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II.C. Groups and subgroups

Some further simple properties follow from the defining proper-
ties:

II.C.1. PROPOSITION. Let G be a group, and a, b, x ∈ G.
(a) The cancellation laws hold: xa = xb (or ax = bx) =⇒ a = b.
(b) The inverse of x is unique, and (x−1)−1 = x.
(c) (an)m = anm, aman = am+n [laws of exponents]
(d) If a and b commute (ab = ba), then (ab)n = anbn.

PROOF. (a) Multiply on the left (resp. right) by x−1.
(b) If x′x = 1 = xx′ and x′′x = 1 = xx′′, then

x′′ = x′′1 = x′′xx′ = 1x′ = x′.

(c) Clear from the definition: an = a · · · a (n times).
(d) If a commutes with b, it commutes with powers of b. Now induce
on n: (ab)n = (ab)n−1ab = an−1bn−1ab = an−1abn−1b = anbn. �

II.C.2. REMARK. (i) ab = ba is equivalent to the triviality of the
commutator [a, b] := a−1b−1ab. (In algebra, an element being trvial
means it’s the identity element.)
(ii) For monoids: (a) is false, (c) and (d) hold. For those elements
of the monoid that have a (two-sided) inverse, (b) is true. (But those
elements form a group, so this doesn’t say much...)

II.C.3. EXAMPLES. (i) Abelian groups:

• (A,+, 0) where A = Z, Q, R, C.
• (V,+,~0) where V is a vector space.
• (Zn,+, 0̄) where Zn = Z/≡

(n)
= integers mod n.

• (Z∗n, •, 1̄) where Z∗n ⊂ Zn is the subset of elements possessing a
multiplicative inverse: b̄ ∈ Zn such that āb̄(= ab) = 1̄.
• (A∗, •, 1) where A∗ = Q∗, R∗, C∗ (here Q∗ = Q \ {0} etc.).
• ({1,−1}, •, 1), and more generally ({e 2πik

n }n−1
k=0 , •, 1).

• rotational symmetries of the (regular) n-gon.

Notes: (a) Z∗n = {ā | (a, n) = 1}, since (by I.B.4) (a, n) = 1 ⇐⇒
∃b, k ∈ Z with ab + nk = 1 ⇐⇒ ∃b such that ab = 1̄.
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(b) Zn is an example of a cyclic group, i.e. a group on one gener-
ator: the notation

Zn = 〈1̄ | n · 1̄ = 0̄〉
means that the elements comprise all of the “powers” 0̄, 1̄, 1̄ + 1̄, 1̄ +
1̄ + 1̄, etc. of the generator 1̄, subject to the relation shown (n · 1̄ =

1̄ + · · · + 1̄ [n times] = 0̄). Z = 〈1〉 is also a cyclic group (with no
relation), but (unlike Zn) an infinite one.

(ii) Non-abelian groups:

• Sn = nth symmetric group, for n ≥ 3.
• Dn = nth dihedral group, for n ≥ 3: its elements comprise the n

rotational and n reflectional symmetries of a regular n-gon.
• GLn(A) general linear group, for n ≥ 2 (and A = Q, R, C): ele-

ments are invertible n× n matrices with entries in A.
• SL2(Z) (integer 2× 2 matrices with determinant 1) and other “arith-

metic groups”.

Notes: As suggested in (i), it can be useful to write groups in terms
of generators and relations. For instance, for the “quotient of SL2(Z)

by ±
(

1 0
0 1

)
”,

PSL2(Z) = 〈S, R | S2 = 1 = R3〉 where


S =

(
0 −1

1 0

)

R =

(
0 −1

1 1

)
= S ·

(
1 1

0 1

)

says that the elements of PSL2(Z) are arbitrary “words” in S and R
(and their inverses) subject only to the two relations written. For the
dihedral group, we have

Dn = 〈r, h | relations are a HW exercise!〉

where r is counterclockwise rotation by 2π
n and h is a choice of reflec-

tion. We have also shown that Sn is generated by transpositions.

(iii) Monoids that are not groups:

• (N,+, 0), (Z>0, •, 1), or (Z\{0}, •, 1).
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• (P(S),∪, ∅) for any nonempty set S.
• (σ,+, (0, 0)) where σ is a cone in R2:

σ

• the monoid of integral ideals in an algebraic number ring (which
we will meet later).

(iv) Direct products of (monoids or) groups: G1 × G2, with group
operation (g1, g2) · (h1, h2) := (g1h1, g2h2).

II.C.4. DEFINITION. A subgroup of G is a subset H ⊂ G satisfy-
ing:
(i) 1G ∈ H;
(ii) [closure under multiplication] x, y ∈ H =⇒ xy ∈ H; and
(iii) [closure under inversion] x ∈ H =⇒ x−1 ∈ H.
We write H ≤ G (or H < G for a proper subgroup — i.e. H 6= G), and
endow H with the operation “•” inherited from G (and hence with a
group structure).

II.C.5. EXAMPLES. (a) When α ∈ G is an element of a group,
we will use the notation 〈α〉 := {αn | n ∈ Z} to denote the cyclic
subgroup generated by α. (Though no relation is written, this can
certainly be finite since some power of α may be 1 in G.) Cyclic sub-
groups are clearly abelian.

(b) In Dn, we have cyclic subgroups 〈r〉 < Dn (resp. 〈h〉) of order n
(resp. 2). In C∗, 〈e 2πi

n 〉 is the (cyclic) group of nth roots of unity. We
can intuitively think of 〈e 2πi

n 〉 and 〈r〉 as copies of (Zn,+, 0̄) embed-
ded in C∗ and Dn, but we’ll need to employ homomorphisms and
isomorphisms to state this properly.)
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(c) Intersections of subgroups are again subgroups: given H, K ≤ G,
we have H ∩ K ≤ G. (Why?)

(d) Generalizing (a), we can consider subgroups generated by a sub-
set S ⊂ G, denoted 〈S〉 ≤ G. There are three equivalent definitions
of this: as the smallest subgroup of G containing S; as the intersec-
tion of all subgroups containing S; or as all products of (powers of)
elements of S and their inverses.

(e) The centralizer of a subset S ⊂ G is defined by

CG(S) := {g ∈ G | gs = sg (∀s ∈ S)} ≤ G.

(To see that it is a subgroup, rewrite the condition in the braces as
sgs−1 = g. If also sg′s−1 = g′, then s(gg′)s−1 = (sgs−1)(sg′s−1) =

gg′, and sg−1s−1 = (sgs−1)−1 = g−1.) In particular, we write CG(a) :=
CG({a}) for the centralizer of one element, and C(G) := CG(G) for
the center of G. (Often “C” is written “Z” — this is the German her-
itage.)

(f) The cone in II.C.3(iii) is a submonoid of R2.

(g) A submonoid of TX is called a monoid of transformations of X. A
subgroup of SX is a group of permutations of X. Here is an interesting
example.

Define An ⊂ Sn by

An := {α ∈ Sn | α is even} = {α ∈ Sn | sgn(α) = 1}.

We claim that, since sgn is a homomorphism, this is a subgroup:
indeed, 1 ∈ An; and given α, β ∈ An,

sgn(α) = 1 = sgn(β) =⇒
{

sgn(αβ) = sgn(α)sgn(β) = 1
sgn(α−1) = sgn(α)−1 = 1

so that (ii), (iii) in II.C.4 hold. This subgroup An ≤ Sn is called the
alternating group.

II.C.6. PROPOSITION. If n ≥ 3, An is generated by 3-cycles.
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PROOF. α ∈ An =⇒ α is a product of an even number of trans-
positions. We can group these into pairs of distinct transpositions,
viz. α = (τ1τ2) · · · (τ2q−1τ2q). For a pair ττ′, if the transpositions are
not disjoint, write

(ij)(ik) = (ikj);

while if they are disjoint, write

(ij)(k`) = (ij)(jk)(jk)︸ ︷︷ ︸
1

(k`) = (ijk)(jkl).

This recasts α as a product of 3-cycles. (That, conversely, all 3-cycles
belong to An is clear from the first displayed formula.) �


