
I. Sets

I.A. Relations

Recall that a set S is a collection of elements. If its order |S| (i.e.,
the number of elements) is finite, we may list its elements as in S =

{s1, . . . , sn}; alternatively, we may write s1 ∈ S to say “s1 is an ele-
ment of S”. A collection T of some elements of S is called a subset,
written T ⊂ S. A proper subset T ( S is one which is not S itself. The
empty set ∅ contains no elements and is a subset of every set.

If S is the union of subsets {Si}i∈I ,1 we will write S =
⋃

i∈I Si.
When these sets are disjoint (viz., Si ∩ Sj = ∅ for i 6= j), writing
instead S = äi∈I Si conveys that information. If the Si are also
nonempty, then this defines a partition of S.

Let S, T be sets. A map (or mapping, or function)

f : S→ T

is a rule associating to each s ∈ S an element f (s) ∈ T; it has graph

Γ f = {(s, f (s)) | s ∈ S}.

A subset Γ ⊂ S× T is the graph of some map if and only if
∀s ∈ S ∃t ∈ T such that (s, t) ∈ Γ,

and
(s, t), (s, t′) ∈ Γ =⇒ t = t′.

We say that:

• f is injective (written f : S ↪→ T) if f (s) = f (s′) =⇒ s = s′;
• f is surjective (written f : S � T) if f (S) = T; and

1Here I is called an index set; here, to each element of I there is associated a subset
Si ⊂ S.
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• f is bijective (written f : S
∼=→ T) if f is injective and surjective

(and we define its inverse map f−1 : T
∼=→ S to send each f (s) 7→ t).

Composition of maps

S
f
//

g◦ f (or g f )

66T
g
// U

is inherently associative. When inverses exist, we have

(g ◦ f )−1 = f−1 ◦ g−1.

I.A.1. DEFINITION. (i) A relation on S is a subset

∼ ⊂ S× S.

If (a, b) ∈ ∼, then we write “a ∼ b”.
(ii) ∼ is an equivalence relation if

(reflexivity) a ∼ a
(symmetry) a ∼ b =⇒ b ∼ a
(transitivity) a ∼ b and b ∼ c =⇒ a ∼ c

hold for all a, b, c ∈ S.

I.A.2. EXAMPLES. Here are some random equivalence relations.
(i) P = set of all people; p1 ∼ p2 ⇐⇒ p1, p2 reside in same country.2

(ii) “=” on any set S.
(iii) On R2 := R×R, p ∼ q ⇐⇒ p, q are equidistant from (0, 0);

or p ≡ q ⇐⇒ p, q lie on the same horizontal line.
(iv) Write N = {0, 1, 2, . . .} for the natural numbers. On N2, say
(a, b) ∼ (c, d) ⇐⇒ a + d = b + c.
(v) On the integers Z, define “≡

(n)
” (or “≡ (mod n)”) by

a ≡
(n)

b ⇐⇒ n | a−b.

(vi) Given f : S→ T, define (on S)

a ∼ f b ⇐⇒ f (a) = f (b).

2Note: “⇐⇒ ” means “iff” (i.e., if and only if). We use it here to define things.
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I.A.3. NON-EXAMPLES. Here are some relations which are not
equivalence relations.
(i) On P , p1 ∼ p2 ⇐⇒ p1, p2 are cousins.
(ii) On R, N, Q: >, ≥.
(iii) On Z, a ∼ b ⇐⇒ a relatively prime to b.
(iv) On Z, a | b ⇐⇒ a divides b.

Given an equivalence relation ∼ on S, the ∼-equivalence class
of a ∈ S is

(I.A.4) ā := {b ∈ S | b ∼ a} ⊂ S.

I.A.5. PROPOSITION. The∼-equivalence classes yield a partition of S,
and every partition arises in this way.

PROOF. See Exercise (4) of Problem Set 1. �

I.A.6. DEFINITION. (i) The quotient set

S/∼ := {ā | a ∈ S} ⊂P(S)

is the set of ∼-equivalence classes.3

(ii) The natural map ν : S→ S/∼ sends a 7→ ā.

We shall say two sets are isomorphic, written S ∼= T, if there is a
bijective map between them.

I.A.7. EXAMPLES. Referring to I.A.2,
(i) P/∼ ∼= set of all countries.
(ii) S/= ∼= S.
(iii) R2/∼ ∼= {circles with center (0, 0)} ∼= R≥0;

and R2/≡ ∼= {horizontal lines} ∼= R.
(iv) N2/∼ ∼= Z.
(v) Z/≡

(n)

∼= {0̄, 1̄, 2̄, . . . , n− 1} is the set of residue classes mod n.

Finally, given sets S, T, an equivalence relation∼ on S, and a map
f : S→ T, we have:

3Here P(S) denotes the set of subsets of S, called its power set.
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I.A.8. PROPOSITION. Suppose that

a ∼ b =⇒ f (a) = f (b)

for all a, b ∈ S. Then there is a unique f̄ : S/∼ → T such that f̄ ◦ ν = f .

PROOF. Define f̄ to send ā ∈ S/∼ to f (a) ∈ T. This is well-
defined (i.e., doesn’t depend on the choice of representative of the
equivalence class), and no other choice makes the diagram commute.

�

In the scenario of I.A.8, we say that f is well-defined mod(ulo)∼, or
that the diagram

S

ν !!

f
// T

S/∼
f̄

==

commutes. As a simple example, consider the map f : Z → {1,−1}
sending n 7→ (−1)n, which is well-defined “mod 4”, i.e. modulo ≡

(4)
.

So f̄ : {0̄, 1̄, 2̄, 3̄} → {−1, 1} sends 0̄, 2̄ 7→ 1 and 1̄, 3̄ 7→ −1. Obviously
this works for any other even integer; in particular, if we take ∼ to
be ≡

(2)
, then f̄ is an isomorphism.


