PROBLEM SET 1

- (1) Let $\{f_{\alpha}\}\$ be a normal family of holomorphic functions on a
- region U. Show that $\{f'_{\alpha}\}$ is a normal family. (2) Let $\beta \in D_1$ and $f(z) = \frac{z-\beta}{1-\beta z}$. Prove that the sequence $\{f_n\}$ defined by $f_1 = f$, $f_{n+1} = f \circ f_n$ converges normally, and find the limit function. [Hint: use (1); OK to do for a subsequence.]
- (3) Let $\Omega \subseteq \mathbb{C}$ be as in the Riemann mapping theorem, with the additional assumption that Ω be symmetric with respect to the real axis. Let $f: \Omega \to D_1$ be a conformal isomorphism sending $p \in \Omega$ to 0, with $p \in \mathbb{R}$ and $f'(p) \in \mathbb{R}_+$. Prove that $f(\overline{z}) = f(z)$. [Hint: use the uniqueness part of the RMT.]
- (4) Let $U \subset \mathbb{C}$ be a bounded region, $\{f_i\} \subset Hol(U)$ a sequence with $\int_U |f_j(z)|^2 dx \, dy < C < \infty$ (where C is independent of j). Prove that $\{f_j\}$ is a normal family. [Hint: for $z_0 \in \overline{D}(z_0, \epsilon) \subset U$, use the Cauchy integral formula to bound $|f_j(z_0)|^2$ by $C/\pi\epsilon^2$; then show the $\{f_i\}$ are locally uniformly bounded and use Lecture 1.]
- (5) Let U be a region and $\mathfrak{F} = \{f_\alpha\} \subset Hol(U)$ a family with $Re(f_{\alpha}) > 0$ on U. Prove that \mathfrak{F} is "normal in the classical sense": any sequence $\{f_n\} \subset \mathfrak{F}$ contains a subsequence converging uniformly on compact sets OR tending uniformly to ∞ on compact sets. [Hint: consider e^{-f} , and use Hurwitz.]