MATH 233 LECTURE 38:

GAUSS AND STOKES THEOREMS IN THE PLANE

More on curl and div.

- Though the title says "plane", we'll start with some stuff in space. Recall that for a vector field \vec{F} on a region $D \subset \mathbb{R}^{3}, \operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}$ and $\operatorname{curl} \vec{F}=\vec{\nabla} \times \vec{F}$, where $\vec{\nabla}=\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}$.
- By Clairaut's Theorem (details in class), we have two identities: $(1) \operatorname{curl}(\vec{\nabla} f)=$ $\overrightarrow{0}$ for any function f on D; and (2) $\operatorname{div}(\operatorname{curl} \vec{F})=0$ for any vector field \vec{F} on D.
- By (1), if $\vec{F}=\vec{\nabla} f$ (i.e. \vec{F} conservative), then $\operatorname{curl} \vec{F}=\overrightarrow{0}$ (i.e. \vec{F} irrotational). If D is simply connected, then the converse holds: \vec{F} irrotational $\Longrightarrow \vec{F}$ conservative.
- By (2), if \vec{F} is the curl of another vector field \vec{G} (i.e. \vec{F} is a "curl field"), then $\operatorname{div} \vec{F}=0$ (i.e. \vec{F} incompressible). If D has no "solid holes", then the converse holds here too.

Vector forms of Green's Theorem.

- Let C be a simple closed curve in \mathbb{R}^{2}, with a smooth parametrization $\vec{r}(s)=$ $x(s) \hat{i}+y(s) \hat{j}$ by arclength s, and "positively oriented" (i.e. in the counterclockwise direction). The unit tangent vector is $\hat{T}(s)=x^{\prime}(s) \hat{i}+y^{\prime}(s) \hat{j}$, and the outward-pointing unit normal is $\hat{n}(s)=y^{\prime}(s) \hat{i}-x^{\prime}(s) \hat{j}$.
- Now suppose $C=\partial S$, and that $D \subset \mathbb{R}^{2}$ contains C and S. Let $\vec{F}=P \hat{i}+Q \hat{j}$ be a vector field on $D(D$ contains $C)$. Write

$$
\begin{aligned}
& \oint_{C} \vec{F} \cdot \hat{n} d s=\oint_{C}(P \hat{i}+Q \hat{j}) \cdot\left(y^{\prime}(s) \hat{i}-x^{\prime}(s) \hat{j}\right) d s \\
= & \oint_{C}-Q x^{\prime}(s) d s+P y^{\prime}(s) d s=\oint_{C}-Q d x+P d y
\end{aligned}
$$

which by Green's Theorem

$$
=\iint_{S}\left(P_{x}-\left(-Q_{y}\right)\right) d A=\iint_{S}\left(P_{x}+Q_{y}\right) d A
$$

This gives Gauss's Divergence Theorem in the plane:

$$
\oint_{\partial S} \vec{F} \cdot \hat{n} d s=\iint_{S} \operatorname{div}(\vec{F}) d A
$$

which tells us that the total flux of \vec{F} across the boundary ∂S (the left-hand side) equals the integral of the "outward flux per unit area" over S, which sounds completely plausible.

- There is also "Stokes's Theorem in the plane" which is more or less a restatement of Green's theorem: it reads

$$
\oint_{\partial S} \vec{F} \cdot \hat{T} d s=\iint_{S}(\operatorname{curl} \vec{F}) \cdot \hat{k} d A .
$$

Harmonic functions and Maxwell's equations.

- The Laplacian is the operator $\nabla^{2}:=\vec{\nabla} \cdot \vec{\nabla}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$. It may be applied to functions or vector fields. Notice that $\nabla^{2} f=\operatorname{div}(\vec{\nabla} f)$.
- We say that f is harmonic if $\nabla^{2} f=0$, and similarly for vector fields.
- Let $\vec{E}(x, y, z ; t), \vec{H}(x, y, z ; t)$ denote the electric and magnetic fields (vector fields in space that change in time t). The simplest presentation of Maxwell's equations (in a vacuum) is:

$$
\begin{gathered}
\vec{\nabla} \cdot \vec{E}=0=\vec{\nabla} \cdot \vec{H} \\
\vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{H}}{\partial t}, \quad \vec{\nabla} \times \vec{H}=\frac{1}{c} \frac{\partial \vec{E}}{\partial t}
\end{gathered}
$$

where c is the speed of light. (The units are not natural in this form and I won't address them here.) In class, I will say how to derive the wave equations

$$
\nabla^{2} \vec{E}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}, \quad \nabla^{2} \vec{H}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{H}}{\partial t^{2}}
$$

from them. Notice that this says that, for example, \vec{E} is static (doesn't change with time) if and only if it is harmonic.

