Problem Set 2

(1) Show that the mappings of a disk onto a parallel strip, or onto a half strip with two right angles, can be obtained as special cases of the Schwarz-Christoffel formula. [You may want to think about Exercises 1 and 2 on p. 238 of Alhfors, which come before this, first.]
(2) Show that $F(w)=\int_{0}^{w}\left(1-w^{n}\right)^{-2 / n} d w$ maps $|w|<1$ onto the interior of a regular polygon with n sides.
(3) Read the section on triangle functions in Ahlfors. In each of the three cases, determine the configuration of triangles in a parallelogram spanned by the periods. See if you can determine what is special about the torus \mathbb{C} / Λ (Λ the period lattice) in these cases. [Hint: automorphisms.]
(4) Let $w=u+i v=f(z)=z+\log z$ for $z \in \mathfrak{H}$. Prove that f gives an isomorphism of \mathfrak{H} with the open set \mathcal{U} obtained from \mathfrak{H} by deleting the half-line of numbers $u+i \pi$ with $u \leq-1$. [Hint: use Theorem B (Lect. 4) applied to the path consisting of the segment from R to ϵ, the small semicircle in \mathfrak{H} from ϵ to $-\epsilon$, the segment from $-\epsilon$ to $-R$, and the large semicircle in \mathfrak{H} from $-R$ to R. Note that if we write $z=r e^{i \theta}$, then $f(z)=r e^{i \theta}+\log r+i \theta$.]

