MATH 233 (SPRING 2016) MIDTERM EXAM 2 REVIEW SUGGESTIONS

This two-hour exam will consist of 20 multiple-choice questions, covering material through Lecture 20. Make sure to bring a number 2 pencil. Calculators and 3×5 -cards will not be permitted. Exam scores will be available the following day.

The exam questions are drawn from the following list of skills and topics from §§13.3-4 and 14.1-7 in Stewart. Topics not listed (tangential and normal components of acceleration, Kepler's laws, etc.) will not be covered.

- Finding arclength by integrating speed: $s = \int_a^b ||\vec{r}'(t)|| dt$, or if you want it as a 13.3 function of t, $s(t) = \int_0^t ||\vec{r}'(u)|| du$. Reparametrizing $\vec{r}(t)$ by arclength: by computing s(t) then its inverse t(s), and
 - plugging this into $\vec{r}(t)$.
 - Computing curvature $\kappa(t)$: know formulas 9 and 10 from the book, and what κ means geometrically.
 - Finding \vec{N} and \vec{B} , and using \vec{B} to write the equation of the osculating plane.
- Given $\vec{a}(t)$, $\vec{v}(0)$, and $\vec{r}(0)$, finding $\vec{r}(t)$ by integrating twice. 13.4 Physics type problems, involving gravity (like the ballistics problems we did).
- 13.5 There is no 13.5, relax.
- 14.1 Sketching/recognizing z = f(x, y); drawing contour maps (level curves) and domain of f. Identifying where a function is continuous.
- 14.2 Finding limits (one approach = convert to polar), or showing they don't exist (e.g. by considering different paths).
- Computing partial derivatives $f_x = \frac{\partial f}{\partial x}$, higher partials; know $f_{xy} = f_{yx}$ always 14.3 (assuming they're continuous).
- Equation for tangent plane to z = f(x, y) at (x_0, y_0) , given by z = L(x, y). This 14.4 doubles as "linear approximation". Using L(x,y) to estimate value of f at a point near (x_0,y_0) .
 - Using differentials to estimate error and so forth.
- 14.5 Chain rule. Don't memorize formulas for special cases; instead, understand how to draw the diagrams and use them to produce the formula.
- Gradient vector $\nabla f = \langle f_x, f_y \rangle$ ($\langle f_x, f_y, f_z \rangle$ for functions of 3 variables) and its 14.6 properties: normal to level curves, points in direction of steepest increase. Use this to find formulas for tangent lines (planes) to level curves (surfaces).
 - Directional derivative $D_{\hat{u}}f = (\nabla f) \cdot \hat{u}$ and its intuitive meaning.
- Find local extrema and saddle points of a function on xy-plane, using the second 14.7 derivative test.
 - Optimization: finding global extrema of functions arising from practical or geometric problems. (Usually this is done on a closed bounded subset of \mathbb{R}^2 , but sometimes the set isn't bounded.)

Practice Midterm 2

Part I: Multiple choice problems

- (1) If your Prius XLVII spaceship had velocity vector $\vec{v}(t) = \langle 4, 3 \cos t, 3 \sin t \rangle$ from t = 0to $t = \pi$, compute the length of the arc along which you traveled.
 - $(A) \pi$
 - (B) 2π
 - (C) 3π
 - (D) 4π
 - (E) $\sqrt{4\pi^2+9}$
 - (F) $2\sqrt{4\pi^2+9}$
 - (G) none of the above
- (2) To reparametrize $\vec{r}(t) = \langle e^t \sin t, e^t \cos t, e^t \rangle$ by arclength from t = 0, you must replace t by t(s) =____.
 - (A) $\sqrt{3}(e^s 1)$
 - (B) $\sqrt{3}e^s$
 - (C) $\ln(s+1)$
 - (D) $\ln(\frac{s}{\sqrt{2}} + 1)$
 - (E) $\ln\left(\frac{s}{\sqrt{3}} + 1\right)$
 - $(F) \ln(\frac{s}{\sqrt{3}})$
 - (G) none of the above
- (3) Find $\vec{r}(t)$ if $\vec{a}(t) = (0, 0, 1)$, $\vec{v}(0) = (1, -1, 0)$, and $\vec{r}(0) = (0, 1, 0)$.
 - (A) $(0, 1, \frac{t^2}{2})$
 - (B) $\langle t, 1 t, \frac{t^2}{2} \rangle$
 - (C) $\langle t, -t, \frac{t^2}{2} \rangle$ (D) $\langle 1, -1, t \rangle$

 - (E) $\langle t, 1-t, t^2 \rangle$
 - (F) none of the above
- (4) Let $\vec{r}(t) = \langle 1 + \frac{t^4}{4}, \frac{\sqrt{2}t^3}{3}, \frac{t^2}{2} \rangle$. What is the radius of the osculating circle at $\vec{r}(\sqrt{2})$? Warning: this is a bit of a long computation. You may wish to leave this and the next problem for last.
 - (A) 9
 - (B) 3
 - (C) 1
 - (D) $\frac{1}{3}$
 - (E) $\frac{1}{9}$
 - (F) none of the above
- (5) With $\vec{r}(t)$ as in problem (4), which is an equation of the osculating plane at $t = \sqrt{2}$?
 - (A) 6x + 6y + 3z = 26
 - (B) -6x + 3y + 6z = 4
 - (C) 3x 6y + 6z = 26
 - (D) 3x 6y + 6z = 10
 - (E) -6x + 3y + 6z = 0
 - (F) 6x + 6y + 3z = 6
 - (G) none of the above

- (6) A bee was flying along a helical path $\vec{H}(t) = \langle \cos t, \sin t, 16t \rangle$ (measured in feet). At t=12, it had a heart attack and died instantly. Where did it land (that is, what are the (x,y)-coordinates where it hit the xy-plane)? [Hint: reset t=0 when the bee dies, and use the acceleration due to gravity $g = 32 \text{ ft/sec}^2$.
 - (A) $(\cos 12, \sin 12)$
 - (B) $(-4\sin 12, 4\cos 12)$
 - (C) $(\cos 12 + 3\sin 12, \sin 12 3\cos 12)$
 - (D) $(\cos 12 \sin 12, \sin 12 + \cos 12)$
 - (E) $(\cos 12 4\sin 12, \sin 12 + 4\cos 12)$
 - (F) none of the above
- (7) What is $\lim_{(x,y)\to(0,0)} \frac{\sin(3x^2+3y^2)}{x^2+u^2}$?
 - (A) 1
 - $(B) \frac{1}{3} (C) 3$

 - (D) 9
 - (E) 0
 - (F) DNE
 - (G) none of the above
- (8) Use the linear approximation to $f(x,y) = x^2/y$ at (1,1) to approximate $0.99^2/1.01$.
 - (A) 1
 - (B) 0.99
 - (C) 0.98
 - (D) 0.97
 - (E) 0.96
 - (F) 0.95
 - (G) none of the above
- (9) Which is an equation of the plane tangent to the surface $z + xe^{-2y} = y^2e^z + 2$ at
 - (A) $e^2x + (1 e^2)z = 2 e^2$
 - (A) $e^{2}x + e^{2}y + (1 e^{2})z = 2 2e^{2}$ (B) $e^{2}x + e^{2}y + (1 e^{2})z = 2 2e^{2}$ (C) $e^{2}y + (1 e^{2})z = 2 3e^{2}$ (D) $-e^{2}x + (1 e^{2})z = 2 3e^{2}$ (E) $e^{2}x + (1 e^{2})z = e^{2} 2$

 - $(F) e^2x + e^2y e^2z = -2e^2$
 - (G) none of the above
- (10) With $f(x,y) = y^2 \ln x$, find the slope of the graph of z = f(x,y) in the direction $\vec{v} = \langle -1, 1 \rangle$, "over" the point p = (1, 2).
 - (A) -4
 - (B) -2
 - (C) 0
 - (D) 2
 - (E) 4
 - (F) none of the above

- (11) With f(x,y) as in problem (10), the direction of steepest slope of the graph at (1,2) makes what angle with the vector $\langle 1, 0 \rangle$?
 - $(A) 0^{\circ}$
 - (B) 45°
 - (C) 90°
 - (D) 135°
 - (E) 180°
 - (F) none of the above
- (12) Determine the dimensions of a rectangular box without a lid, of volume 4 m³, which minimize the surface area (hence material used). What is the height?
 - (A) $\frac{1}{\sqrt[3]{4}}$
 - (B) $\frac{1}{\sqrt[3]{2}}$
 - (C) 1
 - (D) $\sqrt[3]{2}$
 - (E) $\sqrt[3]{4}$
 - (F) 2
 - (G) 4
 - (H) none of the above

PART II: HAND-GRADED PROBLEMS

- (1) Find all critical points of $f(x,y) = x^3 + y^3 6xy$ on the xy-plane. Use the secondpartials test to decide whether each point gives a local maximum, minimum, or saddle point.
- (2) If T = f(x, y, z, w), and x, y, z, w are each functions of s and t, write a chain rule for $\partial T/\partial s$. Draw a diagram if you like.
- (3) Compute (or show does not exist): $\lim_{(x,y)\to(0,0)} \frac{xy+y^3}{x^2+y^2}$. (4) Sketch (a) the graph of $f(x,y) = e^{-(x^2+y^2)}$, (b) a rough contour map (level curves) for $f(x,y) = x^2 + y$, and (c) the largest set on which $f(x,y) = \ln(1-x^2-y^2)$ is continuous.
- (5) I want a function f(x,y) with $f_x(x,y) = \cos(x) \sin(y)$ and $f_y(x,y) = \cos(y) + \sin(x)$, but I'm having trouble finding one. What gives?