Problem set 11

Exercises (3)-(4) prove the theorem of Nevanlinna mentioned at the end of Lecture 33.

- (1) Prove that the universal cover of $\mathbb{C}^* \setminus [1, \infty)$ cannot be \mathbb{C} or \mathbb{P}^1 .
- (2) If Γ is the fundamental group (the group of homotopy classes of loops) of a Riemann surface M having \mathfrak{H} as universal covering surface, then $M \cong \mathfrak{H}/\Gamma$. Prove that 2 Riemann surfaces $M_i \cong \mathfrak{H}/\Gamma_i$ (i = 1, 2) are isomorphic if and only if Γ_1 and Γ_2 are conjugate in PGL(2, \mathbb{R}).
- (3) Let S* := {f ∈ S | f(D) is starlike}. (A set E is starlike if for every z ∈ E, tz ∈ E for every t ∈ [0, 1].) Prove that Re(z f/f) ≥ 0 for an f ∈ S* by following the steps:
 (a) Show ∂/∂θ arg(f(re^{iθ})) > 0, for any r ∈ (0, 1). [Hint: first show that f(D
 r) is starlike, making use of the function f⁻¹(rf(z)) and Schwarz's Lemma.]
 (b) Show that ∂/∂θ arg f = Re(z f/f), for |z| = r ∈ (0, 1).
- (4) Again let $f \in \mathcal{S}^*$, and define $g(z) := \int_0^z f(w) \frac{dw}{w} \in \operatorname{Hol}(D)$.
 - (a) Show that $Re(1 + z\frac{g''}{g'}) \ge 0$. [Hint: use problem 3.]

(b) Prove g(D) is convex. [Hint: show $\frac{\partial}{\partial \theta} \arg(\frac{\partial}{\partial \theta}g(re^{i\theta})) \geq 0$, and interpret this geometrically.]

(c) Writing $g(z) = z + \sum_{n \ge 2} b_n z^n$, show that each $|b_m| \le 1$. [Hint: define $G(z) := \frac{1}{m} \sum_{j=1}^m g(\zeta_m^j z)$, where $\zeta_m = e^{2\pi i/m}$. Explain why $G(D) \subset g(D)$, then consider $h(z) := g^{-1}(G(z))$ and compare the lowest order terms in the expansions of g(h(z)) and G(z).] (d) Writing $f(z) := z + \sum_{n \ge 2} a_n z^n$, deduce that $|a_m| \le m$ for each m.