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I.C. Posets

I.C.1. DEFINITION. A partial order on a set S is a relation “≤”
such that 

x ≤ x
x ≤ y and y ≤ z =⇒ x ≤ z
x ≤ y and y ≤ x =⇒ x = y

for all x, y, z ∈ S. The pair (S,≤) is called a poset.

An easy example is (P(S),⊂).

I.C.2. DEFINITIONS. Let (S,≤) be a poset.
(i) (S,≤) is totally ordered ⇐⇒ x ≤ y or y ≤ x (∀x, y ∈ S).
(ii) A chain is a subset C ⊂ S such that (C,≤) is totally ordered.
(iii) An upper bound6 for a subset S′ ⊂ S is x ∈ S such that

y ∈ S′ =⇒ y ≤ x.

(iv) A maximal element7 of S is x ∈ S such that

x ≤ y and y ∈ S =⇒ x = y.

I.C.3. ZORN’S LEMMA. If every chain in S has an upper bound, then
S has a maximal element.

This is needed for:

• ∃ of bases for ∞-dimensional vector spaces (i.e. a linearly inde-
pendent subset contained by no proper linear subspace);
• ∃ and ! of the algebraic closure of a field;8

• ∃ of transcendence bases for arbitrary field extensions;
• ∃ of maximal (proper) ideals containing a given proper ideal (for

rings with uncountably many elements); and
• (in analysis) stuff like the Hahn-Banach extension.

Zorn’s Lemma follows from (indeed, is equivalent to) the

6These need not exist or be unique in general: consider various subsets S′ ⊂ R of
the reals.
7This need not satisfy y ≤ x ∀y ∈ S, unless of course S is totally ordered.
8In mathematics, the symbol “!” stands for “unique” (or uniqueness, or uniquely).
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I.C.4. AXIOM OF CHOICE. Given a family of nonempty sets {Xi}i∈I ,
there exists a “choice function” f defined on I such that f (i) ∈ Xi (∀i).
Alternately, ∃ f (= { f (i)}i∈I) ∈ ∏i∈I Xi – that is, the Cartesian product
is nonempty.

(Clearly, this is only needed when I is infinite.) People make a fuss
about using it because it renders your argument nonconstructive.

SKETCH OF PROOF THAT AOC =⇒ ZL. Let (S,≤) be a poset in
which all chains have an upper bound (write “UB”). For each x ∈ S,
set

ϕ(x) := {y ∈ S | y > x} ∈P(S) ,

and assume no x is maximal (i.e. no ϕ(x) = ∅). By I.C.4, there exists a
choice function f on ϕ(S) (a subset of P(S)), with f (ϕ(x)) ∈ ϕ(x).
Clearly x < f (ϕ(x)).

Now, fixing x ∈ S, define a “sequence” in S by transfinite9 recur-
sion: {

x0 := x,
xα+1 := f (ϕ(xα)) (> xα) for any ordinal number α

and more generally (since this won’t work for limit ordinals)

xα := f (ϕ(UB{xβ | β < α})).

This “goes on forever”, so that α 7→ xα yields an injection Ord ↪→ S
— which is impossible because Ord is not a set. �

This was just to give an idea; if you want more than that, pick up
Halmos’s “Naive set theory” book.

9There are arguments that avoid transfinite induction, but they take longer to even
partially understand. You can think of an ordinal number as an isomorphism class
of well-ordered sets (which are totally ordered sets each of whose subsets has a
least element). The class Ord of ordinal numbers is not a set – it is “too big”.


