12 II. GROUPS
II.B. Permutation groups

Let X be a set; recall that (if finite) its order | X| is the number of
elements. A transformation of X is a map

T: X = X;

if T is bijective (or equivalently, invertible), it is called a permutation.
Let

Tx := set of all transformations of X,

and Gx := set of all permutations of X.

The binary operation “composition of maps” makes Tx into a monoid
and &y into a group, the symmetric group on X.

IL.B.1. PROPOSITION. If |X| = n < oo, we have |Tx| = n" and
|6x| =nl.

PROOF. For each x € X, there are n choices for 7(x); but if 7 is to
be bijective, each choice removes an option for the next. [

Say X = {x1,...,xn}. Auseful notationis 7 = L
t(x1) - ()

IL.B.2. EXAMPLE. Let X = {A, B}. We have
A B A B A B A B
‘IX = 7 7 7
A B B A

where the identity transformation is written first in each set. To re-
move reference to X and think of Tx as an “abstract monoid”, write
{1,a, B, v} for its 4 elements (in the same order) and produce a table
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which displays the abstract binary operation corresponding to the
compositions of these transformations. For instance, a8 = <y (shown
in the table) means, on the level of the transformations, that § fol-
lowed by « gives 7.

You can make such a table for any (finite order) group or monoid;
but conversely, given an arbitrary table of the form

x B
v By
?

LR ™ R -
L ™ R P

it need not yield a monoid: associativity does impose constraints.
Define the n't symmetric group by

Sy =61, 1)

I.B.3. PROPOSITION. Any o € &, has, up to order, a unique com-
plete® factorization into disjoint cycles (which commute).

II.B.4. EXAMPLE. In &9, an example of a cycle is (3789), which
sends 3 — 7 — 8 — 9 — 3. (It is a 4-cycle because it involves 4 ele-
ments.) This is disjoint from (24) because the subsets of {1,2,...,9}

3Here, “complete” means that we formally include the 1-cycles (k) that do noth-
ing, except to say that a sends k to itself, so that each element of {1,...,n} appears
exactly once in the product of cycles. (A 1-cycle is really just a way of writing the
identity element.)
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involved are disjoint (which makes them commute). An example of
a (complete) factorization of a permutation into disjoint cycles is

123456789
6 47251893

) — (16)(24)(3789) (5).

PROOF OF II.B.3. The idea is to induce on the number of ele-
mentsin {1,2,...,n} that « moves. Say it moves the element i1, viz.
i1 = ip = i3 = - = 1y,

o (44 o 14
where 7 is the smallest integer for which i, € {iy,...,i,_1}. (Clearly
2<r<n+1.)

In fact, we must have i, = i;. (Otherwise, for some?2 < j<r—1
we have a(i,_1) = i; = a(ij_1), and « is not injective, a contradic-
tion.) Hence a moves iy, ...,i,_jinacycle,and g := a - (i -+ -i,_1) "}
(which fixes each of them) moves r — 1 fewer elements than x. We
may view f as a permutation of* {1,...,n}\ {i1,...,i,_1} and apply
induction to get a complete factorization into cycles. Throwing in
(i1 ---i,_1) then gives the desired factorization of «.

To see the uniqueness, let 1 ---ys = & = B1--- B+ be two com-
plete factorizations. Since disjoint cycles commute, we may without
loss of generality assume that f; and <1 contain i1 (and that no other
cycles in the two products do). Applying « repeatedly, we get

1) = i = Pi(i1)

ny) = it = Pi(ir-1)
and so B = ;1. Cancel them and proceed inductively. ]

A transposition is a 2-cycle (ij); it sends i — j — i and fixes all
other elements.

I1.B.5. PROPOSITION. Any a € &, factors (nonuniquely) into a prod-
uct of (not necessarily disjoint) transpositions.

4Givensets T C S, S \ T denotes the set-theoretic complement (the elements of S
that aren’t in T). You can view this j as an element of S,,_,1, or (as we do here)
an element of G, that fixes iy,...,1,_1.
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PROOF. Factor « into disjoint cycles, then (for example) factor the
cycles via the formula (123 ---7) = (1r)(1r—1) - - - (13)(12). O

For each permutation « € &, write c(«) for the number of dis-
joint cycles in its complete factorization,” and define the sign

(_1)11—0(04).

sgn(w) :

Viewing {1, —1} as a group under multiplication, we have the

IL.B.6. THEOREM. The map sgn: &, — {1, —1} is a homomorphism
of groups. That is, sgn(ap) = sgn(a)sgn(p).

PROOF. First observe that there are n — 1 cycles in the complete
factorization of a transposition t; e.g., (12) = (12)(3)(4) - - - (n). So
sgn(7) = —1.

Writing p = 01---0,g) for a complete factorization, consider
(ab)B. Without loss of generality, either (i) a,b occur in oy or (ii) a
occurs in o7 and f in 0,. Using

(ab)(acl .. 'Ckbdl . .dé)g'z .. 'O.C(,B) = (gcl N 'Ck)(bdl . 'dZ)U'Z .. 'O.C(‘B)

(%1

in case (i) and

(ab)(acy - - cx)(bdy -~ -dg)os -+~ oy = (acy- - cxbdy - - dp)os - - o)

(%] (%]
in case (ii), we either gain or lose a cycle in the complete factorization
of (ab)p. So for any transposition 7, we have sgn(tp) = —sgn(p).
Finally, writing « = 77 - - - 755 by II.B.5, we have

sgn(af) =sgn(t T TmP) =
—sgn(- -+ TwP) = -+ = (—1)"sgn(p), and

sgn(a)sgn(B) = sgn(ti - 72+ - - Tu)sgn(p) =
—sgn(m2- - Tw)sgn(B) = -+ = (=1)"sgn(B),
which completes the proof. [

51t is essential to include the 1-cycles in this count!
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I.B.7. COROLLARY. The “number of transpositions” in & € &, is
well-defined mod 2.

PROOF. sgn(a) = sgn(ty - - Ty) = (—1)", and we know sgn(«)
is well-defined. So m is well-defined mod 2. (]

The upshot is that we can unambiguously call « “even” or “odd”
according to whether it can be written as a product of an even or
odd number of transpositions. (To see which is the case, one instead
writes the complete factorization into disjoint cycles and computes

sgn(w).)



