II.D. Cosets and Lagrange's theorem

II.D.1. Definition. The order of a group G is $|G|$, its order as a set. The order of an element $a \in G$ is $|\langle a\rangle|$, the order of the cyclic subgroup it generates.

To determine the relation between these orders (in the finite case), we consider more generally $|H|$ for $H \leq G$ and introduce (left) cosets

$$
a H:=\{a h \mid h \in H\} \subset G .
$$

These are not subgroups.
II.D.2. Proposition. Distinct cosets are disjoint and have the same number of elements.

Proof. First, we claim that

$$
\begin{equation*}
a H=b H \quad \Longleftrightarrow b^{-1} a \in H \quad \Longleftrightarrow a \in b H \tag{II.D.3}
\end{equation*}
$$

The second "iff" is clear. To see the first, write

$$
\begin{aligned}
b^{-1} a \in H & \Longleftrightarrow \forall h \in H, b^{-1} a h=: h^{\prime} \in H \\
& \Longleftrightarrow \forall h \in H, a h=b h^{\prime} \text { for some } h^{\prime} \in H \\
& \Longleftrightarrow a H \subset b H
\end{aligned}
$$

and similarly

$$
b h \subset a H \Longleftrightarrow a^{-1} b \in H\left(\Longleftrightarrow b^{-1} a \in H \text { since }\left(a^{-1} b\right)^{-1}=b^{-1} a\right)
$$

So if $\alpha \in a H$ and $a H \neq b H$, then (by (II.D.3)) $\alpha H=a H \neq b H$, hence (again by (II.D.3)) $\alpha \notin b H$; and we conclude that $a H \cap b H=\varnothing$. Finally, the map (of sets) $H \rightarrow a H$ sending $h \mapsto a h$ is a bijection by the cancellation law II.C.1(a).

Notice that what we have established is that
the left cosets are the partition of G formed by the equivalence relation $a \equiv b \Longleftrightarrow b^{-1} a \in H$.
II.D.4. Lagrange's Theorem. For $H<G$ with $|G|<\infty$, we have $|H|||G|$. In particular, the order of any $a \in G$ divides G.
II.D.5. DEfinition. $[G: H]:=\frac{|G|}{|H|} \in \mathbb{N}$ is called the index of H in G, and is the number of cosets (as will be clear from the next proof).

Proof of II.D.4. We can write

$$
G=a_{1} H \amalg \cdots \amalg a_{r} H
$$

as a disjoint union. (Why? Every g is in some coset, namely $g H$. Write $G=\cup_{g \in G} g H$ and strike out repeated cosets. Once there is no repetition, the remaining cosets are disjoint by Prop. II.D.2.) Moreover, we have that $\left|a_{i} H\right|=|1 H|=|H|$ for all i (also by Prop. II.D.2). So $|G|=\sum_{i=1}^{r}\left|a_{i} H\right|=r|H|$.
II.D.6. ExAMPLES. (a) $G=\mathfrak{S}_{3}>H=\langle(12)\rangle=\{1,(12)\}$, (13) $H=$ $\{(13),(13)(12)\}=\{(13),(123)\}$, and $(23) H=\{(23),(132)\}$. Of course, $[G: H]=3$.
(b) If we take $G=D_{n}>K=\langle r\rangle=\left\{1, r, r^{2}, \ldots, r^{n-1}\right\}$, the only other coset is $h K=\left\{h, h r, h r^{2}, \ldots, h r^{h-1}\right\}$; and $[G: H]=2$.
(c) Suppose p is prime. Since $\left|D_{p}\right|=2 p$, the possible orders of elements are $1,2, p$, and $2 p$ (though in fact, no element of order $2 p$ exists).

Turning to consequences of Lagrange's Theorem, first it should be underscored why we call $|\langle a\rangle|$ the "order of a ": consider the sequence of powers $1, a, a^{2}, \ldots, a^{k}$, with k the least power for which one has a repetition (i.e. $a^{k} \in\left\{1, a, a^{2}, \ldots, a^{k-1}\right\}$). Then multiplying $a^{k}=a^{i}$ by a^{-i} gives $a^{k-i}=1$, contradicting the leastness of k unless $i=0$. Hence $a^{k}=1$, and $1, a, a^{2}, \ldots, a^{k-1}$ are distinct. Moreover, by the Division Algorithm we may write (with $0 \leq r \leq k$)

$$
a^{m}=a^{k q+r}=\left(a^{k^{k}}\right)^{q} a^{r}=a^{r} \in\left\{1, a, \ldots, a^{k-1}\right\}
$$

for any $m \in \mathbb{Z}$; and so $\langle a\rangle=\left\{1, a, a^{2}, \ldots, a^{k-1}\right\} \Longrightarrow|\langle a\rangle|=k$.
Now we can deduce
II.D.7. Corollary. Given $a \in G$, with $|G|<\infty$, we have: (i) the smallest $k \in \mathbb{Z}_{>0}$ for which $a^{k}=1$ divides $|G| ;$ and (ii) $a^{|G|}=1$.

PROOF. (i) is immediate from Lagrange and the discussion above; and (ii) follows since $a^{|G|}=a^{[G:\langle a\rangle] \cdot|\langle a\rangle|}=\left(a|\langle a\rangle|^{r}\right)^{1}[G:\langle a\rangle]=1$.
II.D.8. Corollary. If $|G|=p$ is prime, the G is cyclic (hence also abelian).

Proof. Let $a \in G \backslash\{1\}$. Since $|\langle a\rangle|>1$ and $|\langle a\rangle|||G|=p$, we must have $|\langle a\rangle|=p$. So a generates G.

Euler's phi-function $\phi(m)$ counts the number of integers between 0 and m which are relatively prime to m; that is, $\phi(m)=\left|\mathbb{Z}_{m}^{*}\right|$. So applying Corollary II.D.7(ii) to $G=\mathbb{Z}_{m}^{*}$ gives
II.D.9. EULER'S THEOREM. Let $m \geq 2$. In \mathbb{Z}_{m}^{*}, we have $\bar{a}^{\phi(m)}=\overline{1}$. (That is, $a^{\phi(m)} \underset{(m)}{\overline{=}} 1$ for any a with $(a, m)=1$.)

A special case of this is Fermat's little theorem:

$$
\begin{equation*}
a^{p-1} \underset{\overline{(p)}}{\equiv} \text { for } p \text { prime. } \tag{II.D.10}
\end{equation*}
$$

II.D.11. EXAMPLE. Some subgroups of \mathfrak{S}_{4} and their orders:

- $V=\{1,(12)(34),(13)(24),(14)(23)\}$ "Klein 4-group"; $|V|=4$.
- $D_{4}<\mathfrak{S}_{4}$: think of actions of symmetries of a square on the vertices (numbered 1,2,3,4); $\left|D_{4}\right|=8$.
- \mathfrak{A}_{4} alternating group; $\left|\mathfrak{A}_{4}\right|=12$.

To see the order of \mathfrak{A}_{4}, recall that $\left|\mathfrak{S}_{4}\right|=4!=24$; it suffices to show that $\left[\mathfrak{S}_{4}: \mathfrak{A}_{4}\right]=2$. This is true for any n, not just 4 : multiplying by any transposition gives a bijection between \mathfrak{A}_{n} and $\mathfrak{S}_{n} \backslash \mathfrak{A}_{n}$.

Since the elements of V have sgn 1 (why?), we have $\mathfrak{S}_{n}>\mathfrak{A}_{n}>$ V. These elements also arise from symmetries of the square (which ones?), and so $\mathfrak{S}_{n}>D_{n}>V$. All of this agrees with Lagrange, which also tells us that neither of \mathfrak{A}_{4} and D_{4} can contain the other.
II.D.12. Definition. The exponent of a finite group G is

$$
\exp (G):=\min \left\{e \in \mathbb{N} \mid g^{e}=1(\forall g \in G)\right\}
$$

For example, $\exp \left(\mathfrak{S}_{n}\right)=\operatorname{lcm}[1, \ldots, n]$. When $n=4$ this is 12 : the elements of \mathfrak{S}_{4} have orders $1,2,3$, and 4 ; so the smallest power that
makes all of them 1 is 12 . There is no element of actual order 12. (You will check all of this in HW.) The next result says that we can blame this on the fact that \mathfrak{S}_{4} is nonabelian:
II.D.13. Proposition. Let G be finite abelian. Then there exists a $g \in G$ with order $\exp (G)$.
II.D.14. LEMMA. Let G be abelian. Then for all $g_{1}, g_{2} \in G$,

$$
\left(\left|\left\langle g_{1}\right\rangle\right|,\left|\left\langle g_{2}\right\rangle\right|\right)=1 \Longrightarrow\left|\left\langle g_{1} g_{2}\right\rangle\right|=\left|\left\langle g_{1}\right\rangle\right|\left|\left\langle g_{2}\right\rangle\right| .
$$

PROOF. As the intersection $\left\langle g_{1}\right\rangle \cap\left\langle g_{2}\right\rangle$ is a subgroup of both $\left\langle g_{1}\right\rangle$ and $\left\langle g_{2}\right\rangle$, its order divides them both, hence must be 1. Write $o:=$ $\left|\left\langle g_{1} g_{2}\right\rangle\right|$. Since G is abelian, $\left(g_{1} g_{2}\right)^{o}=1 \Longrightarrow g_{1}^{o} g_{2}^{o}=1 \Longrightarrow$ $g_{1}^{o}=g_{2}^{-o} \in\left\langle g_{1}\right\rangle \cap\left\langle g_{2}\right\rangle=\{1\}$. Now $g_{1}^{o}=1=g_{2}^{o}$ means that $\left|\left\langle g_{1}\right\rangle\right|$ and $\left|\left\langle g_{2}\right\rangle\right|$ divide o (why?), and so their 1 cm - which in this case ${ }^{6}$ is just $\left|\left\langle g_{1}\right\rangle\right|\left|\left\langle g_{2}\right\rangle\right|$ - must also divide o. Again using that G is abelian, we have $\left(g_{1} g_{2}\right)^{\left|\left\langle g_{1}\right\rangle\right|\left|\left\langle g_{2}\right\rangle\right|}=1$, and it follows that o divides $\left|\left\langle g_{1}\right\rangle\right|\left|\left\langle g_{2}\right\rangle\right|$. So they are equal.

Proof Of II.D.13. Let g be an element of maximal order. Suppose $|\langle g\rangle| \neq \exp (G)$, i.e. that there exists $h \in G$ with $h^{|\langle g\rangle|} \neq 1$. Then $|\langle h\rangle|$ does not divide $|\langle g\rangle|$, and there exists a prime p with highest powers p^{f} resp. p^{e} dividing $|\langle h\rangle|$ resp. $|\langle g\rangle|$, such that $f>e$. Hence by II.D. 14

$$
\gamma:=\underbrace{h^{|\langle h\rangle| / p^{f}}}_{\text {order } p^{f}} \cdot \underbrace{g^{p^{e}}}_{\text {order } \frac{|\langle g\rangle|}{p^{e}}} \text { has order } p^{f-e}|\langle g\rangle|>|\langle g\rangle|
$$

in contradiction to the assumed maximality of $|\langle g\rangle|$.
II.D.15. Corollary. Let G be a finite group. Then
G is cyclic $\Longleftrightarrow \exp (G)=|G|$ and G is abelian.
Proof. (\Longrightarrow) is clear: consider a generator of G. For (\Longleftarrow), II.D. 13 provides $g \in G$ with $|\langle g\rangle|=\exp (G)(=|G|)$. Conclude that $\langle g\rangle=G$.

[^0]
[^0]: ${ }^{6}$ Recall that $\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a \cdot b$.

