_A . Then choose an element v in the socle not contained in I. Consider the A-algebra automorphism

$$\beta: A[T] \to A[T], \quad T \mapsto (1+v)T.$$

As before, we proceed to check that this map respects the ideal J.

$$\beta(T^2 - \lambda^2) = (1+v)^2 T^2 - \lambda^2$$

$$= (T^2 - \lambda^2) + 2vT^2 + v^2 T^2$$

$$= (T^2 - \lambda^2) + 2v(T^2 - \lambda^2) + 2v\lambda^2 + v^2 T^2$$

$$= (1+2v)(T^2 - \lambda^2)$$

since $v^2 = 0$ and $v\lambda^2 = 0$ by virtue of the fact that v is in the socle as well as in M_A and $\lambda^2 \in M_A$. So, $\beta(T^2 - \lambda^2) \in J$.

Similarly, for any $a \in M_A$ one has,

$$\beta(aT - a\lambda) = a(1+v)T - a\lambda = (aT - a\lambda) + avT = aT - a\lambda.$$

since av = 0. Thus $\beta(aT - a\lambda) \in J$. So, we get an induced A-algebra surjection,

$$\overline{\beta}:R\to R,$$

which is an isomorphism. Further, since $\overline{\beta}(\lambda) = \lambda + v\lambda$ and $v\lambda \neq 0$ since $v \notin I$, this is a non-trivial automorphism.

This concludes the proof of the theorem.

Corollary 3.2. Let R be a finite ring such that $\Gamma_{\operatorname{Aut} R}(R)$ is totally disconnected. Then R is a finite product of rings of the type $\mathbb{Z}_{p^{\alpha}}$ and $\mathbb{Z}_2[X]/(X^2)$.

Proof. Since R is a finite ring, by [1, Theorem 8.7], R is a finite product of local rings. Further, as $\Gamma_{\text{Aut }R}(R)$ is totally disconnected, Aut R = id. Hence each of the local ring in the decomposition of R has automorphism group trivial. Therefore the result follows from Theorem 3.1. \square

Remark 3. Let (R, M) be finite local ring with characteristic of R/M = p. If $[R/M : \mathbb{F}_p] > 2$, then R is of type at least 2. This can be deduced from the proof of Theorem 3.1.

4. Some connected subsets of $\Gamma_{\operatorname{Aut} R}(R)$

In this section, we study the structure of a finite local ring R for which certain subsets of $\Gamma_{\text{Aut }R}(R)$ are connected.

Theorem 4.1. Let (R, M) be a finite local ring and U(R) be the set of units of R. If $U(R) - \{1\}$ is a connected subset of $\Gamma_{\text{Aut }R}(R)$, then R is one of the following.

- (1) $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4$ or \mathbb{F}_4 .
- (2) $\mathbb{Z}_2[X_1, \dots, X_m]/I$ where I is the ideal of $\mathbb{Z}_2[X_1, \dots, X_m]$ generated by $\{X_iX_j|1 \leq i, j \leq m\}$.

Proof. If $U(R) = \{1\}$, then M = 0 since 1 + x is a unit for all $x \in M$. Therefore, in this case, $R = \mathbb{Z}_2$.

Now assume $U(R) - \{1\} \neq \emptyset$. Let p^n be the characteristic of R so that $\mathbb{Z}_{p^n} \subset R$. The number of units in \mathbb{Z}_{p^n} is $p^{n-1}(p-1)$. For any $\sigma \in \operatorname{Aut} R$, σ is identity on \mathbb{Z}_{p^n} . Thus all elements of $U(\mathbb{Z}_{p^n}) \subset U(R)$ have orbits consisting of just one element. If $U(R) - \{1\}$ is connected, it follows that the cardinality of $U(\mathbb{Z}_{p^n})$ can not be greater than two. Thus $p^{n-1}(p-1) \leq 2$. We deduce that either p=2, n=1, 2 or p=3, n=1.

If $M \supseteq \overline{p}\mathbb{Z}_{p^n}$, then for any $x \in M$, with $x \notin \overline{p}\mathbb{Z}_{p^n}$, 1 + x is a unit not in \mathbb{Z}_{p^n} . Therefore, in the cases p = 2, n = 2 or p = 3, n = 1, one sees that $U(R) - \{1\}$ is not connected. Consequently $M = \overline{p}\mathbb{Z}_{p^n}$, if p = 2, n = 2 or p = 3, n = 1.

Let us first look at the cases, p = 2, n = 2 and p = 3, n = 1. In these cases, $M = \overline{p}\mathbb{Z}_{p^n}$ from above. The set $U(\mathbb{Z}_{p^n}) - \{1\}$ has exactly one element and it is invariant under all automorphisms of R. Thus, this single element set is a connected component of $U(R) - \{1\}$, and since this set is assumed to be connected, we see that $U(R) - \{1\} = U(\mathbb{Z}_{p^n}) - \{1\}$. This implies $\mathbb{Z}_{p^n} - \overline{p}\mathbb{Z}_{p^n} = R - M$, Thus $R = \mathbb{Z}_{p^n}$ proving the theorem in these cases.

We are left with the last case, when p=2 and n=1. In this case $\mathbb{Z}_2 \subset R$. If R is a field, then $R=\mathbb{F}_q$ where $q=2^s$. The automorphism group of \mathbb{F}_q has order s and thus the orbits have cardinality at most s. Since the cardinality of $U(\mathbb{F}_q)$ is q-1, we get that $2^s-2=q-2\leq s$. One easily sees that this implies $s\leq 2$. Since we are assuming that $U(R)-\{1\}\neq\emptyset$, this forces s=2 and $R=\mathbb{F}_4$. One easily checks that in this case, $U(R)-\{1\}$ is connected.

Finally we may assume that $M \neq 0$. Let $0 \neq x \in M$. If $u \neq 1$ is any unit, then the connectedness of $U(R) - \{1\}$ implies that there exists a $\sigma \in \operatorname{Aut} R$ such that $\sigma(1+x) = u$ and hence $u \equiv 1 \mod M$. This implies $R/M \cong \mathbb{Z}_2$. Next we show that $M^2 = 0$. For this it suffices to show that for any $x \in M - M^2$ and any $y \in M$, xy = 0. If $xy \neq 0$, then there exists an automorphism τ of R so that $\tau(1+x) = 1 + xy$ which implies that $\tau(x) = xy$. But, then $\tau(x) \in M - M^2$ and $xy \in M^2$, which is a contradiction. So $M^2 = 0$.

Now, let $\{a_1, \dots, a_m\}$ be a minimal set of generators for M. Then consider the surjective homomorphism

$$f: \mathbb{Z}_2[X_1, \cdots, X_m] \to R, \quad X_i \longmapsto a_i$$

As $M^2=0$, $|M|=2^m$, since $m=\dim_{R/M}M/M^2$ and $R/M=\mathbb{Z}_2$. Therefore $|R|=2|M|=2^{m+1}$ and $\operatorname{Ker} f=I$ is the ideal generated by X_iX_j with $1\leq i,j\leq m$. As $|\mathbb{Z}_2[X_1,\cdots,X_m]/I|=2^{m+1}$, it follows that $\mathbb{Z}_2[X_1,\cdots,X_m]/I$ is isomorphic to R. It is easy to see that in this case, $U(R)-\{1\}$ is indeed connected.

Theorem 4.2. Let (R, M) be a finite local ring with characteristic p^n . If $M - \{0\}$ is connected, then $R = \mathbb{Z}_4$ or $\mathbb{F}_q[X_1, \dots, X_m]/I$ where \mathbb{F}_q is a finite field with q elements and I is the ideal generated by elements of the form X_iX_j with $1 \leq i, j \leq m$. By convention, we will include the case $R = \mathbb{F}_q$, when m = 0.

Proof. If $M - \{0\} = \emptyset$, then R is a field and hence \mathbb{F}_q for some q. So, let us assume that $M \neq 0$.

As characteristic of R is p^n , $\mathbb{Z}_{p^n} \subset R$. Exactly as in Theorem 4.1, we can see that $M^2 = 0$. Now, note that $M \cap \mathbb{Z}_{p^n} = (\overline{p})$. Hence $n \leq 2$.

First we consider the case n=2. In this case, if p>2, then for any 1< u< p, the two elements $u\overline{p}, \overline{p}$ are distinct non-zero elements of M and for any $\sigma\in \operatorname{Aut} R$, $\sigma(\overline{p})=\overline{p}$ and $\sigma(u\overline{p})=u\overline{p}$. This contradicts the fact $M-\{0\}$ is connected. Hence p=2. In this case $M=\{\overline{2},0\}$ since $\sigma(\overline{2})=\overline{2}$ for any automorphism σ of R and $M-\{0\}$ is connected. If $R\neq \mathbb{Z}_4$, then choose $\lambda\in R-\mathbb{Z}_4$. Clearly $\lambda\notin M$ and hence is a unit. Now, note that $\overline{2}$ and $\lambda\overline{2}$ are in in $M=\{\overline{2},0\}$. Therefore $\lambda\overline{2}=\overline{2}$ and hence $(\lambda-1)\overline{2}=0$. Since $\overline{2}\neq 0$, this implies that $\lambda-1\in M$ and and since $M\subset \mathbb{Z}_4$, we see that $\lambda\in \mathbb{Z}_4$, contradicting our choice of λ . Thus, in this case $R=\mathbb{Z}_4$.

In the last case of n=1, we have $\mathbb{Z}_p \subset R$. So $\mathbb{Z}_p \subset R/M$ is a finite separable extension and so as in Theorem 3.1, there exists a finite field $\mathbb{F}_q \subset R$ such that \mathbb{F}_q is isomorphic to R/M. Now, let $\{a_1, \dots, a_m\}$ be a minimal set of generators for M. Then consider as before the surjective

map

$$f: \mathbb{F}_q[X_1, \cdots, X_m] \to R, \quad X_i \longmapsto a_i$$

Again Ker f is the ideal I generated by elements of the form X_iX_j with $1 \leq i, j \leq m$. Note that, as seen above, $m = \dim_{R/M} M$. Thus $|R| = q^{m+1}$ and similarly $|\mathbb{F}_q[X_1, \cdots, X_m]/I| = q^{m+1}$. Consequently f is an isomorphism. Hence the proof is complete.

Theorem 4.3. Let K/E be a field extension, and let $\operatorname{Aut}_E K = H$. Assume $K - E \subset \Gamma_H(K)$ is connected. Then either K/E is algebraic or all elements of K - E are transcendental over E. Moreover, $K^H = E$. Further, if K/E is algebraic and not equal, then $E = \mathbb{F}_2$ and $K = \mathbb{F}_4$.

Proof. Let $a, b \in K - E$ be two distinct elements such that a is algebraic over E. Since $K - E \subset \Gamma_H(K)$ is connected, there exists $\sigma \in H$ such that $\sigma(a) = b$. Therefore b is also algebraic over E. This proves the first part of the statement.

Next, note that $E \subset K^H$. Then, as $K - E \subset \Gamma_H(K)$ is connected, it is clear that $K^H - E = \emptyset$, or in other words $K^H = E$.

Now, let K/E be algebraic. We shall consider the cases of K being infinite or finite separately.

First consider the case when K is infinite. If $K-E \neq \emptyset$, let $\lambda \in K-E$. Let p(T) be the irreducible polynomial of λ over E. Then for any $\sigma \in H$, $\sigma(\lambda)$ must be a root of p(T) and in particular the orbit of λ is finite. Since K-E is connected, this means that K-E is the orbit of λ and thus K-E is a finite set. Thus, K is a finite dimensional vector space over E and so E must be infinite too. For any $0 \neq a \in E$, $a\lambda \in K-E$ and these are distinct. So, K-E is infinite, which is a contradiction. So, K can not be infinite.

Next, let us consider the case when K is finite. Let $E = \mathbb{F}_q$ and let $|K:\mathbb{F}_q| = t > 1$. Then H is a cyclic group of order t generated by an appropriate power of the Frobenius. For any $\lambda \in K - E$, the cardinality of the orbit of λ is therefore at most t. Since K - E is connected, we have $|K - E| \le t$. On the other hand, $|K - E| = q^t - q$ and thus we get $q^t - q \le t$. It is easy to check that this can happen only when q = 2 and t = 2. This proves the theorem.

If $E = \mathbb{F}_2$ and $K = \mathbb{F}_4$, then it is trivial to check that $\mathbb{F}_4 - \mathbb{F}_2$ is indeed connected.

Let K/k be a field extension where K and k are algebraically closed. Let $H = \operatorname{Aut}_k(K)$. Then, it is easy to check that $K - k \subset \Gamma_H(K)$ is connected. We, now, ask the converse:

Question 1. Let k be an algebraically closed field and let K/k be a field extension with $H = \operatorname{Aut}_k(K)$. Assume $K - k \subset \Gamma_H(K)$ is connected. Is K algebraically closed?

This question is a slight variant of part of Conjecture 2.1 in [3].

REFERENCES

- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR MR0242802 (39 #4129)
- [2] István Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226. MR MR944156 (89i:13006)
- [3] Kiran S. Kedlaya and Bjorn Poonen, Orbits of automorphism groups of fields, J. Algebra 293 (2005), no. 1, 167–184. MR MR2173971 (2006h:12006)
- [4] Pramod K. Sharma, A note on automorphisms of local rings, Comm. Algebra **30** (2002), no. 8, 3743–3747. MR MR1922308 (2003g:13027)
- [5] _____, Orbits of automorphisms of integral domains, Ill. Jour. Math. $\bf 30$ (2009), 645–652.
- [6] Pramod K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176 (1995), no. 1, 124–127. MR MR1345297 (96f:05079)

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY IN St. LOUIS, St. Louis, Missouri, 63130, U.S.A.

E-mail address: kumar@wustl.edu

URL: http://www.math.wustl.edu/~kumar

School Of Mathematics, Vigyan Bhawan, Khandwa Road, INDORE–452 001, INDIA.

E-mail address: pksharma1944@yahoo.com