MATH 233 LECTURE 10 (§13.3): CURVATURE AND OSCULATING CIRCLES

Review of notation: $\vec{r}(t)$ is a vector valued function (position), $\vec{r}'(t)$ the velocity (tangent vector), $\|\vec{r}'(t)\| = \frac{ds}{dt}$ the speed, and $\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|}$ the direction (unit tangent vector). The curvature is $\kappa(t) = \frac{\|\vec{r}'(t)\|}{\|\vec{r}'(t)\|}$, which becomes simply $\kappa(t) = \|\vec{r}''(t)\|$ if $\vec{r}(t)$ has speed constantly equal to 1 (parametrization by arclength).

More curvature formulas.

- Another general formula is $\kappa(t) = \|\vec{r}'(t) \times \vec{r}''(t)\| / \|\vec{r}'(t)\|^3$, which does away with differentiating \vec{T} (usually no fun). It is based on the idea that $\vec{T}(t)$ (being of unit length) lies on the surface of a sphere, hence has $\vec{T}(t) \perp \vec{T}'(t)$. (Details in Stewart, and in lecture.)
- A convenient formula for the special case where $\vec{r}(t) = \langle t, f(t), 0 \rangle$ traces out the graph of a function y = f(x) (in the *xy*-plane) is $\kappa(t) = |f''(t)|/\{1 + (f'(t))^2\}^{3/2}$.

Osculating planes and circles.

- The curve C traced out by $\vec{r}(t)$ has (at each point) one tangent direction and two normal directions. So we need two normal vectors. The first is the "direction of curvature (or acceleration)": the principal unit normal vector $\vec{N}(t) := \vec{T}'(t) / \|\vec{T}'(t)\|$. The second is the secondary or binormal unit normal vector $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$.
- The normal plane to C (at $\vec{r}(t)$) contains $\vec{B}(t)$ and $\vec{N}(t)$, and has normal vector $\vec{T}(t)$. The osculating plane (at $\vec{r}(t)$) contains $\vec{T}(t)$ and $\vec{N}(t)$ (as well as the osculating circle), and has normal vector $\vec{B}(t)$. Note that having the normal vectors gives you the information you need to write down equations for these planes.

• Just as we wrote parametric equations for the tangent lines to C, we can write equations for the osculating circles. The parametrization for an arbitrary circle is $\vec{\mathbf{r}}(u) = \vec{C} + (\cos u)\vec{A} + (\sin u)\vec{B}$. To find the center \vec{C} , use the fact that the osculating circle at $\vec{r}(t)$ has radius $\frac{1}{\kappa(t)}$ and $\vec{N}(t)$ points toward the center. This gives $\vec{C} = \vec{r}(t) + \frac{1}{\kappa(t)}\vec{N}(t)$, and taking $\vec{A} = \frac{1}{\kappa(t)}\vec{T}(t)$ and $\vec{B} = \frac{1}{\kappa(t)}\vec{N}(t)$ finishes the job.