Problem Set 5

(1) Prove that there does not exist a Green's function for the region \mathbb{C}. (You may take the point z_{0} to be 0 .)
(2) (a) Find the Green's function $g\left(z, z_{0}\right)$ for the upper half-plane \mathfrak{H} (with singularity at $z_{o} \in \mathfrak{H}$), and show it extends to a neighborhood of $\mathfrak{H} \cup \mathbb{R}$. (b) Given a continuous, real-valued function f on \mathbb{R} with $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow-\infty} f(x)<\infty$, show that ${ }^{1}$ $u\left(z_{0}\right):=\int_{\mathcal{R}} \frac{\partial g}{\partial y}\left(x, z_{0}\right) f(x) d x$ solves the Dirichlet problem on \mathfrak{H} with f as boundary data.
(3) Show that the period matrix for multiply connected regions (defined in my notes, or in Ahlfors) is symmetric.
(4) Let Ω be the doubly connected region obtained by removing the vertical strips $[i a, i b]$ and $[\mu+i c, \mu+i d]$ from \mathbb{C}. This is conformally equivalent to an annulus $A(1, \lambda)$ for a unique $\lambda>1$. (a) Determine λ. (b) Can you relate this to a complex torus \mathbb{C} / Λ ? (Actually there is more than one way to do this.)

[^0]
[^0]: ${ }^{1}$ The meaning of $\frac{\partial g}{\partial y}\left(x, z_{0}\right)$ is that we are taking the vertical partial derivative in the first variable z and evaluating at $z=x+i 0$. We are now thinking of z_{0} as a variable point in \mathfrak{H}.

