II. GROUPS

II.B. Permutation groups

Let *X* be a set; recall that (if finite) its order |X| is the number of elements. A *transformation* of *X* is a map

$$\tau\colon X\to X$$
;

if τ is bijective (or equivalently, invertible), it is called a **permutation**. Let

> $\mathfrak{T}_X :=$ set of all transformations of *X*, and $\mathfrak{S}_X :=$ set of all permutations of *X*.

The binary operation "composition of maps" makes \mathfrak{T}_X into a monoid and \mathfrak{S}_X into a group, the **symmetric group** on *X*.

II.B.1. PROPOSITION. If $|X| = n < \infty$, we have $|\mathfrak{T}_X| = n^n$ and $|\mathfrak{S}_X| = n!$.

PROOF. For each $x \in X$, there are *n* choices for $\tau(x)$; but if τ is to be bijective, each choice removes an option for the next.

Say
$$X = \{x_1, \ldots, x_n\}$$
. A useful notation is $\tau = \begin{pmatrix} x_1 & \cdots & x_n \\ \tau(x_1) & \cdots & \tau(x_n) \end{pmatrix}$.

II.B.2. EXAMPLE. Let $X = \{A, B\}$. We have

$$\mathfrak{T}_{X} = \left\{ \begin{pmatrix} A & B \\ A & B \end{pmatrix}, \begin{pmatrix} A & B \\ B & A \end{pmatrix}, \begin{pmatrix} A & B \\ A & A \end{pmatrix}, \begin{pmatrix} A & B \\ B & B \end{pmatrix} \right\}$$

and $\mathfrak{S}_{X} = \left\{ \begin{pmatrix} A & B \\ A & B \end{pmatrix}, \begin{pmatrix} A & B \\ B & A \end{pmatrix} \right\},$

where the identity transformation is written first in each set. To remove reference to *X* and think of \mathfrak{T}_X as an "abstract monoid", write $\{1, \alpha, \beta, \gamma\}$ for its 4 elements (in the same order) and produce a table

	1	α	β	γ
1	1	α	β	γ
α	α	1	γ	β
β	β	β	β	β
γ	γ	γ	γ	γ

which displays the abstract binary operation corresponding to the compositions of these transformations. For instance, $\alpha\beta = \gamma$ (shown in the table) means, on the level of the transformations, that β followed by α gives γ .

You can make such a table for any (finite order) group or monoid; but conversely, given an arbitrary table of the form

it need not yield a monoid: associativity *does* impose constraints.

Define the $\boldsymbol{n^{th}}$ symmetric group by

$$\mathfrak{S}_n := \mathfrak{S}_{\{1,\ldots,n\}}.$$

II.B.3. PROPOSITION. Any $\alpha \in \mathfrak{S}_n$ has, up to order, a unique complete³ factorization into **disjoint cycles** (which commute).

II.B.4. EXAMPLE. In \mathfrak{S}_9 , an example of a *cycle* is (3789), which sends $3 \mapsto 7 \mapsto 8 \mapsto 9 \mapsto 3$. (It is a 4-cycle because it involves 4 elements.) This is *disjoint* from (24) because the subsets of $\{1, 2, \dots, 9\}$

³Here, "complete" means that we formally include the 1-cycles (k) that do nothing, except to say that α sends k to itself, so that each element of $\{1, ..., n\}$ appears exactly once in the product of cycles. (A 1-cycle is really just a way of writing the identity element.)

II. GROUPS

involved are disjoint (which makes them commute). An example of a (complete) factorization of a permutation into disjoint cycles is

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 4 & 7 & 2 & 5 & 1 & 8 & 9 & 3 \end{pmatrix} = (16)(24)(3789)(5).$$

PROOF OF II.B.3. The idea is to induce on the number of elements in $\{1, 2, ..., n\}$ that α moves. Say it moves the element i_1 , viz.

$$i_1 \underset{\alpha}{\mapsto} i_2 \underset{\alpha}{\mapsto} i_3 \underset{\alpha}{\mapsto} \cdots \underset{\alpha}{\mapsto} i_r,$$

where *r* is the smallest integer for which $i_r \in \{i_1, ..., i_{r-1}\}$. (Clearly $2 \le r \le n+1$.)

In fact, we must have $i_r = i_1$. (Otherwise, for some $2 \le j \le r-1$ we have $\alpha(i_{r-1}) = i_j = \alpha(i_{j-1})$, and α is not injective, a contradiction.) Hence α moves i_1, \ldots, i_{r-1} in a cycle, and $\beta := \alpha \cdot (i_1 \cdots i_{r-1})^{-1}$ (which fixes each of them) moves r-1 fewer elements than α . We may view β as a permutation of $\{1, \ldots, n\} \setminus \{i_1, \ldots, i_{r-1}\}$ and apply induction to get a complete factorization into cycles. Throwing in $(i_1 \cdots i_{r-1})$ then gives the desired factorization of α .

To see the uniqueness, let $\gamma_1 \cdots \gamma_s = \alpha = \beta_1 \cdots \beta_t$ be two complete factorizations. Since disjoint cycles commute, we may without loss of generality assume that β_1 and γ_1 contain i_1 (and that no other cycles in the two products do). Applying α repeatedly, we get

$$\begin{cases} \gamma_1(i_1) &= i_2 &= \beta_1(i_1) \\ &\vdots \\ \gamma_1(i_r) &= i_1 &= \beta_1(i_{r-1}) \end{cases}$$

and so $\beta_1 = \gamma_1$. Cancel them and proceed inductively.

A **transposition** is a 2-cycle (ij); it sends $i \mapsto j \mapsto i$ and fixes all other elements.

II.B.5. PROPOSITION. Any $\alpha \in \mathfrak{S}_n$ factors (nonuniquely) into a product of (not necessarily disjoint) transpositions.

⁴Given sets $T \subset S$, $S \setminus T$ denotes the set-theoretic complement (the elements of *S* that aren't in *T*). You can view this β as an element of \mathfrak{S}_{n-r+1} , or (as we do here) an element of \mathfrak{S}_n that fixes i_1, \ldots, i_{r-1} .

PROOF. Factor α into disjoint cycles, then (for example) factor the cycles via the formula $(123 \cdots r) = (1r)(1r-1) \cdots (13)(12)$.

For each permutation $\alpha \in \mathfrak{S}_n$, write $c(\alpha)$ for the number of disjoint cycles in its complete factorization,⁵ and define the **sign**

$$\operatorname{sgn}(\alpha) := (-1)^{n-c(\alpha)}.$$

Viewing $\{1, -1\}$ as a group under multiplication, we have the

II.B.6. THEOREM. The map sgn: $\mathfrak{S}_n \to \{1, -1\}$ is a homomorphism of groups. That is, sgn $(\alpha\beta) = \text{sgn}(\alpha)\text{sgn}(\beta)$.

PROOF. First observe that there are n - 1 cycles in the complete factorization of a transposition τ ; e.g., $(12) = (12)(3)(4) \cdots (n)$. So $sgn(\tau) = -1$.

Writing $\beta = \sigma_1 \cdots \sigma_{c(\beta)}$ for a complete factorization, consider $(ab)\beta$. Without loss of generality, *either* (i) *a*, *b* occur in σ_1 or (ii) *a* occurs in σ_1 and β in σ_2 . Using

$$(ab)\underbrace{(ac_1\cdots c_kbd_1\cdots d_\ell)}_{\sigma_1}\sigma_2\cdots \sigma_{c(\beta)} = (ac_1\cdots c_k)(bd_1\cdots d_\ell)\sigma_2\cdots \sigma_{c(\beta)}$$

in case (i) and

$$(ab)\underbrace{(ac_1\cdots c_k)(bd_1\cdots d_\ell)}_{\sigma_1}\sigma_3\cdots\sigma_{c(\beta)}=(ac_1\cdots c_kbd_1\cdots d_\ell)\sigma_3\cdots\sigma_{c(\beta)}$$

in case (ii), we either gain or lose a cycle in the complete factorization of $(ab)\beta$. So for any transposition τ , we have $sgn(\tau\beta) = -sgn(\beta)$.

Finally, writing $\alpha = \tau_1 \cdots \tau_m$ by II.B.5, we have

$$\operatorname{sgn}(\alpha\beta) = \operatorname{sgn}(\tau_1 \cdot \tau_2 \cdots \tau_m\beta) =$$

 $-\operatorname{sgn}(\tau_2 \cdots \tau_m\beta) = \cdots = (-1)^m \operatorname{sgn}(\beta), \text{ and}$

$$\operatorname{sgn}(\alpha)\operatorname{sgn}(\beta) = \operatorname{sgn}(\tau_1 \cdot \tau_2 \cdots \tau_m)\operatorname{sgn}(\beta) = -\operatorname{sgn}(\tau_2 \cdots \tau_m)\operatorname{sgn}(\beta) = \cdots = (-1)^m \operatorname{sgn}(\beta),$$

which completes the proof.

⁵It is essential to include the 1-cycles in this count!

II. GROUPS

II.B.7. COROLLARY. The "number of transpositions" in $\alpha \in \mathfrak{S}_n$ is well-defined mod 2.

PROOF. sgn(α) = sgn($\tau_1 \cdots \tau_m$) = $(-1)^m$, and we know sgn(α) is well-defined. So *m* is well-defined mod 2.

The upshot is that we can unambiguously call α "even" or "odd" according to whether it can be written as a product of an even or odd number of transpositions. (To see which is the case, one instead writes the complete factorization into disjoint cycles and computes $sgn(\alpha)$.)

16