MATH 233 LECTURE 14 (§14.3):
PARTIAL DERIVATIVES

e Given a 2-variable function f(z,y), define
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We also use the notation f,(z,v), f,(z,y).

e These represent slopes in the z- and y-directions. More precisely, if you slice
the graph of z = f(z,y) by the plane y = 7o, you get a curve (the graph
of 2z = f(x,y0)) in this plane. The slope of the tangent line to this curve

at (zo, Yo, [(To,v0)) is %(Io,y(]). This tangent line is parametrized by t +—

(zo +t, Yo, f(x0,y0) + fu(To, Yo)t)-

e Stupid examples: if f(x,y) = x%?® then % = az® P, g—?]; = br%yt . If
f(x,y) = €*, then % = %, % = 0. When taking %, you have to view y
as a constant, which is consistent with the geometric meaning of the partial
derivative just described.

e Just as with ordinary derivatives, you may iterate partial derivatives: f,, =
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e Clairaut’s theorem: if both f,, and f,, are continuous, then they are equal —

i.e. the order in which you take partial derivatives doesn’t matter.

Partial differential equations.

e of fundamental importance in mathematical physics, finance, etc.

e Laplace equation: f,, + f,, = 0. Solutions are called harmonic functions (e.g.
voltage in the absence of a potential field).

e Heat equation: f; = o?f,,. (Here f is a function of time ¢ and position x.) Rate

of change of (say) temperature is proportional to its concavity at a point.
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e Wave equation: f; = a?f,,. Satisfied by propagating waves, as the name would
imply!

e many other famous examples (Navier-Stokes, Black-Scholes, Schrodinger, not to
mention the plethora of such equations in general relativity and quantum field

theory...)



