MATH 233 LECTURE 3 (§§12.4-5): MORE ON CROSS-PRODUCTS; LINES AND PLANES IN SPACE

Cross-products, cont'd.

• The area of a parallelogram is given by $\|\vec{a}\| \left(\|\vec{b}\| \sin \theta \right) = \|\vec{a} \times \vec{b}\|$, and the area of a triangle is half that:

Use this formula by finding the vectors along adjacent sides (of a triangle or parallelogram) and taking their cross-product.

• The scalar triple-product (of three vectors in \mathbb{R}^3) is given by

(1)
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

Its absolute value gives the volume of the parallelepiped spanned by $\vec{a}, \vec{b}, \vec{c}$. The vectors are coplanar if and only if (1) is zero.

• The cross product is neither associative $(\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c})$ nor commutative, but is anti-commutative: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$. It satisfies the distributive law, and there are also the "exotic" identities

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot c$$
, $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$.

(You don't need to memorize these.)

• In physics, torque (angular force) is computed by $\vec{r} \times \vec{F}$, where \vec{F} is the force vector and \vec{r} the radius vector (pointing from the hinge to where the force is applied). It points *perpendicular* to the plane of motion (i.e. along the axis of motion).

Lines in space.

• parametric equation of the line through $P(x_0, y_0, z_0)$ with direction $\vec{v} = \langle a, b, c \rangle$:

$$x = x_0 + ta$$
, $y = y_0 + tb$, $z = z_0 + tc$.

• symmetric equation of the line through P with direction \vec{v} :

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}.$$

• you should be able to find the parametric and symmetric equations of the line through two given points, or the line through a given point and parallel to a given line.

Planes in space.

• equation of plane \mathbb{P} with normal (perpendicular) vector $\vec{n} = \langle a, b, c \rangle$:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

- use this in conjunction with the cross-product to find the equation of a plane containing 2 vectors (or 3 points).
- what about the plane through a given point and containing a given line? or through a given point and parallel to another given plane?