MATH 233 LECTURE 11 (§13.4): ACCELERATION

Physics of curvilinear motion.

- If $\vec{r}(t)$ describes the motion of an object, then $\vec{v}(t) := \vec{r}'(t)$ is its velocity, and $\vec{a}(t) := \vec{r}''(t)$ is its acceleration. We will also write $\nu(t) = ||\vec{r}'(t)||$ for speed.
- If the object has mass m, then by Newton's 2nd law $\vec{F}(t) = m\vec{a}(t)$, where $\vec{F}(t)$ is the (vector) sum of all the forces acting on the object at time t.
- In uniform circular motion, $\vec{a}(t)$ points toward the center of the circle.
- For projectile motion in the xy-plane (thinking of the y-direction as "up"), we assume $\vec{a}(t) = \vec{a} = \langle 0, -g \rangle$ ($g = 32 \ ft/s^2$ or $9.8m/s^2$). Choose an initial velocity vector $\vec{v}(0) = \langle \nu_0 \cos \theta, \nu_0 \sin \theta \rangle$ and position vector $\vec{r}(0) = \langle x_0, y_0 \rangle$. Use these as constants of integration to get $\vec{v}(t) = \langle \nu_0 \cos \theta, -gt + \nu_0 \sin \theta \rangle$ and $\vec{r}(t) = \langle (\nu_0 \cos \theta)t + x_0, -\frac{g}{2}t^2 + (\nu_0 \sin \theta)t + y_0 \rangle$.
- More generally (for motion in 2 or 3 dimensions), you should be able to obtain $\vec{r}(t)$ from $\vec{a}(t)$ (or $\vec{F}(t)$), $\vec{v}(0)$ and $\vec{r}(0)$.
- Tangential (speed-changing) and normal (direction-changing) components of acceleration: $\vec{a}(t) = a_T(t)\vec{T}(t) + a_N(t)\vec{N}(t) = \nu'(t)\vec{T}(t) + (\nu(t))^2\kappa(t)\vec{N}(t)$.

Kepler's laws of planetary motion.

- One of Newton's great accomplishments with his calculus was the proof that Kepler's laws follow from Newton's laws of motion and gravitation.
- 1st law: the motion is elliptical with the sun as a focus. (Denote the length of the semi-major axis by a.)
- 2nd law: area is swept out at a constant rate (here area refers to the "piece of pie" with vertex at the sun and outer edge given by the planet's motion). Will prove this one in class.

	riod of revolution	(time to go once	e around the sun) is prop
to $a^{3/2}$.				