PROBLEM SET 3 (SOLUTIONS)

- (1) Show that $\frac{R^2 |z|^2}{|Re^{i\theta_0} z|^2}$ is harmonic (in z) on D_R . [Hint: what function is it the real part of?]
- (2) (i) Solve the Dirichlet problem on \overline{D}_1 for the following functions on ∂D_1 . (Think of $\theta \in (-\pi, \pi]$.) (a) $f(\theta) = \begin{cases} 1, & |\theta| \le \frac{\pi}{2} \\ -1, & \frac{\pi}{2} < |\theta| \le \pi, \end{cases}$ (b) $f(\theta) = 1 - \frac{2}{\pi} |\theta|,$

 - (c) $f(\theta) = (|\theta| \pi)^2 \frac{\pi^2}{3}$.

First express your answer as a series, then try to identify the holomorphic function of which u is the real part. [Hint: use part I of Lecture 7, on Fourier series.]

(ii) Using your answer to part (i), evaluate

- (a) $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \cdots$ (b) $1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \cdots$ (c) $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \cdots$ (3) True or False: If f is subharmonic on a region Ω , then so is |f|.
- (4) Let $\Omega \subseteq \mathbb{C}$ be open, and $\{f_i\} \subset \underline{\mathcal{H}}(U)$ a sequence of subharmonic functions converging normally to a function $f: U \to \mathbb{R}$. Is f necessarily subharmonic?
- (5) Let $F: U \to V$ be holomorphic and 1-to-1, and $f: V \to \mathbb{R}$ be subharmonic. (Here U and V are regions.) Prove that $f \circ F$ is subharmonic.
- (6) Let $\Omega \subseteq \mathbb{C}$ be a region, and $K \subset \Omega$ a compact subset. Show that there exists a constant M (depending only on Ω and K) such that for every positive harmonic function $u \in \mathcal{H}(\Omega)$ and pair of points $z_1, z_2 \in K$, we have $u(z_2) \leq M \cdot u(z_1)$. [Hint: Harnack.]