MATH 233 LECTURE 38: GAUSS AND STOKES THEOREMS IN THE PLANE

More on curl and div.

- Though the title says "plane", we'll start with some stuff in space. Recall that for a vector field \vec{F} on a region $D \subset \mathbb{R}^3$, $\operatorname{div} \vec{F} = \vec{\nabla} \cdot \vec{F}$ and $\operatorname{curl} \vec{F} = \vec{\nabla} \times \vec{F}$, where $\vec{\nabla} = \frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}$.
- By Clairaut's Theorem (details in class), we have two identities: (1) $\operatorname{curl}(\vec{\nabla}f) = \vec{0}$ for any function f on D; and (2) $\operatorname{div}(\operatorname{curl}\vec{F}) = 0$ for any vector field \vec{F} on D.
- By (1), if $\vec{F} = \vec{\nabla} f$ (i.e. \vec{F} conservative), then $\operatorname{curl} \vec{F} = \vec{0}$ (i.e. \vec{F} irrotational). If D is simply connected, then the converse holds: \vec{F} irrotational $\implies \vec{F}$ conservative.
- By (2), if \$\vec{F}\$ is the curl of another vector field \$\vec{G}\$ (i.e. \$\vec{F}\$ is a "curl field"), then div\$\vec{F}\$ = 0 (i.e. \$\vec{F}\$ incompressible). If \$D\$ has no "solid holes", then the converse holds here too.

Vector forms of Green's Theorem.

- Let C be a simple closed curve in \mathbb{R}^2 , with a smooth parametrization $\vec{r}(s) = x(s)\hat{i} + y(s)\hat{j}$ by arclength s, and "positively oriented" (i.e. in the counterclockwise direction). The unit tangent vector is $\hat{T}(s) = x'(s)\hat{i} + y'(s)\hat{j}$, and the outward-pointing unit normal is $\hat{n}(s) = y'(s)\hat{i} - x'(s)\hat{j}$.
- Now suppose $C = \partial S$, and that $D \subset \mathbb{R}^2$ contains C and S. Let $\vec{F} = P\hat{i} + Q\hat{j}$ be a vector field on D (D contains C). Write

$$\begin{split} &\oint_C \vec{F} \cdot \hat{n} ds = \oint_C (P\hat{i} + Q\hat{j}) \cdot (y'(s)\hat{i} - x'(s)\hat{j}) ds \\ &= \oint_C -Qx'(s) ds + Py'(s) ds = \oint_C -Q dx + P dy, \\ & 1 \end{split}$$

which by Green's Theorem

$$= \iint_{S} (P_x - (-Q_y)) dA = \iint_{S} (P_x + Q_y) dA.$$

This gives Gauss's Divergence Theorem in the plane:

$$\oint_{\partial S} \vec{F} \cdot \hat{n} ds = \iint_{S} \operatorname{div}(\vec{F}) dA,$$

which tells us that the total flux of \vec{F} across the boundary ∂S (the left-hand side) equals the integral of the "outward flux per unit area" over S, which sounds completely plausible.

• There is also "Stokes's Theorem in the plane" which is more or less a restatement of Green's theorem: it reads

$$\oint_{\partial S} \vec{F} \cdot \hat{T} ds = \iint_{S} (\operatorname{curl} \vec{F}) \cdot \hat{k} dA$$

Harmonic functions and Maxwell's equations.

- The Laplacian is the operator $\nabla^2 := \vec{\nabla} \cdot \vec{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. It may be applied to functions or vector fields. Notice that $\nabla^2 f = \operatorname{div}(\vec{\nabla} f)$.
- We say that f is harmonic if $\nabla^2 f = 0$, and similarly for vector fields.
- Let *E*(*x*, *y*, *z*; *t*), *H*(*x*, *y*, *z*; *t*) denote the electric and magnetic fields (vector fields in space that change in time *t*). The simplest presentation of Maxwell's equations (in a vacuum) is:

$$\vec{\nabla} \cdot \vec{E} = 0 = \vec{\nabla} \cdot \vec{H}$$
$$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{H}}{\partial t} , \quad \vec{\nabla} \times \vec{H} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t}$$

where c is the speed of light. (The units are not natural in this form and I won't address them here.) In class, I will say how to derive the wave equations

$$\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} , \quad \nabla^2 \vec{H} = \frac{1}{c^2} \frac{\partial^2 \vec{H}}{\partial t^2}$$

from them. Notice that this says that, for example, \vec{E} is static (doesn't change with time) if and only if it is harmonic.