PROBLEM SET 5

- (1) Prove that there does not exist a Green's function for the region \mathbb{C} . (You may take the point z_0 to be 0.)
- (2) (a) Find the Green's function $g(z, z_0)$ for the upper half-plane \mathfrak{H} (with singularity at $z_o \in \mathfrak{H}$), and show it extends to a neighborhood of $\mathfrak{H} \cup \mathbb{R}$. (b) Given a continuous, real-valued function f on \mathbb{R} with $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) < \infty$, show that¹ $u(z_0) := \int_{\mathcal{R}} \frac{\partial g}{\partial y}(x, z_0) f(x) dx$ solves the Dirichlet problem on \mathfrak{H} with f as boundary data.
- (3) Show that the period matrix for multiply connected regions (defined in my notes, or in Ahlfors) is symmetric.
- (4) Let Ω be the doubly connected region obtained by removing the vertical strips [ia, ib] and [μ + ic, μ + id] from C. This is conformally equivalent to an annulus A(1, λ) for a unique λ > 1.
 (a) Determine λ. (b) Can you relate this to a complex torus C/Λ? (Actually there is more than one way to do this.)

¹The meaning of $\frac{\partial g}{\partial y}(x, z_0)$ is that we are taking the vertical partial derivative in the first variable z and evaluating at z = x + i0. We are now thinking of z_0 as a *variable* point in \mathfrak{H} .