Problem Set 3 (Solutions)

(1) Show that $\frac{R^{2}-|z|^{2}}{\left|R e^{i \theta} 0-z\right|^{2}}$ is harmonic (in z) on D_{R}. [Hint: what function is it the real part of?]
(2) (i) Solve the Dirichlet problem on \bar{D}_{1} for the following functions on ∂D_{1}. (Think of $\theta \in(-\pi, \pi]$.)
(a) $f(\theta)=\left\{\begin{array}{cc}1, & |\theta| \leq \frac{\pi}{2} \\ -1, & \frac{\pi}{2}<|\theta| \leq \pi\end{array}\right.$,
(b) $f(\theta)=1-\frac{2}{\pi}|\theta|$,
(c) $f(\theta)=(|\theta|-\pi)^{2}-\frac{\pi^{2}}{3}$.

First express your answer as a series, then try to identify the holomorphic function of which u is the real part. [Hint: use part I of Lecture 7, on Fourier series.]
(ii) Using your answer to part (i), evaluate
(a) $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$
(b) $1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\cdots$
(c) $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots$
(3) True or False: If f is subharmonic on a region Ω, then so is $|f|$.
(4) Let $\Omega \subseteq \mathbb{C}$ be open, and $\left\{f_{j}\right\} \subset \underline{\mathcal{H}}(U)$ a sequence of subharmonic functions comverging normally to a function $f: U \rightarrow \mathbb{R}$. Is f necessarily subharmonic?
(5) Let $F: U \rightarrow V$ be holomorphic and 1-to-1, and $f: V \rightarrow \mathbb{R}$ be subharmonic. (Here U and V are regions.) Prove that $f \circ F$ is subharmonic.
(6) Let $\Omega \subseteq \mathbb{C}$ be a region, and $K \subset \Omega$ a compact subset. Show that there exists a constant M (depending only on Ω and K) such that for every positive harmonic function $u \in \mathcal{H}(\Omega)$ and pair of points $z_{1}, z_{2} \in K$, we have $u\left(z_{2}\right) \leq M \cdot u\left(z_{1}\right)$. [Hint: Harnack.]

