I.B. INTEGERS

I.B. Integers

We turn to some results of Euclid. A *prime number* $p \in \mathbb{Z}$ is one not equal to 0, 1, -1 and whose only divisors are $\pm p, \pm 1$.

I.B.1. FUNDAMENTAL THEOREM OF ARITHMETIC. Any natural number $n \in \mathbb{N} \setminus \{0, 1\}$ has (up to order) a unique factorization

$$n=p_1p_2\cdots p_s,$$

where the $\{p_i\}$ are (positive) primes, which are not necessarily distinct.

PROOF. We use induction (n = 1 is clear). Assume the statement holds for all n < m. Then m has a prime factorization: either it is itself prime, or factors into m_1m_2 with $m_1, m_2 < m$.

As for uniqueness: if $m = p_1 \cdots p_s = q_1 \cdots q_t$ with $p_1 = q_1$, this follows from induction. If instead $p_1 < q_1$, then t > 1 (since q_1 is prime and m isn't) and

$$1 < n_0 := \underbrace{p_1(p_2 \cdots p_s)}_m - q_2 \cdots q_t = (q_1 - p_1)q_2 \cdots q_t < m.$$

Factoring the parentheticals into primes, the inductive hypothesis says that the resulting factorizations of n_0 must be the same (up to order). So we either have

$$p_1 \mid (q_1 - p_1) \implies p_1 \mid q_1 \implies p_1 = q_1$$
 ,

which is a contradiction, or p_1 is one of the q_2, \ldots, q_t . Reordering puts us back in the $p_1 = q_1$ case.

I.B.2. PROPOSITION. There are infinitely many primes.

PROOF. Suppose p_1, \ldots, p_s is a complete list of positive primes; then none of them divide $p_1 \cdots p_s + 1$, contradicting I.B.1.

The FTA leads to the notion of the **gcd** (= greatest common divisor) of $m, n \in \mathbb{Z}$, written (m, n) and well-defined up to sign. To find it, one traditionally employs the

I.B.3. DIVISION ALGORITHM. Given $a, b \in \mathbb{Z}$, $b \neq 0$, there exist $q, r \in \mathbb{Z}$ such that

$$0 \leq r < |b|$$
 and $a = bq + r$

PROOF. We may assume b > 0; then $M := \{bn \mid n \in \mathbb{Z}, bn \le a\}$ is nonempty and bounded above, hence⁴ has a largest element *bq*. So a = bq + r (for some $r \ge 0$) and b(q + 1) > a, from which b > r. \Box

To find (m, n), we write as in I.B.3

$$\begin{cases}
 n = q_0 m + r_0 \\
 m = q_1 r_0 + r_1 \\
 r_0 = q_2 r_1 + r_2 \\
 r_1 = q_3 r_2 + r_3 \\
 \vdots$$

in which the gcd is the last nonzero remainder r_i .⁵ This is best covered and proved later in a more general context (that of *principal ideal domains*). For now, we shall just show:

I.B.4. PROPOSITION. (m, n) = mu + nv for some $u, v \in \mathbb{Z}$.

PROOF. Let $I := \{mx + ny \mid x, y \in \mathbb{Z}\}$, with least positive element $d = mu + nv \in I \cap \mathbb{Z}_{>0}$. Writing m = dq + r (with $0 \le r < d$), one finds

$$r = m - dq = m - (mu + nv)q = m(1 - uq) - n(vq) \in I.$$

For this not to contradict leastness of *d*, we must have r = 0 and thus $d \mid m$. Similarly, $d \mid n$. Moreover, any *e* dividing both *m* and *n* divides *d*, which is therefore maximal among common divisors.

⁴This the *well-ordering principle;* it is equivalent to the principle of induction.

⁵The idea: $(n,m) = (n - q_0m,m) = (r_0,m)$ and so on. You eventually reach (r_{i-1}, r_i) , with $r_{i-1} = q_{i+1}r_i$.