I. Sets

I.A. Relations

Recall that a **set** *S* is a collection of *elements*. If its **order** |S| (i.e., the number of elements) is finite, we may list its elements as in *S* = $\{s_1, \ldots, s_n\}$; alternatively, we may write $s_1 \in S$ to say " s_1 is an element of *S*". A collection *T* of *some* elements of *S* is called a *subset*, written $T \subset S$. A *proper* subset $T \subsetneq S$ is one which is not *S* itself. The empty set \emptyset contains no elements and is a subset of every set.

If *S* is the union of subsets $\{S_i\}_{i \in I}$,¹ we will write $S = \bigcup_{i \in I} S_i$. When these sets are disjoint (viz., $S_i \cap S_j = \emptyset$ for $i \neq j$), writing instead $S = \coprod_{i \in I} S_i$ conveys that information. If the S_i are also nonempty, then this defines a **partition** of *S*.

Let *S*, *T* be sets. A **map** (or *mapping*, or *function*)

$$f: S \to T$$

is a rule associating to each $s \in S$ an element $f(s) \in T$; it has *graph*

 $\Gamma_f = \{ (s, f(s)) \mid s \in S \}.$

A subset $\Gamma \subset S \times T$ is the graph of some map if and only if

$$\begin{cases} \forall s \in S \; \exists t \in T \text{ such that } (s,t) \in \Gamma \\ \text{and} \\ (s,t), (s,t') \in \Gamma \implies t = t'. \end{cases}$$

We say that:

- *f* is injective (written $f: S \hookrightarrow T$) if $f(s) = f(s') \implies s = s'$;
- *f* is **surjective** (written $f: S \rightarrow T$) if f(S) = T; and

¹Here *I* is called an *index set*; here, to each element of *I* there is associated a subset $S_i \subset S$.

• *f* is **bijective** (written $f: S \xrightarrow{\cong} T$) if *f* is injective and surjective (and we define its *inverse map* $f^{-1}: T \xrightarrow{\cong} S$ to send each $f(s) \mapsto t$).

Composition of maps

$$S \xrightarrow{f} T \xrightarrow{g} U$$

$$g \circ f \text{ (or } gf)$$

is inherently associative. When inverses exist, we have

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

I.A.1. DEFINITION. (i) A relation on *S* is a subset

$$\sim \subset S \times S.$$

If $(a, b) \in \sim$, then we write " $a \sim b$ ".

- (ii) \sim is an **equivalence relation** if
 - $\begin{cases} \text{(reflexivity)} \ a \sim a \\ \text{(symmetry)} \ a \sim b \implies b \sim a \\ \text{(transitivity)} \ a \sim b \text{ and } b \sim c \implies a \sim c \end{cases}$

hold for all $a, b, c \in S$.

I.A.2. EXAMPLES. Here are some random equivalence relations. (i) $\mathcal{P} =$ set of all people; $p_1 \sim p_2 \iff p_1, p_2$ reside in same country.² (ii) "=" on any set *S*. (iii) On $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R}$, $p \sim q \iff p, q$ are equidistant from (0, 0);

or $p \equiv q \iff p, q$ lie on the same horizontal line.

(iv) Write $\mathbb{N} = \{0, 1, 2, ...\}$ for the natural numbers. On \mathbb{N}^2 , say $(a, b) \sim (c, d) \iff a + d = b + c$.

(v) On the integers \mathbb{Z} , define " $\equiv_{(n)}$ " (or " $\equiv \pmod{n}$ ") by

$$a \equiv b \iff n \mid a-b.$$

(vi) Given $f: S \to T$, define (on *S*)

$$a \sim_f b \iff f(a) = f(b).$$

 $\overline{^{2}\text{Note: "}}$ " means "iff" (i.e., if and only if). We use it here to define things.

I.A.3. NON-EXAMPLES. Here are some relations which are *not* equivalence relations.

(i) On \mathcal{P} , $p_1 \sim p_2 \iff p_1, p_2$ are cousins. (ii) On \mathbb{R} , \mathbb{N} , \mathbb{Q} : >, \geq . (iii) On \mathbb{Z} , $a \sim b \iff a$ relatively prime to b. (iv) On \mathbb{Z} , $a \mid b \iff a$ divides b.

Given an equivalence relation \sim on *S*, the \sim -equivalence class of $a \in S$ is

(I.A.4)
$$\bar{a} := \{b \in S \mid b \sim a\} \subset S.$$

I.A.5. PROPOSITION. The \sim -equivalence classes yield a partition of S, and every partition arises in this way.

PROOF. See Exercise (4) of Problem Set 1.

I.A.6. DEFINITION. (i) The **quotient set**

$$S/\sim := \{\bar{a} \mid a \in S\} \subset \mathscr{P}(S)$$

is the set of \sim -equivalence classes.³

(ii) The **natural map** $\nu : S \to S / \sim \text{sends } a \mapsto \overline{a}$.

We shall say two sets are **isomorphic**, written $S \cong T$, if there is a bijective map between them.

I.A.7. EXAMPLES. Referring to I.A.2, (i) $\mathcal{P}/\sim \cong$ set of all countries. (ii) $S/=\cong S$. (iii) $\mathbb{R}^2/\sim \cong \{\text{circles with center } (0,0)\} \cong \mathbb{R}_{\geq 0};$ and $\mathbb{R}^2/\equiv \cong \{\text{horizontal lines}\} \cong \mathbb{R}$. (iv) $\mathbb{N}^2/\sim \cong \mathbb{Z}$. (v) $\mathbb{Z}/\underset{(n)}{\equiv} \cong \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$ is the set of **residue classes mod n**.

Finally, given sets *S*, *T*, an equivalence relation \sim on *S*, and a map $f: S \rightarrow T$, we have:

³Here $\mathscr{P}(S)$ denotes the set of subsets of *S*, called its *power set*.

I. SETS

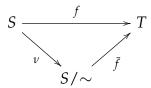
I.A.8. PROPOSITION. Suppose that

$$a \sim b \implies f(a) = f(b)$$

for all $a, b \in S$. Then there is a unique $\overline{f} \colon S / \sim \to T$ such that $\overline{f} \circ \nu = f$.

PROOF. Define \overline{f} to send $\overline{a} \in S/\sim$ to $f(a) \in T$. This is well-defined (i.e., doesn't depend on the choice of representative of the equivalence class), and no other choice makes the diagram commute.

In the scenario of I.A.8, we say that *f* is well-defined $mod(ulo) \sim$, or that the diagram



commutes. As a simple example, consider the map $f: \mathbb{Z} \to \{1, -1\}$ sending $n \mapsto (-1)^n$, which is well-defined "mod 4", i.e. modulo $\equiv A_{(4)}^{(4)}$. So $\bar{f}: \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\} \to \{-1, 1\}$ sends $\bar{0}, \bar{2} \mapsto 1$ and $\bar{1}, \bar{3} \mapsto -1$. Obviously this works for any other even integer; in particular, if we take \sim to be $\equiv A_{(2)}$, then \bar{f} is an isomorphism.