II.D. Cosets and Lagrange's theorem

II.D.1. DEFINITION. The **order** of a group *G* is |G|, its order as a set. The **order** of an element $a \in G$ is $|\langle a \rangle|$, the order of the cyclic subgroup it generates.

To determine the relation between these orders (in the finite case), we consider more generally |H| for $H \leq G$ and introduce (left) **cosets**

$$aH := \{ah \mid h \in H\} \subset G.$$

These are *not* subgroups.

II.D.2. PROPOSITION. *Distinct cosets are disjoint and have the same number of elements.*

PROOF. First, we claim that

$$(\text{II.D.3}) aH = bH \iff b^{-1}a \in H \iff a \in bH.$$

The second "iff" is clear. To see the first, write

$$b^{-1}a \in H \iff \forall h \in H, \ b^{-1}ah =: h' \in H$$

 $\iff \forall h \in H, \ ah = bh' \text{ for some } h' \in H$
 $\iff aH \subset bH,$

and similarly

$$bh \subset aH \iff a^{-1}b \in H \ (\iff b^{-1}a \in H \text{ since } (a^{-1}b)^{-1} = b^{-1}a).$$

So if $\alpha \in aH$ and $aH \neq bH$, then (by (II.D.3)) $\alpha H = aH \neq bH$, hence (again by (II.D.3)) $\alpha \notin bH$; and we conclude that $aH \cap bH = \emptyset$. Finally, the map (of sets) $H \rightarrow aH$ sending $h \mapsto ah$ is a bijection by the cancellation law II.C.1(a).

Notice that what we have established is that

the left cosets are the partition of G formed by the equivalence relation $a \equiv b \iff b^{-1}a \in H$.

II.D.4. LAGRANGE'S THEOREM. For H < G with $|G| < \infty$, we have |H|||G|. In particular, the order of any $a \in G$ divides G.

II.D.5. DEFINITION. $[G:H] := \frac{|G|}{|H|} \in \mathbb{N}$ is called the **index** of *H* in *G*, and is the number of cosets (as will be clear from the next proof).

PROOF OF II.D.4. We can write

$$G = a_1 H \amalg \cdots \amalg a_r H$$

as a disjoint union. (Why? Every *g* is in some coset, namely *gH*. Write $G = \bigcup_{g \in G} gH$ and strike out repeated cosets. Once there is no repetition, the remaining cosets are disjoint by Prop. II.D.2.) Moreover, we have that $|a_iH| = |1H| = |H|$ for all *i* (also by Prop. II.D.2). So $|G| = \sum_{i=1}^{r} |a_iH| = r|H|$.

II.D.6. EXAMPLES. (a) $G = \mathfrak{S}_3 > H = \langle (12) \rangle = \{1, (12)\}, (13)H = \{(13), (13)(12)\} = \{(13), (123)\}, \text{ and } (23)H = \{(23), (132)\}.$ Of course, [G:H] = 3.

(b) If we take $G = D_n > K = \langle r \rangle = \{1, r, r^2, ..., r^{n-1}\}$, the only other coset is $hK = \{h, hr, hr^2, ..., hr^{n-1}\}$; and [G:H] = 2.

(c) Suppose *p* is prime. Since $|D_p| = 2p$, the possible orders of elements are 1, 2, *p*, and 2*p* (though in fact, no element of order 2*p* exists).

Turning to consequences of Lagrange's Theorem, first it should be underscored why we call $|\langle a \rangle|$ the "order of *a*": consider the sequence of powers $1, a, a^2, ..., a^k$, with *k* the least power for which one has a repetition (i.e. $a^k \in \{1, a, a^2, ..., a^{k-1}\}$). Then multiplying $a^k = a^i$ by a^{-i} gives $a^{k-i} = 1$, contradicting the leastness of *k* unless i = 0. Hence $a^k = 1$, and $1, a, a^2, ..., a^{k-1}$ are *distinct*. Moreover, by the Division Algorithm we may write (with $0 \le r \le k$)

$$a^{m} = a^{kq+r} = (a^{k})^{q} a^{r} = a^{r} \in \{1, a, \dots, a^{k-1}\}$$

for any $m \in \mathbb{Z}$; and so $\langle a \rangle = \{1, a, a^2, \dots, a^{k-1}\} \implies |\langle a \rangle| = k$. Now we can deduce

II.D.7. COROLLARY. Given $a \in G$, with $|G| < \infty$, we have: (i) the smallest $k \in \mathbb{Z}_{>0}$ for which $a^k = 1$ divides |G|; and (ii) $a^{|G|} = 1$.

II. GROUPS

PROOF. (i) is immediate from Lagrange and the discussion above; and (ii) follows since $a^{|G|} = a^{[G:\langle a \rangle] \cdot |\langle a \rangle|} = (a^{\lfloor a \rangle \uparrow})^{[G:\langle a \rangle]} = 1.$

II.D.8. COROLLARY. If |G| = p is prime, the G is cyclic (hence also abelian).

PROOF. Let $a \in G \setminus \{1\}$. Since $|\langle a \rangle| > 1$ and $|\langle a \rangle| ||G| = p$, we must have $|\langle a \rangle| = p$. So *a* generates *G*.

Euler's *phi-function* $\phi(m)$ counts the number of integers between 0 and *m* which are relatively prime to *m*; that is, $\phi(m) = |\mathbb{Z}_m^*|$. So applying Corollary II.D.7(ii) to $G = \mathbb{Z}_m^*$ gives

II.D.9. EULER'S THEOREM. Let $m \ge 2$. In \mathbb{Z}_m^* , we have $\bar{a}^{\phi(m)} = \bar{1}$. (That is, $a^{\phi(m)} \equiv 1$ for any a with (a, m) = 1.)

A special case of this is *Fermat's little theorem*:

(II.D.10) $a^{p-1} \equiv 1 \text{ for } p \text{ prime.}$

II.D.11. EXAMPLE. Some subgroups of \mathfrak{S}_4 and their orders:

- $V = \{1, (12)(34), (13)(24), (14)(23)\}$ "Klein 4-group"; |V| = 4.
- D₄ < G₄: think of actions of symmetries of a square on the vertices (numbered 1, 2, 3, 4); |D₄| = 8.
- \mathfrak{A}_4 alternating group; $|\mathfrak{A}_4| = 12$.

To see the order of \mathfrak{A}_4 , recall that $|\mathfrak{S}_4| = 4! = 24$; it suffices to show that $[\mathfrak{S}_4:\mathfrak{A}_4] = 2$. This is true for *any n*, not just 4: multiplying by any transposition gives a bijection between \mathfrak{A}_n and $\mathfrak{S}_n \setminus \mathfrak{A}_n$.

Since the elements of *V* have sgn 1 (why?), we have $\mathfrak{S}_n > \mathfrak{A}_n > V$. These elements also arise from symmetries of the square (which ones?), and so $\mathfrak{S}_n > D_n > V$. All of this agrees with Lagrange, which also tells us that neither of \mathfrak{A}_4 and D_4 can contain the other.

II.D.12. DEFINITION. The **exponent** of a finite group *G* is

$$\exp(G) := \min\{e \in \mathbb{N} \mid g^e = 1 \; (\forall g \in G)\}$$

For example, $\exp(\mathfrak{S}_n) = \operatorname{lcm}[1, \dots, n]$. When n = 4 this is 12: the elements of \mathfrak{S}_4 have orders 1, 2, 3, and 4; so the smallest power that

24

makes *all* of them 1 is 12. There is *no* element of actual order 12. (You will check all of this in HW.) The next result says that we can blame this on the fact that \mathfrak{S}_4 is nonabelian:

II.D.13. PROPOSITION. Let G be finite abelian. Then there exists a $g \in G$ with order $\exp(G)$.

II.D.14. LEMMA. Let G be abelian. Then for all $g_1, g_2 \in G$,

$$(|\langle g_1 \rangle|, |\langle g_2 \rangle|) = 1 \implies |\langle g_1 g_2 \rangle| = |\langle g_1 \rangle||\langle g_2 \rangle|.$$

PROOF. As the intersection $\langle g_1 \rangle \cap \langle g_2 \rangle$ is a subgroup of both $\langle g_1 \rangle$ and $\langle g_2 \rangle$, its order divides them both, hence must be 1. Write o := $|\langle g_1 g_2 \rangle|$. Since *G* is abelian, $(g_1 g_2)^o = 1 \implies g_1^o g_2^o = 1 \implies$ $g_1^o = g_2^{-o} \in \langle g_1 \rangle \cap \langle g_2 \rangle = \{1\}$. Now $g_1^o = 1 = g_2^o$ means that $|\langle g_1 \rangle|$ and $|\langle g_2 \rangle|$ divide *o* (why?), and so their lcm — which in this case⁶ is just $|\langle g_1 \rangle||\langle g_2 \rangle|$ — must also divide *o*. Again using that *G* is abelian, we have $(g_1 g_2)^{|\langle g_1 \rangle||\langle g_2 \rangle|} = 1$, and it follows that *o* divides $|\langle g_1 \rangle||\langle g_2 \rangle|$. So they are equal.

PROOF OF II.D.13. Let *g* be an element of maximal order. Suppose $|\langle g \rangle| \neq \exp(G)$, i.e. that there exists $h \in G$ with $h^{|\langle g \rangle|} \neq 1$. Then $|\langle h \rangle|$ does not divide $|\langle g \rangle|$, and there exists a prime *p* with highest powers p^f resp. p^e dividing $|\langle h \rangle|$ resp. $|\langle g \rangle|$, such that f > e. Hence by II.D.14

$$\gamma := \underbrace{h^{|\langle h \rangle|/p^f}}_{\text{order } p^f} \cdot \underbrace{g^{p^e}}_{\text{order } \frac{|\langle g \rangle|}{p^e}} \text{ has order } p^{f-e} |\langle g \rangle| > |\langle g \rangle|,$$

in contradiction to the assumed maximality of $|\langle g \rangle|$.

II.D.15. COROLLARY. Let G be a finite group. Then

G is cyclic $\iff \exp(G) = |G|$ and *G* is abelian.

PROOF. (\implies) is clear: consider a generator of *G*. For (\iff), II.D.13 provides $g \in G$ with $|\langle g \rangle| = \exp(G) (= |G|)$. Conclude that $\langle g \rangle = G$.

⁶Recall that $lcm(a, b) \cdot gcd(a, b) = a \cdot b$.