I.B. Integers

We turn to some results of Euclid. A prime number $p \in \mathbb{Z}$ is one not equal to $0,1,-1$ and whose only divisors are $\pm p, \pm 1$.
I.B.1. Fundamental Theorem of Arithmetic. Any natural number $n \in \mathbb{N} \backslash\{0,1\}$ has (up to order) a unique factorization

$$
n=p_{1} p_{2} \cdots p_{s}
$$

where the $\left\{p_{i}\right\}$ are (positive) primes, which are not necessarily distinct.
Proof. We use induction ($n=1$ is clear). Assume the statement holds for all $n<m$. Then m has a prime factorization: either it is itself prime, or factors into $m_{1} m_{2}$ with $m_{1}, m_{2}<m$.

As for uniqueness: if $m=p_{1} \cdots p_{s}=q_{1} \cdots q_{t}$ with $p_{1}=q_{1}$, this follows from induction. If instead $p_{1}<q_{1}$, then $t>1$ (since q_{1} is prime and m isn't) and

$$
1<n_{0}:=\underbrace{p_{1}\left(p_{2} \cdots p_{s}\right.}_{m}-q_{2} \cdots q_{t})=\left(q_{1}-p_{1}\right) q_{2} \cdots q_{t}<m
$$

Factoring the parentheticals into primes, the inductive hypothesis says that the resulting factorizations of n_{0} must be the same (up to order). So we either have

$$
p_{1}\left|\left(q_{1}-p_{1}\right) \Longrightarrow p_{1}\right| q_{1} \Longrightarrow p_{1}=q_{1}
$$

which is a contradiction, or p_{1} is one of the q_{2}, \ldots, q_{t}. Reordering puts us back in the $p_{1}=q_{1}$ case.
I.B.2. PROPOSITION. There are infinitely many primes.

PROOF. Suppose p_{1}, \ldots, p_{s} is a complete list of positive primes; then none of them divide $p_{1} \cdots p_{s}+1$, contradicting I.B.1.

The FTA leads to the notion of the gcd (= greatest common divisor) of $m, n \in \mathbb{Z}$, written (m, n) and well-defined up to sign. To find it, one traditionally employs the
I.B.3. Division Algorithm. Given $a, b \in \mathbb{Z}, b \neq 0$, there exist $q, r \in \mathbb{Z}$ such that

$$
0 \leq r<|b| \text { and } a=b q+r
$$

Proof. We may assume $b>0$; then $M:=\{b n \mid n \in \mathbb{Z}, b n \leq a\}$ is nonempty and bounded above, hence ${ }^{4}$ has a largest element $b q$. So $a=b q+r($ for some $r \geq 0)$ and $b(q+1)>a$, from which $b>r$.

To find (m, n), we write as in I.B. 3

$$
\left\{\begin{array}{c}
n=q_{0} m+r_{0} \\
m=q_{1} r_{0}+r_{1} \\
r_{0}=q_{2} r_{1}+r_{2} \\
r_{1}=q_{3} r_{2}+r_{3} \\
\vdots
\end{array}\right.
$$

in which the gcd is the last nonzero remainder $r_{i} .{ }^{5}$ This is best covered and proved later in a more general context (that of principal ideal domains). For now, we shall just show:
I.B.4. PROposition. $(m, n)=m u+n v$ for some $u, v \in \mathbb{Z}$.

Proof. Let $I:=\{m x+n y \mid x, y \in \mathbb{Z}\}$, with least positive element $d=m u+n v \in I \cap \mathbb{Z}_{>0}$. Writing $m=d q+r$ (with $0 \leq r<d$), one finds

$$
r=m-d q=m-(m u+n v) q=m(1-u q)-n(v q) \in I .
$$

For this not to contradict leastness of d, we must have $r=0$ and thus $d \mid m$. Similarly, $d \mid n$. Moreover, any e dividing both m and n divides d, which is therefore maximal among common divisors.

[^0]
[^0]: ${ }^{4}$ This the the well-ordering principle; it is equivalent to the principle of induction.
 ${ }^{5}$ The idea: $(n, m)=\left(n-q_{0} m, m\right)=\left(r_{0}, m\right)$ and so on. You eventually reach $\left(r_{i-1}, r_{i}\right)$, with $r_{i-1}=q_{i+1} r_{i}$.

