Problem Set 7

 Lecture 19 for context and hint.)
(2) Prove that for $r>s$ non-negative integers, $\int_{0}^{1} \int_{0}^{1} \frac{x^{r} y^{s}}{1-x y} d x d y \in \frac{1}{d_{r}^{2}} \mathbb{Z}$ while $\int_{0}^{1} \int_{0}^{1} \frac{x^{r} y^{r}}{1-x y} d x d y=\zeta(2)-\frac{1}{1^{2}}-\cdots-\frac{1}{r^{2}}$. [Hint: use the proof of Lemma 1 in Lecture 20. This is easy.]
(3) Prove $\zeta(2)$ (and hence π, since $\zeta(2)=\frac{\pi^{2}}{6}$) is irrational, by following the outline:
(a) Show that $\int_{0}^{1} \int_{0}^{1} \frac{(1-y)^{n} P_{n}(x)}{1-x y} d x d y=(-1)^{n} \int_{0}^{1} \int_{0}^{1} \frac{\phi(x, y)}{1-x y} d x d y$, where $\phi(x, y)=\frac{x y(1-x)(1-y)}{1-x y}$.
(b) Show that on $[0,1]^{2}, \phi$ is bounded by $\left(\frac{\sqrt{5}-1}{2}\right)^{5}$.
(c) Using (2), parts (a) and (b), and Lemma 2 of Lecture 20, derive a contradiction from $\zeta(2)=\frac{P}{Q}(P, Q \in \mathbb{Z}, Q \neq 0)$.
(4) Given a Dirichlet series $\sum_{n \geq 1} \frac{a_{n}}{n^{s}}$ (here $\left\{a_{n}\right\} \subset \mathbb{C}$ is just some sequence) converging for some $s_{0}=\sigma_{0}+i t_{0}$, it converges normally on the set $\left\{s \mid \operatorname{Re}(s)>\sigma_{0}\right\}$.
(5) Let $F(s)=\sum_{p} p^{-s}$, where the sum runs over all primes. Show that $F(s)=\log \zeta(s)+G(s)$, where \log denotes the principal branch of the logarithm, and $G(s)$ is analytic on the half-plane $\operatorname{Re}(s)>\frac{1}{2}$. Deduce from this that the function $F(s)$ does not have a meromorphic continuation to the left of the line $\sigma=1$.
(6) Show that, if x is sufficiently large, then the interval $[2, x]$ contains more primes than the interval $(x, 2 x]$.

