Problem Set 6

(1) Determine $\Gamma\left(\frac{1}{6}\right)$ in terms of $\Gamma\left(\frac{1}{3}\right)$.
(2) Define the digamma function $\Psi(z):=\Gamma^{\prime}(z) / \Gamma(z)$.
(a) Check that $\Psi(1+z)=\Psi(z)+\frac{1}{z}$.
(b) The Weierstrass product formula for $\Gamma(z)$ yields a summation formula for $\log \Gamma(z)$. By differentiating this formula, and using $\frac{1}{1+x}-1=-\sum_{k \geq 2}(-1)^{k} x^{k-1}$, derive the power series expansion $\Psi(1+z)=-\gamma+\sum_{k \geq 2}(-1)^{k} \zeta(k) z^{k-1}$.
(c) Use this to obtain a power series for $\log \Gamma(1+z)$. By evaluating this power series at $z=1$, obtain a formula for the Euler constant γ in terms of the zeta values $\zeta(k)$.
(3) (a) Compute $\Gamma\left(\frac{1}{2}-n\right)$ for $n \in \mathbb{Z}_{>0}$.
(b) Show that $\lim _{n \rightarrow \infty} \Gamma\left(\frac{1}{2}-n+i t\right)=0$ uniformly for $t \in \mathbb{R}$.
(4) Show that for $x>0, e^{-x}=\frac{1}{2 \pi i} \int_{\sigma=\sigma_{0}} x^{-s} \Gamma(s) d s$ where $s=\sigma+i t$, and the integral is taken on a vertical line with fixed real part $\sigma_{0}>0$, and $-\infty<t<\infty$. [Hint: what is the residue of $x^{-s} \Gamma(s)$ at $s=-n$? Also, use problem (3) and the Stirling formula.]
(5) Finish the proof that $\xi(s)=\xi(1-s)$ from Thm. 2 of Lecture 17.

