MATH 233 LECTURE 4 (§12.5, CONT'D): LINES AND PLANES IN SPACE: INTERSECTIONS, ANGLES, DISTANCE

Intersections.

- Two distinct planes: given \mathbb{P}_1 and \mathbb{P}_2 , with normal vectors \vec{n}_1 and \vec{n}_2 , there are two possibilities. Either \mathbb{P}_1 and \mathbb{P}_2 are parallel $(\vec{n}_1$ is a scalar multiple of \vec{n}_2), or they intersect in a line ℓ . In the latter case, the direction vector \vec{v} of ℓ is given by $\vec{n}_1 \times \vec{n}_2$. By finding a point P in the intersection, you can then obtain an equation of ℓ .
- Line and plane: if the direction vector of ℓ is not "in" the plane \mathbb{P} (i.e. $\ell \cdot \vec{n} \neq 0$), then ℓ intersects \mathbb{P} in a point. You can find this point by using the parametric equations of ℓ , and solving for the value of t for which x(t), y(t), z(t) satisfy the equation of \mathbb{P} .
- Two distinct lines: given ℓ_1 and ℓ_2 , they may or may not intersect. You may determine this by writing the parametric equations of ℓ_1 [resp. ℓ_2] in terms of t [resp. s], then trying to solve for s and t such that the x, y, z values coincide (3 equations in 2 variables). If they do not intersect, and they are not parallel (parallel means that the direction vector \vec{v}_1 is a scalar multiple of \vec{v}_2), then ℓ_1 and ℓ_2 are called skew lines.

Angles.

- Two planes: the angle between \mathbb{P}_1 and \mathbb{P}_2 is just the angle between \vec{n}_1 and \vec{n}_2 .
- Line and plane: find the (acute) angle α between \vec{v} (direction vector of ℓ) and \vec{n} (normal vector of \mathbb{P}). Then the angle between ℓ and \mathbb{P} is $\theta = 90^{\circ} \alpha$.
- Two intersecting lines: this is easy.

Distance.

ullet Point to plane: the distance from $Q(x_1,y_1,z_1)$ to the plane $\mathbb P$ with equation ax+by+cz+d=0 is given by

$$d(Q, \mathbb{P}) = \operatorname{comp}_{\vec{n}} \overrightarrow{PQ} = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}},$$

where P is any point on \mathbb{P} .

- Point to line: see your homework.
- Two parallel planes or skew lines: see next lecture.