I.C. Posets

I.C.1. Definition. A partial order on a set S is a relation " \leq " such that

$$
\left\{\begin{array}{l}
x \leq x \\
x \leq y \text { and } y \leq z \quad \Longrightarrow \quad x \leq z \\
x \leq y \text { and } y \leq x \quad \Longrightarrow \quad x=y
\end{array}\right.
$$

for all $x, y, z \in S$. The pair (S, \leq) is called a poset.
An easy example is $(\mathscr{P}(S), \subset)$.
I.C.2. Definitions. Let (S, \leq) be a poset.
(i) (S, \leq) is totally ordered $\Longleftrightarrow x \leq y$ or $y \leq x(\forall x, y \in S)$.
(ii) A chain is a subset $\mathcal{C} \subset S$ such that (\mathcal{C}, \leq) is totally ordered.
(iii) An upper bound ${ }^{6}$ for a subset $S^{\prime} \subset S$ is $x \in S$ such that

$$
y \in S^{\prime} \Longrightarrow y \leq x
$$

(iv) A maximal element ${ }^{7}$ of S is $x \in S$ such that

$$
x \leq y \text { and } y \in S \quad \Longrightarrow \quad x=y .
$$

I.C.3. ZORN'S LEMMA. If every chain in S has an upper bound, then S has a maximal element.

This is needed for:

- \exists of bases for ∞-dimensional vector spaces (i.e. a linearly independent subset contained by no proper linear subspace);
- \exists and ! of the algebraic closure of a field; ${ }^{8}$
- \exists of transcendence bases for arbitrary field extensions;
- \exists of maximal (proper) ideals containing a given proper ideal (for rings with uncountably many elements); and
- (in analysis) stuff like the Hahn-Banach extension.

Zorn's Lemma follows from (indeed, is equivalent to) the

[^0]I.C.4. Ахіом оF Choice. Given a family of nonempty sets $\left\{\mathrm{X}_{i}\right\}_{i \in I}$, there exists a "choice function" f defined on I such that $f(i) \in \mathrm{X}_{i}(\forall i)$. Alternately, $\exists f\left(=\{f(i)\}_{i \in I}\right) \in \prod_{i \in I} X_{i}$ - that is, the Cartesian product is nonempty.
(Clearly, this is only needed when I is infinite.) People make a fuss about using it because it renders your argument nonconstructive.

SKetch of proof that AoC \Longrightarrow ZL. Let (S, \leq) be a poset in which all chains have an upper bound (write "UB"). For each $x \in S$, set

$$
\varphi(x):=\{y \in S \mid y>x\} \in \mathscr{P}(S),
$$

and assume no x is maximal (i.e. no $\varphi(x)=\varnothing$). By I.C.4, there exists a choice function f on $\varphi(S)$ (a subset of $\mathscr{P}(S)$), with $f(\varphi(x)) \in \varphi(x)$. Clearly $x<f(\varphi(x))$.

Now, fixing $x \in S$, define a "sequence" in S by transfinite ${ }^{9}$ recursion:

$$
\left\{\begin{array}{l}
x_{0}:=x \\
x_{\alpha+1}:=f\left(\varphi\left(x_{\alpha}\right)\right)\left(>x_{\alpha}\right) \text { for any ordinal number } \alpha
\end{array}\right.
$$

and more generally (since this won't work for limit ordinals)

$$
x_{\alpha}:=f\left(\varphi\left(\mathrm{UB}\left\{x_{\beta} \mid \beta<\alpha\right\}\right)\right) .
$$

This "goes on forever", so that $\alpha \mapsto x_{\alpha}$ yields an injection Ord $\hookrightarrow S$ - which is impossible because Ord is not a set.

This was just to give an idea; if you want more than that, pick up Halmos's "Naive set theory" book.

[^1]
[^0]: $\overline{{ }^{6}}$ These need not exist or be unique in general: consider various subsets $S^{\prime} \subset \mathbb{R}$ of the reals.
 ${ }^{7}$ This need not satisfy $y \leq x \forall y \in S$, unless of course S is totally ordered.
 ${ }^{8}$ In mathematics, the symbol "!" stands for "unique" (or uniqueness, or uniquely).

[^1]: ${ }^{9}$ There are arguments that avoid transfinite induction, but they take longer to even partially understand. You can think of an ordinal number as an isomorphism class of well-ordered sets (which are totally ordered sets each of whose subsets has a least element). The class Ord of ordinal numbers is not a set - it is "too big".

