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II.D. Cosets and Lagrange’s theorem

II.D.1. DEFINITION. The order of a group G is |G|, its order as a
set. The order of an element a ∈ G is |〈a〉|, the order of the cyclic
subgroup it generates.

To determine the relation between these orders (in the finite case),
we consider more generally |H| for H ≤ G and introduce (left) cosets

aH := {ah | h ∈ H} ⊂ G.

These are not subgroups.

II.D.2. PROPOSITION. Distinct cosets are disjoint and have the same
number of elements.

PROOF. First, we claim that

(II.D.3) aH = bH ⇐⇒ b−1a ∈ H ⇐⇒ a ∈ bH.

The second “iff” is clear. To see the first, write

b−1a ∈ H ⇐⇒ ∀h ∈ H, b−1ah =: h′ ∈ H

⇐⇒ ∀h ∈ H, ah = bh′ for some h′ ∈ H

⇐⇒ aH ⊂ bH,

and similarly

bh ⊂ aH ⇐⇒ a−1b ∈ H (⇐⇒ b−1a ∈ H since (a−1b)−1 = b−1a).

So if α ∈ aH and aH 6= bH, then (by (II.D.3)) αH = aH 6= bH, hence
(again by (II.D.3)) α /∈ bH; and we conclude that aH ∩ bH = ∅.
Finally, the map (of sets) H → aH sending h 7→ ah is a bijection by
the cancellation law II.C.1(a). �

Notice that what we have established is that

the left cosets are the partition of G formed by the
equivalence relation a ≡ b ⇐⇒ b−1a ∈ H.

II.D.4. LAGRANGE’S THEOREM. For H < G with |G| < ∞, we have
|H|
∣∣|G|. In particular, the order of any a ∈ G divides G.
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II.D.5. DEFINITION. [G:H] := |G|
|H| ∈N is called the index of H in

G, and is the number of cosets (as will be clear from the next proof).

PROOF OF II.D.4. We can write

G = a1H q · · · q arH

as a disjoint union. (Why? Every g is in some coset, namely gH.
Write G = ∪g∈GgH and strike out repeated cosets. Once there is no
repetition, the remaining cosets are disjoint by Prop. II.D.2.) More-
over, we have that |aiH| = |1H| = |H| for all i (also by Prop. II.D.2).
So |G| = ∑r

i=1 |aiH| = r|H|. �

II.D.6. EXAMPLES. (a) G = S3 > H = 〈(12)〉 = {1, (12)}, (13)H =

{(13), (13)(12)} = {(13), (123)}, and (23)H = {(23), (132)}. Of
course, [G:H] = 3.
(b) If we take G = Dn > K = 〈r〉 = {1, r, r2, . . . , rn−1}, the only other
coset is hK = {h, hr, hr2, . . . , hrn−1}; and [G:H] = 2.
(c) Suppose p is prime. Since |Dp| = 2p, the possible orders of el-
ements are 1, 2, p, and 2p (though in fact, no element of order 2p
exists).

Turning to consequences of Lagrange’s Theorem, first it should
be underscored why we call |〈a〉| the “order of a”: consider the se-
quence of powers 1, a, a2, . . . , ak, with k the least power for which
one has a repetition (i.e. ak ∈ {1, a, a2, . . . , ak−1}). Then multiplying
ak = ai by a−i gives ak−i = 1, contradicting the leastness of k unless
i = 0. Hence ak = 1, and 1, a, a2, . . . , ak−1 are distinct. Moreover, by
the Division Algorithm we may write (with 0 ≤ r ≤ k)

am = akq+r = (�
�7

1

ak)qar = ar ∈ {1, a, . . . , ak−1}

for any m ∈ Z; and so 〈a〉 = {1, a, a2, . . . , ak−1} =⇒ |〈a〉| = k.
Now we can deduce

II.D.7. COROLLARY. Given a ∈ G, with |G| < ∞, we have: (i) the
smallest k ∈ Z>0 for which ak = 1 divides |G|; and (ii) a|G| = 1.
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PROOF. (i) is immediate from Lagrange and the discussion above;

and (ii) follows since a|G| = a[G:〈a〉]·|〈a〉| = (��
�*1

a|〈a〉|)[G:〈a〉] = 1. �

II.D.8. COROLLARY. If |G| = p is prime, the G is cyclic (hence also
abelian).

PROOF. Let a ∈ G \ {1}. Since |〈a〉| > 1 and |〈a〉|
∣∣|G|=p, we

must have |〈a〉| = p. So a generates G. �

Euler’s phi-function φ(m) counts the number of integers between
0 and m which are relatively prime to m; that is, φ(m) = |Z∗m|. So
applying Corollary II.D.7(ii) to G = Z∗m gives

II.D.9. EULER’S THEOREM. Let m ≥ 2. In Z∗m, we have āφ(m) = 1̄.
(That is, aφ(m) ≡

(m)
1 for any a with (a, m) = 1.)

A special case of this is Fermat’s little theorem:

(II.D.10) ap−1 ≡
(p)

1 for p prime.

II.D.11. EXAMPLE. Some subgroups of S4 and their orders:

• V = {1, (12)(34), (13)(24), (14)(23)} “Klein 4-group”; |V| = 4.
• D4 < S4: think of actions of symmetries of a square on the ver-

tices (numbered 1, 2, 3, 4); |D4| = 8.
• A4 alternating group; |A4| = 12.

To see the order of A4, recall that |S4| = 4! = 24; it suffices to show
that [S4:A4] = 2. This is true for any n, not just 4: multiplying by any
transposition gives a bijection between An and Sn\An.

Since the elements of V have sgn 1 (why?), we have Sn > An >

V. These elements also arise from symmetries of the square (which
ones?), and so Sn > Dn > V. All of this agrees with Lagrange,
which also tells us that neither of A4 and D4 can contain the other.

II.D.12. DEFINITION. The exponent of a finite group G is

exp(G) := min{e ∈N | ge = 1 (∀g ∈ G)}.

For example, exp(Sn) = lcm[1, . . . , n]. When n = 4 this is 12: the
elements of S4 have orders 1, 2, 3, and 4; so the smallest power that
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makes all of them 1 is 12. There is no element of actual order 12. (You
will check all of this in HW.) The next result says that we can blame
this on the fact that S4 is nonabelian:

II.D.13. PROPOSITION. Let G be finite abelian. Then there exists a
g ∈ G with order exp(G).

II.D.14. LEMMA. Let G be abelian. Then for all g1, g2 ∈ G,

(|〈g1〉|, |〈g2〉|) = 1 =⇒ |〈g1g2〉| = |〈g1〉||〈g2〉|.

PROOF. As the intersection 〈g1〉 ∩ 〈g2〉 is a subgroup of both 〈g1〉
and 〈g2〉, its order divides them both, hence must be 1. Write o :=
|〈g1g2〉|. Since G is abelian, (g1g2)

o = 1 =⇒ go
1go

2 = 1 =⇒
go

1 = g−o
2 ∈ 〈g1〉 ∩ 〈g2〉 = {1}. Now go

1 = 1 = go
2 means that |〈g1〉|

and |〈g2〉| divide o (why?), and so their lcm — which in this case6 is
just |〈g1〉||〈g2〉|— must also divide o. Again using that G is abelian,
we have (g1g2)

|〈g1〉||〈g2〉| = 1, and it follows that o divides |〈g1〉||〈g2〉|.
So they are equal. �

PROOF OF II.D.13. Let g be an element of maximal order. Sup-
pose |〈g〉| 6= exp(G), i.e. that there exists h ∈ G with h|〈g〉| 6= 1. Then
|〈h〉| does not divide |〈g〉|, and there exists a prime p with highest
powers p f resp. pe dividing |〈h〉| resp. |〈g〉|, such that f > e. Hence
by II.D.14

γ := h|〈h〉|/p f︸ ︷︷ ︸
order p f

· gpe︸︷︷︸
order |〈g〉|pe

has order p f−e|〈g〉| > |〈g〉| ,

in contradiction to the assumed maximality of |〈g〉|. �

II.D.15. COROLLARY. Let G be a finite group. Then

G is cyclic ⇐⇒ exp(G)=|G| and G is abelian.

PROOF. ( =⇒ ) is clear: consider a generator of G. For (⇐= ),
II.D.13 provides g ∈ G with |〈g〉| = exp(G) (= |G|). Conclude that
〈g〉 = G. �

6Recall that lcm(a, b) · gcd(a, b) = a · b.


