PROBLEM SET 9

(1) Given any $p, q \in \{0, 1, \dots, N-1\}$ (not both 0), show that

$$f(\tau) := \sum_{\substack{(m,n) \equiv (p,q) \\ (N)}} \frac{1}{(m\tau + n)^k}$$

belongs to $M_k(\Gamma(N))$.

- (2) Consider the Legendre elliptic curve $Y^2 = X(X-1)(X-\lambda)$. This Legendre form contains slightly more information than the isomorphism class (of elliptic curve), since the 2-torsion points are essentially ordered (or "marked"): (0,0), (1,0), and $(\lambda,0)$. Passing to the isomorphism class of the elliptic curve without marked 2-torsion, by taking the j-invariant, forgets the ordering of these 3 points. So $\lambda \mapsto j(\lambda)$ should be a 6-to-1 map, since S_3 has order 6. In this problem you'll find that map explicitly, thereby obtaining a conceptual derivation of the $\phi(\lambda)$ from Lecture 27.
 - (a) By the affine change of coordinates Y = y/2, $X = x + \frac{\lambda+1}{3}$, put the Legendre curve in Weierstrass form $y^2 = 4x^3 g_2x g_3$. In so doing, you get g_2 and g_3 as explicit functions of λ .
 - (b) These functions aren't really well-defined: there are further changes of coordinates that will transform $(g_2, g_3) \mapsto (\xi^4 g_2, \xi^6 g_3)$, as you can check. But we know the *j*-invariant $\frac{g_2^3}{g_2^3 27g_3^2}$ is well-defined. Compute it as a function of λ using your result from (a); this should coincide with $\phi(\lambda)$.
- (3) Show that the λ -function, which we defined on \mathfrak{H} , actually does not. analytically continue along any path meeting the real axis. (Hence \mathfrak{H} is truly its "natural domain".) To do this, use part of the idea of the proof of little Picard.
- (4) Consider the polylogarithm functions

$$Li_n(z) := \sum_{k>1} \frac{z^k}{k^n},$$

which are defined a priori in D_1 . (Of course $Li_1(z) = -\log(1-z)$.)

- (a) Write Li_2 as an integral and use this to continue it to a holomorphic function on $\mathbb{C} \setminus [1, \infty)$. (You need to use the monodromy theorem here.) Iterate the procedure for the other Li_n , n > 2.
- (b) What is the "monodromy" of Li_n about z = 1, i.e. what analytic function in (part of) the disk does it yield when continued around this point once counterclockwise? (Use the integral expressions from part (a).)

1