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I.B. Integers

We turn to some results of Euclid. A prime number p ∈ Z is one
not equal to 0, 1,−1 and whose only divisors are ±p,±1.

I.B.1. FUNDAMENTAL THEOREM OF ARITHMETIC. Any natural
number n ∈N\{0, 1} has (up to order) a unique factorization

n = p1p2 · · · ps,

where the {pi} are (positive) primes, which are not necessarily distinct.

PROOF. We use induction (n = 1 is clear). Assume the statement
holds for all n < m. Then m has a prime factorization: either it is
itself prime, or factors into m1m2 with m1, m2 < m.

As for uniqueness: if m = p1 · · · ps = q1 · · · qt with p1 = q1, this
follows from induction. If instead p1 < q1, then t > 1 (since q1 is
prime and m isn’t) and

1 < n0 := p1(p2 · · · ps︸ ︷︷ ︸
m

− q2 · · · qt) = (q1 − p1)q2 · · · qt < m.

Factoring the parentheticals into primes, the inductive hypothesis
says that the resulting factorizations of n0 must be the same (up to
order). So we either have

p1 | (q1 − p1) =⇒ p1 | q1 =⇒ p1 = q1 ,

which is a contradiction, or p1 is one of the q2, . . . , qt. Reordering
puts us back in the p1 = q1 case. �

I.B.2. PROPOSITION. There are infinitely many primes.

PROOF. Suppose p1, . . . , ps is a complete list of positive primes;
then none of them divide p1 · · · ps + 1, contradicting I.B.1. �

The FTA leads to the notion of the gcd (= greatest common divi-
sor) of m, n ∈ Z, written (m, n) and well-defined up to sign. To find
it, one traditionally employs the
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I.B.3. DIVISION ALGORITHM. Given a, b ∈ Z, b 6= 0, there exist
q, r ∈ Z such that

0 ≤ r < |b| and a = bq + r.

PROOF. We may assume b > 0; then M := {bn | n ∈ Z, bn ≤ a}
is nonempty and bounded above, hence4 has a largest element bq. So
a = bq + r (for some r ≥ 0) and b(q + 1) > a, from which b > r. �

To find (m, n), we write as in I.B.3

n = q0m + r0

m = q1r0 + r1

r0 = q2r1 + r2

r1 = q3r2 + r3
...

in which the gcd is the last nonzero remainder ri.5 This is best cov-
ered and proved later in a more general context (that of principal ideal
domains). For now, we shall just show:

I.B.4. PROPOSITION. (m, n) = mu + nv for some u, v ∈ Z.

PROOF. Let I := {mx + ny | x, y ∈ Z}, with least positive ele-
ment d = mu + nv ∈ I ∩Z>0. Writing m = dq + r (with 0 ≤ r < d),
one finds

r = m− dq = m− (mu + nv)q = m(1− uq)− n(vq) ∈ I.

For this not to contradict leastness of d, we must have r = 0 and
thus d | m. Similarly, d | n. Moreover, any e dividing both m and n
divides d, which is therefore maximal among common divisors. �

4This the the well-ordering principle; it is equivalent to the principle of induction.
5The idea: (n, m) = (n − q0m, m) = (r0, m) and so on. You eventually reach
(ri−1, ri), with ri−1 = qi+1ri.


