II.B. Permutation groups

Let X be a set; recall that (if finite) its order $|X|$ is the number of elements. A transformation of X is a map

$$
\tau: X \rightarrow X
$$

if τ is bijective (or equivalently, invertible), it is called a permutation. Let

$$
\mathfrak{T}_{X}:=\text { set of all transformations of } X,
$$

$$
\text { and } \mathfrak{S}_{X}:=\text { set of all permutations of } X
$$

The binary operation "composition of maps" makes \mathfrak{T}_{X} into a monoid and \mathfrak{S}_{X} into a group, the symmetric group on X.
II.B.1. Proposition. If $|X|=n<\infty$, we have $\left|\mathfrak{T}_{X}\right|=n^{n}$ and $\left|\mathfrak{S}_{X}\right|=n!$.

Proof. For each $x \in X$, there are n choices for $\tau(x)$; but if τ is to be bijective, each choice removes an option for the next.

Say $X=\left\{x_{1}, \ldots, x_{n}\right\}$. A useful notation is $\tau=\left(\begin{array}{ccc}x_{1} & \cdots & x_{n} \\ \tau\left(x_{1}\right) & \cdots & \tau\left(x_{n}\right)\end{array}\right)$.
II.B.2. Example. Let $X=\{A, B\}$. We have

$$
\begin{aligned}
\mathfrak{T}_{X} & =\left\{\left(\begin{array}{ll}
A & B \\
A & B
\end{array}\right),\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right),\left(\begin{array}{ll}
A & B \\
A & A
\end{array}\right),\left(\begin{array}{ll}
A & B \\
B & B
\end{array}\right)\right\} \\
\text { and } \mathfrak{S}_{X} & =\left\{\left(\begin{array}{ll}
A & B \\
A & B
\end{array}\right),\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)\right\},
\end{aligned}
$$

where the identity transformation is written first in each set. To remove reference to X and think of \mathfrak{T}_{X} as an "abstract monoid", write $\{1, \alpha, \beta, \gamma\}$ for its 4 elements (in the same order) and produce a table

	1	α	β	γ
1	1	α	β	γ
α	α	1	γ	β
β	β	β	β	β
γ	γ	γ	γ	γ

which displays the abstract binary operation corresponding to the compositions of these transformations. For instance, $\alpha \beta=\gamma$ (shown in the table) means, on the level of the transformations, that β followed by α gives γ.

You can make such a table for any (finite order) group or monoid; but conversely, given an arbitrary table of the form

	1	α	β	γ
1	1	α	β	γ
α	α			
β	β		$?$	
γ	γ			

it need not yield a monoid: associativity does impose constraints.
Define the $\mathbf{n}^{\text {th }}$ symmetric group by

$$
\mathfrak{S}_{n}:=\mathfrak{S}_{\{1, \ldots, n\}}
$$

II.B.3. Proposition. Any $\alpha \in \mathfrak{S}_{n}$ has, up to order, a unique complete ${ }^{3}$ factorization into disjoint cycles (which commute).
II.B.4. Example. In \mathfrak{S}_{9}, an example of a cycle is (3789), which sends $3 \mapsto 7 \mapsto 8 \mapsto 9 \mapsto 3$. (It is a 4 -cycle because it involves 4 elements.) This is disjoint from (24) because the subsets of $\{1,2, \ldots, 9\}$

[^0]involved are disjoint (which makes them commute). An example of a (complete) factorization of a permutation into disjoint cycles is
\[

\left($$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
6 & 4 & 7 & 2 & 5 & 1 & 8 & 9 & 3
\end{array}
$$\right)=(16)(24)(3789)(5)
\]

Proof of II.B.3. The idea is to induce on the number of elements in $\{1,2, \ldots, n\}$ that α moves. Say it moves the element i_{1}, viz.

$$
i_{1} \underset{\alpha}{\mapsto} i_{2} \underset{\alpha}{\mapsto} i_{3} \underset{\alpha}{\mapsto} \cdots \underset{\alpha}{\mapsto} i_{r}
$$

where r is the smallest integer for which $i_{r} \in\left\{i_{1}, \ldots, i_{r-1}\right\}$. (Clearly $2 \leq r \leq n+1$.)

In fact, we must have $i_{r}=i_{1}$. (Otherwise, for some $2 \leq j \leq r-1$ we have $\alpha\left(i_{r-1}\right)=i_{j}=\alpha\left(i_{j-1}\right)$, and α is not injective, a contradiction.) Hence α moves i_{1}, \ldots, i_{r-1} in a cycle, and $\beta:=\alpha \cdot\left(i_{1} \cdots i_{r-1}\right)^{-1}$ (which fixes each of them) moves $r-1$ fewer elements than α. We may view β as a permutation of ${ }^{4}\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{r-1}\right\}$ and apply induction to get a complete factorization into cycles. Throwing in $\left(i_{1} \cdots i_{r-1}\right)$ then gives the desired factorization of α.

To see the uniqueness, let $\gamma_{1} \cdots \gamma_{s}=\alpha=\beta_{1} \cdots \beta_{t}$ be two complete factorizations. Since disjoint cycles commute, we may without loss of generality assume that β_{1} and γ_{1} contain i_{1} (and that no other cycles in the two products do). Applying α repeatedly, we get

$$
\left\{\begin{array}{c}
\gamma_{1}\left(i_{1}\right)=i_{2}=\beta_{1}\left(i_{1}\right) \\
\vdots \\
\gamma_{1}\left(i_{r}\right)=i_{1}=\beta_{1}\left(i_{r-1}\right)
\end{array}\right.
$$

and so $\beta_{1}=\gamma_{1}$. Cancel them and proceed inductively.
A transposition is a 2 -cycle ($i j$); it sends $i \mapsto j \mapsto i$ and fixes all other elements.
II.B.5. PROPOSITION. Any $\alpha \in \mathfrak{S}_{n}$ factors (nonuniquely) into a product of (not necessarily disjoint) transpositions.

[^1]Proof. Factor α into disjoint cycles, then (for example) factor the cycles via the formula $(123 \cdots r)=(1 r)(1 r-1) \cdots(13)(12)$.

For each permutation $\alpha \in \mathfrak{S}_{n}$, write $c(\alpha)$ for the number of disjoint cycles in its complete factorization, ${ }^{5}$ and define the sign

$$
\operatorname{sgn}(\alpha):=(-1)^{n-c(\alpha)}
$$

Viewing $\{1,-1\}$ as a group under multiplication, we have the
II.B.6. THEOREM. The map sgn: $\mathfrak{S}_{n} \rightarrow\{1,-1\}$ is a homomorphism of groups. That is, $\operatorname{sgn}(\alpha \beta)=\operatorname{sgn}(\alpha) \operatorname{sgn}(\beta)$.

Proof. First observe that there are $n-1$ cycles in the complete factorization of a transposition τ; e.g., (12) $=(12)(3)(4) \cdots(n)$. So $\operatorname{sgn}(\tau)=-1$.

Writing $\beta=\sigma_{1} \cdots \sigma_{c(\beta)}$ for a complete factorization, consider (ab) β. Without loss of generality, either (i) a, b occur in σ_{1} or (ii) a occurs in σ_{1} and β in σ_{2}. Using

$$
(a b) \underbrace{\left(a c_{1} \cdots c_{k} b d_{1} \cdots d_{\ell}\right)}_{\sigma_{1}} \sigma_{2} \cdots \sigma_{c(\beta)}=\left(a c_{1} \cdots c_{k}\right)\left(b d_{1} \cdots d_{\ell}\right) \sigma_{2} \cdots \sigma_{c(\beta)}
$$

in case (i) and

$$
(a b) \underbrace{\left(a c_{1} \cdots c_{k}\right)}_{\sigma_{1}}(\underbrace{\left.b d_{1} \cdots d_{\ell}\right)}_{\sigma_{2}} \sigma_{3} \cdots \sigma_{c(\beta)}=\left(a c_{1} \cdots c_{k} b d_{1} \cdots d_{\ell}\right) \sigma_{3} \cdots \sigma_{c(\beta)}
$$

in case (ii), we either gain or lose a cycle in the complete factorization of $(a b) \beta$. So for any transposition τ, we have $\operatorname{sgn}(\tau \beta)=-\operatorname{sgn}(\beta)$.

Finally, writing $\alpha=\tau_{1} \cdots \tau_{m}$ by II.B.5, we have

$$
\begin{aligned}
& \operatorname{sgn}(\alpha \beta)=\operatorname{sgn}\left(\tau_{1} \cdot \tau_{2} \cdots \tau_{m} \beta\right)= \\
& -\operatorname{sgn}\left(\tau_{2} \cdots \tau_{m} \beta\right)=\cdots=(-1)^{m} \operatorname{sgn}(\beta), \text { and }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{sgn}(\alpha) \operatorname{sgn}(\beta)= & \operatorname{sgn}\left(\tau_{1} \cdot \tau_{2} \cdots \tau_{m}\right) \operatorname{sgn}(\beta)= \\
& -\operatorname{sgn}\left(\tau_{2} \cdots \tau_{m}\right) \operatorname{sgn}(\beta)=\cdots=(-1)^{m} \operatorname{sgn}(\beta),
\end{aligned}
$$

which completes the proof.
${ }^{5}$ It is essential to include the 1-cycles in this count!
II.B.7. COROLLARY. The "number of transpositions" in $\alpha \in \mathfrak{S}_{n}$ is well-defined mod 2.

PROOF. $\operatorname{sgn}(\alpha)=\operatorname{sgn}\left(\tau_{1} \cdots \tau_{m}\right)=(-1)^{m}$, and we know $\operatorname{sgn}(\alpha)$ is well-defined. So m is well-defined $\bmod 2$.

The upshot is that we can unambiguously call α "even" or "odd" according to whether it can be written as a product of an even or odd number of transpositions. (To see which is the case, one instead writes the complete factorization into disjoint cycles and computes $\operatorname{sgn}(\alpha)$.

[^0]: ${ }^{3}$ Here, "complete" means that we formally include the 1-cycles (k) that do nothing, except to say that α sends k to itself, so that each element of $\{1, \ldots, n\}$ appears exactly once in the product of cycles. (A 1-cycle is really just a way of writing the identity element.)

[^1]: ${ }^{4}$ Given sets $T \subset S, S \backslash T$ denotes the set-theoretic complement (the elements of S that aren't in T). You can view this β as an element of \mathfrak{S}_{n-r+1}, or (as we do here) an element of \mathfrak{S}_{n} that fixes i_{1}, \ldots, i_{r-1}.

