Math 4351 Exam \#1
SOLUTIONS
(1) $[4 \mathrm{pts}]$ Show or disprove, for p prime: if $p \mid b$ and $p \mid b^{2}+c^{2}$, then $p \mid c$.

$$
\left.\left.\begin{array}{c}
a n d \\
p \mid b^{2}+c^{2}
\end{array}\right\} \Rightarrow \begin{array}{c}
p \mid b^{2} \\
a n d \\
p / b^{2}+c^{2}
\end{array}\right\} \Rightarrow p\left|c^{2} \underset{p \text { prime }}{\Longrightarrow} p\right| c
$$

(2) $[6 \mathrm{pts}]$ Find the inverse of $17(\bmod 53)$. [Hint: there is a method to do this. Trial and error will not receive full credit.]

Use the Euclidean Algorithm:

53	17	2	1
1	0	1	-8
0	1	-3	25

$$
\begin{aligned}
& \Rightarrow 25.17-8.53=1 \\
& \Rightarrow 25.17 \underset{(53)}{\equiv}=1
\end{aligned}
$$

$\Rightarrow 25$ is the inverse.
(3) $[6 \mathrm{pts}]$ Compute $5^{113}(\bmod 23)$, stating any results you use.

Little Format: $\quad(a, 23)=1 \Rightarrow a^{22} \underset{(23}{=} 1$.
So $5_{(23)}^{22} \equiv 1 \Rightarrow 5_{(23)}^{5^{20 \cdot 5}}=1 \Rightarrow 5^{113}=8^{10} \cdot 5^{3}$

$$
=25.5 \equiv 2.5
$$

$$
=10 .
$$

(4) [8 pts] Use the Chinese Remainder Theorem to find all solutions of the congruence $x^{2}+15 x+29 \underset{(35)}{\equiv} 0$.
$\bmod 5: x^{2}-1 \equiv 0 \Rightarrow x=1(5) 01,4$
$\bmod 7: x^{2}+x+1 \equiv 0 \Rightarrow \underset{(7)}{\equiv}=2,4$
(7) (7)

Under $\mathbb{Z} / 352 \stackrel{\cong}{\rightleftharpoons} \mathbb{Z} / 52 \times \mathbb{Z} / 72$,

$$
\begin{aligned}
& \begin{array}{l}
4 \\
11 \\
9 \\
16
\end{array} \mathbf{l}^{\longrightarrow} \longmapsto(4,4) \\
& L_{\text {the }} 4 \text { solutions }(\bmod 35)
\end{aligned}
$$

4
(5) (a) $[3 \mathrm{pts}]$ What is a group?
a bet with associative binary operation and "identity element" 1 such that $1 \cdot x=x=x \cdot 1 \quad(\forall x)$ and $(\forall x) \exists y$ st. $x y=y x=1$.
Identify each of the following groups as a (specific) cyclic group or product of (pecific) cyclic groups of the form $(\mathbb{Z} / n \mathbb{Z},+)$. Does a primitive root (i.e. generator) exist? If not, why not? If so, write one down and say how many there are.
(b) $[5 \mathrm{pts}] G=(\mathbb{Z} / 27 \mathbb{Z})^{*}$ (under multiplication)
is cyclic of oder $\phi\left(p^{h}\right)=p^{h-1}(p-1)$
[in this an, $\phi\left(3^{3}\right)=3^{2} \cdot 2=18$]
Yes, a primitive not is 2 .
There are $\phi(18)=\phi(2) \cdot \phi\left(3^{2}\right)=1 \cdot(3 \cdot 2)=6$ primitive.
(c) $[5 \mathrm{pts}] G=(\mathbb{Z} / 35 \mathbb{Z})^{*}$ (under multiplication)

$$
\begin{aligned}
& \cong(2 / 52)^{\text {te }} \times(2 / 72)^{\pi} \\
& \text { CRT } \\
& \cong 2 / 42 \times 2 / 62 \quad \text { (ide }+ \text {) }
\end{aligned}
$$

The largest order of an element in this gray is the $1 \mathrm{~cm}[4,6]=12$, not 24 ($=$ the gray order). Therefore, it is mot cyclic, and there is no primitive rood.
(6) [6 pts] State the Miller-Rabin test and explain why it works.

Given $m>2$ odd with $m-1=2^{k} q, q$ odd. If for some a coprome to m, $a_{\underset{(m)}{q} \neq 1}$ and $a^{2^{i} q_{(m)}^{\neq}}-1, i=0,1, \ldots, b-1$, then m is composite.

Thus works because were m prime, we would have $a^{m-1} \underset{(m)}{ }=1$, hence eitur $a^{2^{i} q} \underset{(m)}{(m)} \quad(i=0,1, \ldots, k-1)$ or one of them $\sum_{(\mathrm{m})},-1$ (since at some point ya three a syrares rout of 1 and ± 1 are the andy possibilities).
(7) [7 pts] Use quadratic reciprocity to compute the Legendre symbol $\left(\frac{41}{97}\right)$. Then state your result in terms of solvability or unsolvability of a congruence.

$$
\begin{aligned}
\left(\frac{41}{97}\right) & \underset{\substack{\text { QR } \\
\underset{\begin{subarray}{c}{1 E 1 \\
(41)} }}{=}}\end{subarray}}{ }\left(\frac{97}{41}\right)=\left(\frac{97-2.41}{41}\right)=\left(\frac{15}{41}\right)=\left(\frac{5}{41}\right) \cdot\left(\frac{3}{41}\right) \\
& \stackrel{\downarrow}{=}\left(\frac{41}{5}\right) \cdot\left(\frac{41}{3}\right)=\left(\frac{1}{5}\right) \cdot\left(\frac{2}{3}\right)=1 \cdot(-1)=-1 .
\end{aligned}
$$

So the congruence $x^{2} \equiv 41$ has no solution.

