II.C. Groups and subgroups

Some further simple properties follow from the defining properties:
II.C.1. Proposition. Let G be a group, and $a, b, x \in G$.
(a) The cancellation laws hold: $x a=x b$ (or $a x=b x) \Longrightarrow a=b$.
(b) The inverse of x is unique, and $\left(x^{-1}\right)^{-1}=x$.
(c) $\left(a^{n}\right)^{m}=a^{n m}, a^{m} a^{n}=a^{m+n}$ [laws of exponents]
(d) If a and b commute $(a b=b a)$, then $(a b)^{n}=a^{n} b^{n}$.

Proof. (a) Multiply on the left (resp. right) by x^{-1}.
(b) If $x^{\prime} x=1=x x^{\prime}$ and $x^{\prime \prime} x=1=x x^{\prime \prime}$, then

$$
x^{\prime \prime}=x^{\prime \prime} 1=x^{\prime \prime} x x^{\prime}=1 x^{\prime}=x^{\prime}
$$

(c) Clear from the definition: $a^{n}=a \cdots a$ (n times).
(d) If a commutes with b, it commutes with powers of b. Now induce on $n:(a b)^{n}=(a b)^{n-1} a b=a^{n-1} b^{n-1} a b=a^{n-1} a b^{n-1} b=a^{n} b^{n}$.
II.C.2. REMARK. (i) $a b=b a$ is equivalent to the triviality of the commutator $[a, b]:=a^{-1} b^{-1} a b$. (In algebra, an element being trvial means it's the identity element.)
(ii) For monoids: (a) is false, (c) and (d) hold. For those elements of the monoid that have a (two-sided) inverse, (b) is true. (But those elements form a group, so this doesn't say much...)
II.C.3. EXAMPLES. (i) Abelian groups:

- $(\mathbb{A},+, 0)$ where $\mathbb{A}=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- $(V,+, \overrightarrow{0})$ where V is a vector space.
- $\left(\mathbb{Z}_{n},+, \overline{0}\right)$ where $\mathbb{Z}_{n}=\mathbb{Z} / \overline{\overline{(n)}}=$ integers $\bmod n$.
- $\left(\mathbb{Z}_{n}^{*}, \bullet, \overline{1}\right)$ where $\mathbb{Z}_{n}^{*} \subset \mathbb{Z}_{n}$ is the subset of elements possessing a multiplicative inverse: $\bar{b} \in \mathbb{Z}_{n}$ such that $\bar{a} \bar{b}(=\overline{a b})=\overline{1}$.
- $\left(\mathbb{A}^{*}, \bullet, 1\right)$ where $\mathbb{A}^{*}=\mathbb{Q}^{*}, \mathbb{R}^{*}, \mathbb{C}^{*}$ (here $\mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}$ etc.).
- $(\{1,-1\}, \bullet, 1)$, and more generally $\left(\left\{e^{\frac{2 \pi i k}{n}}\right\}_{k=0}^{n-1}, \bullet 1\right)$.
- rotational symmetries of the (regular) n-gon.

Notes: (a) $\mathbb{Z}_{n}^{*}=\{\bar{a} \mid(a, n)=1\}$, since (by I.B.4) $(a, n)=1 \Longleftrightarrow$ $\exists b, k \in \mathbb{Z}$ with $a b+n k=1 \Longleftrightarrow \exists b$ such that $\overline{a b}=\overline{1}$.
(b) \mathbb{Z}_{n} is an example of a cyclic group, i.e. a group on one generator: the notation

$$
\mathbb{Z}_{n}=\langle\overline{1} \mid n \cdot \overline{1}=\overline{0}\rangle
$$

means that the elements comprise all of the "powers" $\overline{0}, \overline{1}, \overline{1}+\overline{1}, \overline{1}+$ $\overline{1}+\overline{1}$, etc. of the generator $\overline{1}$, subject to the relation shown ($n \cdot \overline{1}=$ $\overline{1}+\cdots+\overline{1}[n$ times $]=\overline{0}$). $\mathbb{Z}=\langle 1\rangle$ is also a cyclic group (with no relation), but (unlike \mathbb{Z}_{n}) an infinite one.

(ii) Non-abelian groups:

- $\mathfrak{S}_{n}=n^{\text {th }}$ symmetric group, for $n \geq 3$.
- $D_{n}=n^{\text {th }}$ dihedral group, for $n \geq 3$: its elements comprise the n rotational and n reflectional symmetries of a regular n-gon.
- $G L_{n}(\mathbb{A})$ general linear group, for $n \geq 2$ (and $\mathbb{A}=\mathbb{Q}, \mathbb{R}, \mathbb{C}$): elements are invertible $n \times n$ matrices with entries in \mathbb{A}.
- $S L_{2}(\mathbb{Z})$ (integer 2×2 matrices with determinant 1) and other "arithmetic groups".

Notes: As suggested in (i), it can be useful to write groups in terms of generators and relations. For instance, for the "quotient of $S L_{2}(\mathbb{Z})$ by $\pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ ",

$$
P_{S L}(\mathbb{Z})=\left\langle S, R \mid S^{2}=1=R^{3}\right\rangle \text { where }\left\{\begin{array}{l}
s=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
R=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)=s \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
\end{array}\right.
$$

says that the elements of $P S L_{2}(\mathbb{Z})$ are arbitrary "words" in S and R (and their inverses) subject only to the two relations written. For the dihedral group, we have

$$
\left.D_{n}=\langle r, h| \text { relations are a HW exercise! }\right\rangle
$$

where r is counterclockwise rotation by $\frac{2 \pi}{n}$ and h is a choice of reflection. We have also shown that \mathfrak{S}_{n} is generated by transpositions.
(iii) Monoids that are not groups:

- $(\mathbb{N},+, 0),\left(\mathbb{Z}_{>0}, \bullet, 1\right)$, or $(\mathbb{Z} \backslash\{0\}, \bullet, 1)$.
- $(\mathscr{P}(S), \cup, \varnothing)$ for any nonempty set S.
- $(\sigma,+,(0,0))$ where σ is a cone in \mathbb{R}^{2} :

- the monoid of integral ideals in an algebraic number ring (which we will meet later).
(iv) Direct products of (monoids or) groups: $G_{1} \times G_{2}$, with group operation $\left(g_{1}, g_{2}\right) \cdot\left(h_{1}, h_{2}\right):=\left(g_{1} h_{1}, g_{2} h_{2}\right)$.
II.C.4. Definition. A subgroup of G is a subset $H \subset G$ satisfying:
(i) $1_{G} \in H$;
(ii) [closure under multiplication] $x, y \in H \Longrightarrow x y \in H$; and (iii) [closure under inversion] $x \in H \Longrightarrow x^{-1} \in H$.

We write $H \leq G$ (or $H<G$ for a proper subgroup - i.e. $H \neq G$), and endow H with the operation " \bullet " inherited from G (and hence with a group structure).
II.C.5. Examples. (a) When $\alpha \in G$ is an element of a group, we will use the notation $\langle\alpha\rangle:=\left\{\alpha^{n} \mid n \in \mathbb{Z}\right\}$ to denote the cyclic subgroup generated by α. (Though no relation is written, this can certainly be finite since some power of α may be 1 in G.) Cyclic subgroups are clearly abelian.
(b) In D_{n}, we have cyclic subgroups $\langle r\rangle<D_{n}$ (resp. $\langle h\rangle$) of order n (resp. 2). In $\mathbb{C}^{*},\left\langle e^{\frac{2 \pi \mathrm{i}}{n}}\right\rangle$ is the (cyclic) group of $n^{\text {th }}$ roots of unity. We can intuitively think of $\left\langle e^{\frac{2 \pi i}{n}}\right\rangle$ and $\langle r\rangle$ as copies of $\left(\mathbb{Z}_{n},+, \overline{0}\right)$ embedded in \mathbb{C}^{*} and D_{n}, but we'll need to employ homomorphisms and isomorphisms to state this properly.)
(c) Intersections of subgroups are again subgroups: given $H, K \leq G$, we have $H \cap K \leq G$. (Why?)
(d) Generalizing (a), we can consider subgroups generated by a subset $S \subset G$, denoted $\langle S\rangle \leq G$. There are three equivalent definitions of this: as the smallest subgroup of G containing S; as the intersection of all subgroups containing S; or as all products of (powers of) elements of S and their inverses.
(e) The centralizer of a subset $S \subset G$ is defined by

$$
C_{G}(S):=\{g \in G \mid g s=s g(\forall s \in S)\} \leq G
$$

(To see that it is a subgroup, rewrite the condition in the braces as $s g s^{-1}=g$. If also $s g^{\prime} s^{-1}=g^{\prime}$, then $s\left(g g^{\prime}\right) s^{-1}=\left(s g s^{-1}\right)\left(s g^{\prime} s^{-1}\right)=$ $g g^{\prime}$, and $s g^{-1} s^{-1}=\left(s g s^{-1}\right)^{-1}=g^{-1}$.) In particular, we write $C_{G}(a):=$ $C_{G}(\{a\})$ for the centralizer of one element, and $C(G):=C_{G}(G)$ for the center of G. (Often " C " is written " Z " - this is the German heritage.)
(f) The cone in II.C.3(iii) is a submonoid of \mathbb{R}^{2}.
(g) A submonoid of \mathfrak{T}_{X} is called a monoid of transformations of X. A subgroup of \mathfrak{S}_{X} is a group of permutations of X. Here is an interesting example.

Define $\mathfrak{A}_{n} \subset \mathfrak{S}_{n}$ by

$$
\mathfrak{A}_{n}:=\left\{\alpha \in \mathfrak{S}_{n} \mid \alpha \text { is even }\right\}=\left\{\alpha \in \mathfrak{S}_{n} \mid \operatorname{sgn}(\alpha)=1\right\}
$$

We claim that, since sgn is a homomorphism, this is a subgroup: indeed, $1 \in \mathfrak{A}_{n}$; and given $\alpha, \beta \in \mathfrak{A}_{n}$,

$$
\operatorname{sgn}(\alpha)=1=\operatorname{sgn}(\beta) \Longrightarrow\left\{\begin{array}{c}
\operatorname{sgn}(\alpha \beta)=\operatorname{sgn}(\alpha) \operatorname{sgn}(\beta)=1 \\
\operatorname{sgn}\left(\alpha^{-1}\right)=\operatorname{sgn}(\alpha)^{-1}=1
\end{array}\right.
$$

so that (ii), (iii) in II.C. 4 hold. This subgroup $\mathfrak{A}_{n} \leq \mathfrak{S}_{n}$ is called the alternating group.
II.C.6. Proposition. If $n \geq 3, \mathfrak{A}_{n}$ is generated by 3 -cycles.

PROOF. $\alpha \in \mathfrak{A}_{n} \Longrightarrow \alpha$ is a product of an even number of transpositions. We can group these into pairs of distinct transpositions, viz. $\alpha=\left(\tau_{1} \tau_{2}\right) \cdots\left(\tau_{2 q-1} \tau_{2 q}\right)$. For a pair $\tau \tau^{\prime}$, if the transpositions are not disjoint, write

$$
(i j)(i k)=(i k j) ;
$$

while if they are disjoint, write

$$
(i j)(k \ell)=(i j) \underbrace{(j k)(j k)}_{1}(k \ell)=(i j k)(j k l) .
$$

This recasts α as a product of 3-cycles. (That, conversely, all 3-cycles belong to \mathfrak{A}_{n} is clear from the first displayed formula.)

