Math 131, Spring 2004
Quiz \#7, Discussion Section A (Thursday, 11:00-12:00)
Quiz problems should be solved using the methods discussed in this course. A calculator is pot permitted. To receive full credit, show enough work to make it clear how you got your answer.
 ID\#

1. A ladder 10 feet long rests against a vertical wall. Let θ be the angle between the wall and the ladder. The bottom of the ladder is sliding away from the wall at a rate of 2 feet $/ \mathrm{sec}$. How fast is θ changing when the bottom of the ladder is 6 feet from the wall?

$$
\begin{aligned}
& \frac{d x}{d t}=2 \mathrm{ft} / \mathrm{sec} \\
& \text { want } \frac{d \theta}{d t} @ x=6 \\
& \text { relate } x_{1} \theta \times 10 \\
& \sin \theta=\frac{x}{10}
\end{aligned}
$$

2. Sketch the graph of a function whose domain is NOT $(-\infty, \infty)$ that has no absolute maximum or absolute minimum.

Quiz problems should be solved using the methods discussed in this course. A calculator is hot permitted. To receive full credit, show enough work to make it clear how you got your answer
Name: Answer Key
ID\# \qquad

1. A cake is put in an oven whose temperature is $350^{\circ} \mathrm{F}$. After t hours, its temperature $T=$ $350-200 e^{-t}$. Use differentials to estimate the change in temperature of the cake during the first 0.2 hour. What is the expression for the exact change?

$$
T=350-200 e^{-t} \Rightarrow d T=200 e^{t} d t
$$

So $t=0, d t=0.2 \Rightarrow d T=200 \cdot 0.2=40$

$$
\text { exact change: } \begin{aligned}
T(0.2)-T(0) & =350-200 e^{-0.2}-(350-200) \\
& =200-\frac{200}{e^{0.2}} \\
& \approx 36.25
\end{aligned}
$$

2. A ladder 13 feet long rests against a vertical wall. The bottom of the ladder is sliding away from the wall at a rate of 5 feet $/ \mathrm{sec}$. How fast is the top of the ladder sliding when the base is 12 feet from the wall.

$$
\text { Given } \frac{d x}{d t}=5
$$

want $\frac{d y}{d t}$ at $x=12$
Know: $x^{2}+y^{2}=13^{2}$

$$
\begin{aligned}
& \Rightarrow 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \\
& \Rightarrow \frac{d y}{d t}-\frac{x}{y} \frac{d x}{d t} \\
& x=12 \Rightarrow y^{2}=3^{2}-12^{2} \Rightarrow y=5 \\
& \text { So } \frac{d y}{d t}=-\frac{12}{5} \cdot 5=-12 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Math 131, Spring 2004
Quiz \#7, Discussion Section C (Thursday, 12:00-1:00)
Quiz problems should be solved using the methods discussed in this course. A calculator is not permitted. To receive full credit, show enough work to make it clear how you got your answer.
Name: Answer Kay ID\# \qquad

1. A ladder 10 feet long rests against a vertical wall. Let θ be the angle between the wall and the ladder. The bottom of the ladder is sliding away from the wall at a rate of 2 feet $/ \mathrm{sec}$. How fast is θ changing when the bottom of the ladder is 6 feet from the wall?

$$
\text { Given } \frac{d x}{d t}=2 i
$$

$$
\text { relate } x_{1} \theta_{1}
$$

$$
\sin \theta=\frac{x}{10}
$$

$$
\Rightarrow \cos \theta d \theta=10 \frac{d}{d t}
$$

$\Rightarrow \frac{d \theta}{d t}=\frac{1}{10005 \theta} \frac{d x}{d t}$

$$
\begin{aligned}
x=6 & \Rightarrow y=\sqrt{10^{2}}-6^{2}=\sqrt{64}=8 \\
& \Rightarrow \cos \theta=\frac{8}{10}=\frac{4}{5} \\
\text { So } \frac{d \theta}{d t} & =\frac{5}{10 \cdot 4} \cdot 2=\frac{1}{4}
\end{aligned}
$$

2. Sketch the graph of a function that has a local maximum and a local minimum, but no absolute minimum.

