I. Sets

I.A. Relations

Recall that a set S is a collection of elements. If its order $|S|$ (i.e., the number of elements) is finite, we may list its elements as in $S=$ $\left\{s_{1}, \ldots, s_{n}\right\}$; alternatively, we may write $s_{1} \in S$ to say " s_{1} is an element of $S^{\prime \prime}$. A collection T of some elements of S is called a subset, written $T \subset S$. A proper subset $T \subsetneq S$ is one which is not S itself. The empty set \varnothing contains no elements and is a subset of every set.

If S is the union of subsets $\left\{S_{i}\right\}_{i \in I,}{ }^{1}$ we will write $S=\bigcup_{i \in I} S_{i}$. When these sets are disjoint (viz., $S_{i} \cap S_{j}=\varnothing$ for $i \neq j$), writing instead $S=\coprod_{i \in I} S_{i}$ conveys that information. If the S_{i} are also nonempty, then this defines a partition of S.

Let S, T be sets. A map (or mapping, or function)

$$
f: S \rightarrow T
$$

is a rule associating to each $s \in S$ an element $f(s) \in T$; it has graph

$$
\Gamma_{f}=\{(s, f(s)) \mid s \in S\}
$$

A subset $\Gamma \subset S \times T$ is the graph of some map if and only if

$$
\left\{\begin{array}{l}
\forall s \in S \exists t \in T \text { such that }(s, t) \in \Gamma, \\
\quad \text { and } \\
(s, t),\left(s, t^{\prime}\right) \in \Gamma \Longrightarrow t=t^{\prime}
\end{array}\right.
$$

We say that:

- f is injective (written $f: S \hookrightarrow T$) if $f(s)=f\left(s^{\prime}\right) \Longrightarrow s=s^{\prime}$;
- f is surjective (written $f: S \rightarrow T$) if $f(S)=T$; and

[^0]- f is bijective (written $f: S \xrightarrow{\cong} T$) if f is injective and surjective (and we define its inverse map $f^{-1}: T \xlongequal{\cong} S$ to send each $f(s) \mapsto t$).
Composition of maps

$$
S \underset{g \circ f(\text { or } g f)}{\stackrel{f}{\longrightarrow} T \stackrel{g}{\longrightarrow}} U
$$

is inherently associative. When inverses exist, we have

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

I.A.1. Definition. (i) A relation on S is a subset

$$
\sim \subset S \times S
$$

If $(a, b) \in \sim$, then we write " $a \sim b$ ".
(ii) \sim is an equivalence relation if

$$
\left\{\begin{array}{l}
\text { (reflexivity) } a \sim a \\
\text { (symmetry) } a \sim b \Longrightarrow b \sim a \\
\text { (transitivity) } a \sim b \text { and } b \sim c \Longrightarrow a \sim c
\end{array}\right.
$$

hold for all $a, b, c \in S$.
I.A.2. EXAMPLES. Here are some random equivalence relations.
(i) $\mathcal{P}=$ set of all people; $p_{1} \sim p_{2} \Longleftrightarrow p_{1}, p_{2}$ reside in same country. ${ }^{2}$
(ii) " $=$ " on any set S.
(iii) On $\mathbb{R}^{2}:=\mathbb{R} \times \mathbb{R}, p \sim q \Longleftrightarrow p, q$ are equidistant from (0,0); or $p \equiv q \Longleftrightarrow p, q$ lie on the same horizontal line.
(iv) Write $\mathbb{N}=\{0,1,2, \ldots\}$ for the natural numbers. On \mathbb{N}^{2}, say $(a, b) \sim(c, d) \Longleftrightarrow a+d=b+c$.
(v) On the integers \mathbb{Z}, define $" \overline{\overline{(n)}}$ " or " $\equiv(\bmod n)$ ") by

$$
a \underset{(n)}{\overline{=}} b \Longleftrightarrow n \mid a-b .
$$

(vi) Given $f: S \rightarrow T$, define (on S)

$$
a \sim_{f} b \Longleftrightarrow f(a)=f(b)
$$

$\overline{{ }^{2} \text { Note: " } \Longleftrightarrow " ~ m e a n s ~ " i f f " ~(i . e ., ~ i f ~ a n d ~ o n l y ~ i f) . ~ W e ~ u s e ~ i t ~ h e r e ~ t o ~ d e f i n e ~ t h i n g s . ~}$
I.A.3. Non-examples. Here are some relations which are not equivalence relations.
(i) On $\mathcal{P}, p_{1} \sim p_{2} \Longleftrightarrow p_{1}, p_{2}$ are cousins.
(ii) $O n \mathbb{R}, \mathbb{N}, \mathbb{Q}:>, \geq$.
(iii) On $\mathbb{Z}, a \sim b \Longleftrightarrow a$ relatively prime to b.
(iv) $\mathrm{On} \mathbb{Z}, a \mid b \Longleftrightarrow a$ divides b.

Given an equivalence relation \sim on S, the \sim-equivalence class of $a \in S$ is

$$
\begin{equation*}
\bar{a}:=\{b \in S \mid b \sim a\} \subset S \tag{I.A.4}
\end{equation*}
$$

I.A.5. Proposition. The ~-equivalence classes yield a partition of S, and every partition arises in this way.

Proof. See Exercise (4) of Problem Set 1.
I.A.6. Definition. (i) The quotient set

$$
S / \sim:=\{\bar{a} \mid a \in S\} \subset \mathscr{P}(S)
$$

is the set of \sim-equivalence classes. ${ }^{3}$
(ii) The natural map $v: S \rightarrow S / \sim$ sends $a \mapsto \bar{a}$.

We shall say two sets are isomorphic, written $S \cong T$, if there is a bijective map between them.
I.A.7. EXAMPLES. Referring to I.A.2,
(i) $\mathcal{P} / \sim \cong$ set of all countries.
(ii) $S /=\cong S$.
(iii) $\mathbb{R}^{2} / \sim \cong\{$ circles with center $(0,0)\} \cong \mathbb{R}_{\geq 0}$;
and $\mathbb{R}^{2} / \equiv \cong\{$ horizontal lines $\} \cong \mathbb{R}$.
(iv) $\mathbb{N}^{2} / \sim \cong \mathbb{Z}$.
(v) $\mathbb{Z} / \underset{\overline{(n)}}{\equiv} \cong\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$ is the set of residue classes mod \mathbf{n}.

Finally, given sets S, T, an equivalence relation \sim on S, and a map $f: S \rightarrow T$, we have:

[^1]I.A.8. Proposition. Suppose that
$$
a \sim b \Longrightarrow f(a)=f(b)
$$
for all $a, b \in S$. Then there is a unique $\bar{f}: S / \sim \rightarrow T$ such that $\bar{f} \circ v=f$.
Proof. Define \bar{f} to send $\bar{a} \in S / \sim$ to $f(a) \in T$. This is welldefined (i.e., doesn't depend on the choice of representative of the equivalence class), and no other choice makes the diagram commute.

In the scenario of I.A.8, we say that f is well-defined $\bmod (u l o) \sim$, or that the diagram

commutes. As a simple example, consider the map $f: \mathbb{Z} \rightarrow\{1,-1\}$ sending $n \mapsto(-1)^{n}$, which is well-defined " $\bmod 4$ ", i.e. modulo $\overline{\overline{(4)}}$. So $\bar{f}:\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\} \rightarrow\{-1,1\}$ sends $\overline{0}, \overline{2} \mapsto 1$ and $\overline{1}, \overline{3} \mapsto-1$. Obviously this works for any other even integer; in particular, if we take \sim to be $\underset{(2)}{\overline{(2)}}$, then \bar{f} is an isomorphism.

[^0]: ${ }^{1}$ Here I is called an index set; here, to each element of I there is associated a subset $S_{i} \subset S$.

[^1]: ${ }^{3}$ Here $\mathscr{P}(S)$ denotes the set of subsets of S, called its power set.

