II.C. Groups and subgroups

Some further simple properties follow from the defining properties:

II.C.1. PROPOSITION. Let G be a group, and $a, b, x \in G$. (a) The cancellation laws hold: xa = xb (or ax = bx) $\implies a = b$. (b) The inverse of x is unique, and $(x^{-1})^{-1} = x$.

(c) $(a^n)^m = a^{nm}$, $a^m a^n = a^{m+n}$ [laws of exponents]

(d) If a and b commute (ab = ba), then $(ab)^n = a^n b^n$.

PROOF. (a) Multiply on the left (resp. right) by x^{-1} . (b) If x'x = 1 = xx' and x''x = 1 = xx'', then

$$x'' = x''1 = x''xx' = 1x' = x'.$$

(c) Clear from the definition: $a^n = a \cdots a$ (*n* times).

(d) If *a* commutes with *b*, it commutes with powers of *b*. Now induce on *n*: $(ab)^n = (ab)^{n-1}ab = a^{n-1}b^{n-1}ab = a^{n-1}ab^{n-1}b = a^nb^n$. \Box

II.C.2. REMARK. (i) ab = ba is equivalent to the triviality of the **commutator** $[a, b] := a^{-1}b^{-1}ab$. (In algebra, an element being *trvial* means it's the identity element.)

(ii) For monoids: (a) is false, (c) and (d) hold. For those elements of the monoid that *have* a (two-sided) inverse, (b) is true. (But those elements form a group, so this doesn't say much...)

II.C.3. EXAMPLES. (i) Abelian groups:

- $(\mathbb{A}, +, 0)$ where $\mathbb{A} = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- $(V, +, \vec{0})$ where *V* is a vector space.
- $(\mathbb{Z}_n, +, \bar{0})$ where $\mathbb{Z}_n = \mathbb{Z}/\underset{(n)}{\equiv}$ = integers mod *n*.
- $(\mathbb{Z}_n^*, \bullet, \overline{1})$ where $\mathbb{Z}_n^* \subset \mathbb{Z}_n$ is the subset of elements possessing a multiplicative inverse: $\overline{b} \in \mathbb{Z}_n$ such that $\overline{ab}(=\overline{ab}) = \overline{1}$.
- $(\mathbb{A}^*, \bullet, 1)$ where $\mathbb{A}^* = \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ (here $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$ etc.).
- $(\{1, -1\}, \bullet, 1)$, and more generally $(\{e^{\frac{2\pi ik}{n}}\}_{k=0}^{n-1}, \bullet, 1)$.
- rotational symmetries of the (regular) *n*-gon.

<u>Notes</u>: (a) $\mathbb{Z}_n^* = \{ \bar{a} \mid (a, n) = 1 \}$, since (by I.B.4) $(a, n) = 1 \iff \exists b, k \in \mathbb{Z}$ with $ab + nk = 1 \iff \exists b$ such that $\overline{ab} = \overline{1}$.

(b) \mathbb{Z}_n is an example of a **cyclic group**, i.e. a group on one *generator*: the notation

$$\mathbb{Z}_n = \langle \bar{1} \mid n \cdot \bar{1} = \bar{0} \rangle$$

means that the elements comprise all of the "powers" $\bar{0}$, $\bar{1}$, $\bar{1} + \bar{1}$, $\bar{1} + \bar{1}$, $\bar{1} + \bar{1}$, etc. of the generator $\bar{1}$, subject to the *relation* shown ($n \cdot \bar{1} = \bar{1} + \cdots + \bar{1}$ [n times] = $\bar{0}$). $\mathbb{Z} = \langle 1 \rangle$ is also a cyclic group (with no relation), but (unlike \mathbb{Z}_n) an *infinite* one.

(ii) Non-abelian groups:

- $\mathfrak{S}_n = n^{\text{th}}$ symmetric group, for $n \ge 3$.
- $D_n = n^{\text{th}}$ dihedral group, for $n \ge 3$: its elements comprise the *n* rotational and *n* reflectional symmetries of a regular *n*-gon.
- *GL_n*(A) general linear group, for *n* ≥ 2 (and A = Q, R, C): elements are invertible *n* × *n* matrices with entries in A.
- *SL*₂(ℤ) (integer 2 × 2 matrices with determinant 1) and other "arithmetic groups".

<u>Notes</u>: As suggested in (i), it can be useful to write groups in terms of *generators* and *relations*. For instance, for the "quotient of $SL_2(\mathbb{Z})$ by $\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ",

$$PSL_2(\mathbb{Z}) = \langle S, R \mid S^2 = 1 = R^3 \rangle \text{ where } \begin{cases} S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ R = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} = S \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{cases}$$

says that the elements of $PSL_2(\mathbb{Z})$ are arbitrary "words" in *S* and *R* (and their inverses) subject only to the two relations written. For the dihedral group, we have

 $D_n = \langle r, h \mid \text{relations are a HW exercise!} \rangle$

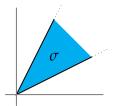
where *r* is counterclockwise rotation by $\frac{2\pi}{n}$ and *h* is a choice of reflection. We have also shown that \mathfrak{S}_n is *generated* by transpositions.

(iii) Monoids that are not groups:

• $(\mathbb{N}, +, 0), (\mathbb{Z}_{>0}, \bullet, 1), \text{ or } (\mathbb{Z} \setminus \{0\}, \bullet, 1).$

18

- $(\mathscr{P}(S), \cup, \emptyset)$ for any nonempty set *S*.
- $(\sigma, +, (0, 0))$ where σ is a cone in \mathbb{R}^2 :



• the monoid of integral ideals in an algebraic number ring (which we will meet later).

(iv) Direct products of (monoids or) groups: $G_1 \times G_2$, with group operation $(g_1, g_2) \cdot (h_1, h_2) := (g_1h_1, g_2h_2)$.

II.C.4. DEFINITION. A **subgroup** of *G* is a subset $H \subset G$ satisfying:

(i) $1_G \in H$;

(ii) [closure under multiplication] $x, y \in H \implies xy \in H$; and (iii) [closure under inversion] $x \in H \implies x^{-1} \in H$. We write $H \leq G$ (or H < G for a *proper* subgroup — i.e. $H \neq G$), and

endow *H* with the operation "•" inherited from *G* (and hence with a group structure).

II.C.5. EXAMPLES. (a) When $\alpha \in G$ is an element of a group, we will use the notation $\langle \alpha \rangle := \{\alpha^n \mid n \in \mathbb{Z}\}$ to denote the **cyclic subgroup** generated by α . (Though no relation is written, this can certainly be finite since some power of α may be 1 in *G*.) Cyclic subgroups are clearly abelian.

(b) In D_n , we have cyclic subgroups $\langle r \rangle < D_n$ (resp. $\langle h \rangle$) of order n (resp. 2). In \mathbb{C}^* , $\langle e^{\frac{2\pi i}{n}} \rangle$ is the (cyclic) group of n^{th} roots of unity. We can intuitively think of $\langle e^{\frac{2\pi i}{n}} \rangle$ and $\langle r \rangle$ as copies of $(\mathbb{Z}_n, +, \bar{0})$ embedded in \mathbb{C}^* and D_n , but we'll need to employ homomorphisms and isomorphisms to state this properly.)

(c) Intersections of subgroups are again subgroups: given $H, K \leq G$, we have $H \cap K \leq G$. (Why?)

(d) Generalizing (a), we can consider subgroups generated by a *subset* $S \subset G$, denoted $\langle S \rangle \leq G$. There are three equivalent definitions of this: as the smallest subgroup of *G* containing *S*; as the intersection of all subgroups containing *S*; or as all products of (powers of) elements of *S* and their inverses.

(e) The **centralizer** of a subset $S \subset G$ is defined by

$$C_G(S) := \{g \in G \mid gs = sg \; (\forall s \in S)\} \le G.$$

(To see that it is a subgroup, rewrite the condition in the braces as $sgs^{-1} = g$. If also $sg's^{-1} = g'$, then $s(gg')s^{-1} = (sgs^{-1})(sg's^{-1}) = gg'$, and $sg^{-1}s^{-1} = (sgs^{-1})^{-1} = g^{-1}$.) In particular, we write $C_G(a) := C_G(\{a\})$ for the centralizer of one element, and $C(G) := C_G(G)$ for the **center** of *G*. (Often "*C*" is written "*Z*" — this is the German heritage.)

(f) The cone in II.C.3(iii) is a submonoid of \mathbb{R}^2 .

(g) A submonoid of \mathfrak{T}_X is called a *monoid of transformations* of X. A subgroup of \mathfrak{S}_X is a *group of permutations* of X. Here is an interesting example.

Define $\mathfrak{A}_n \subset \mathfrak{S}_n$ by

$$\mathfrak{A}_n := \{ \alpha \in \mathfrak{S}_n \mid \alpha \text{ is even} \} = \{ \alpha \in \mathfrak{S}_n \mid \operatorname{sgn}(\alpha) = 1 \}.$$

We claim that, since sgn is a homomorphism, this is a subgroup: indeed, $1 \in \mathfrak{A}_n$; and given $\alpha, \beta \in \mathfrak{A}_n$,

$$\operatorname{sgn}(\alpha) = 1 = \operatorname{sgn}(\beta) \implies \begin{cases} \operatorname{sgn}(\alpha\beta) = \operatorname{sgn}(\alpha)\operatorname{sgn}(\beta) = 1\\ \operatorname{sgn}(\alpha^{-1}) = \operatorname{sgn}(\alpha)^{-1} = 1 \end{cases}$$

so that (ii), (iii) in II.C.4 hold. This subgroup $\mathfrak{A}_n \leq \mathfrak{S}_n$ is called the **alternating group**.

II.C.6. PROPOSITION. If $n \ge 3$, \mathfrak{A}_n is generated by 3-cycles.

PROOF. $\alpha \in \mathfrak{A}_n \implies \alpha$ is a product of an even number of transpositions. We can group these into pairs of distinct transpositions, viz. $\alpha = (\tau_1 \tau_2) \cdots (\tau_{2q-1} \tau_{2q})$. For a pair $\tau \tau'$, if the transpositions are *not* disjoint, write

$$(ij)(ik) = (ikj);$$

while if they are disjoint, write

$$(ij)(k\ell) = (ij)\underbrace{(jk)(jk)}_{1}(k\ell) = (ijk)(jkl).$$

This recasts α as a product of 3-cycles. (That, conversely, all 3-cycles belong to \mathfrak{A}_n is clear from the first displayed formula.)