I.C. POSETS

I.C. Posets

I.C.1. DEFINITION. A **partial order** on a set *S* is a relation " \leq " such that

 $\begin{cases} x \le x \\ x \le y \text{ and } y \le z \implies x \le z \\ x \le y \text{ and } y \le x \implies x = y \end{cases}$

for all $x, y, z \in S$. The pair (S, \leq) is called a **poset**.

An easy example is $(\mathscr{P}(S), \subset)$.

I.C.2. DEFINITIONS. Let (S, \leq) be a poset.

(i) (S, \leq) is totally ordered $\iff x \leq y$ or $y \leq x$ $(\forall x, y \in S)$.

(ii) A **chain** is a subset $C \subset S$ such that (C, \leq) is totally ordered.

(iii) An **upper bound**⁶ for a subset $S' \subset S$ is $x \in S$ such that

 $y \in S' \implies y \leq x.$

(iv) A **maximal** element⁷ of *S* is $x \in S$ such that

 $x \leq y \text{ and } y \in S \implies x = y.$

I.C.3. ZORN'S LEMMA. *If every chain in S has an upper bound, then S has a maximal element.*

This is needed for:

- ∃ of bases for ∞-dimensional vector spaces (i.e. a linearly independent subset contained by no proper linear subspace);
- \exists and ! of the algebraic closure of a field;⁸
- \exists of transcendence bases for arbitrary field extensions;
- ∃ of maximal (proper) ideals containing a given proper ideal (for rings with uncountably many elements); and
- (in analysis) stuff like the Hahn-Banach extension.

Zorn's Lemma follows from (indeed, is equivalent to) the

⁶These need not exist or be unique in general: consider various subsets $S' \subset \mathbb{R}$ of the reals.

⁷This need *not* satisfy $y \le x \ \forall y \in S$, unless of course *S* is totally ordered.

⁸In mathematics, the symbol "!" stands for "unique" (or uniqueness, or uniquely).

I. SETS

I.C.4. AXIOM OF CHOICE. Given a family of nonempty sets $\{X_i\}_{i \in I}$, there exists a "choice function" f defined on I such that $f(i) \in X_i$ ($\forall i$). Alternately, $\exists f (= \{f(i)\}_{i \in I}) \in \prod_{i \in I} X_i$ – that is, the Cartesian product is nonempty.

(Clearly, this is only needed when *I* is infinite.) People make a fuss about using it because it renders your argument nonconstructive.

SKETCH OF PROOF THAT AOC \implies ZL. Let (S, \leq) be a poset in which all chains have an upper bound (write "UB"). For each $x \in S$, set

$$arphi(x):=\{y\in S\mid y>x\}\in \mathscr{P}(S)$$
 ,

and *assume no* x *is maximal* (i.e. no $\varphi(x) = \emptyset$). By I.C.4, there exists a choice function f on $\varphi(S)$ (a subset of $\mathscr{P}(S)$), with $f(\varphi(x)) \in \varphi(x)$. Clearly $x < f(\varphi(x))$.

Now, *fixing* $x \in S$, define a "sequence" in *S* by transfinite⁹ recursion:

$$\begin{cases} x_0 := x, \\ x_{\alpha+1} := f(\varphi(x_\alpha)) \ (> x_\alpha) & \text{for any ordinal number } \alpha \end{cases}$$

and more generally (since this won't work for limit ordinals)

$$x_{\alpha} := f(\varphi(\mathrm{UB}\{x_{\beta} \mid \beta < \alpha\}))$$

This "goes on forever", so that $\alpha \mapsto x_{\alpha}$ yields an injection $\underline{Ord} \hookrightarrow S$ — which is impossible because \underline{Ord} is not a set.

This was just to give an idea; if you want more than that, pick up Halmos's "Naive set theory" book.

⁹There are arguments that avoid transfinite induction, but they take longer to even partially understand. You can think of an ordinal number as an isomorphism class of well-ordered sets (which are totally ordered sets each of whose subsets has a least element). The class <u>Ord</u> of ordinal numbers is not a set – it is "too big".