22 II. GROUPS
IL.D. Cosets and Lagrange’s theorem

IL.D.1. DEFINITION. The order of a group G is |G|, its order as a
set. The order of an element a € G is |{a)|, the order of the cyclic
subgroup it generates.

To determine the relation between these orders (in the finite case),
we consider more generally |H| for H < G and introduce (left) cosets

aH :={ah |he H} C G.
These are not subgroups.

I1.D.2. PROPOSITION. Distinct cosets are disjoint and have the same
number of elements.

PROOE. First, we claim that
(IL.D.3) aH=bH <= blaeH <= acbH.
The second “iff” is clear. To see the first, write

blaeH < VheH blah=WeH
<= Vh € H, ah = bl forsomeh’ € H

<= aH C bH,

and similarly
bh CaH <= a b€ H (<= b 'ac Hsince (a 'b)"! =b 1a).

Soif « € aH and aH # bH, then (by (ILD.3)) «H = aH # bH, hence
(again by (IL.D.3)) « ¢ bH; and we conclude that aH N bH = @.
Finally, the map (of sets) H — aH sending h +— ah is a bijection by
the cancellation law I1.C.1(a). 0

Notice that what we have established is that

the left cosets are the partition of G formed by the
equivalence relation a = b <= b 'a € H.

I1.D.4. LAGRANGE’S THEOREM. For H < G with |G| < oo, we have
|H|||G|. In particular, the order of any a € G divides G.
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ILD.5. DEFINITION. [G:H] := |} € Nis called the index of H in
G, and is the number of cosets (as will be clear from the next proof).

PROOF OF I1.D.4. We can write
G=atHI---aH

as a disjoint union. (Why? Every ¢ is in some coset, namely gH.
Write G = UgecgH and strike out repeated cosets. Once there is no
repetition, the remaining cosets are disjoint by Prop. I1.D.2.) More-
over, we have that |a;H| = |1H| = |H| for all i (also by Prop. I1.D.2).
So |G| =Y, |a;H| = r|H]|. O

ILD.6. EXAMPLES. (a) G = &3 > H = ((12))
{(13),(13)(12)} = {(13),(123)}, and (23)H
course, [G:H| = 3.

(b) If we take G = D, > K = (r) = {1,r,7%,...,7""1}, the only other
cosetis hK = {h, hr,hr?,..., hr"~1}; and [G:H] = 2.
(c) Suppose p is prime. Since |D,| = 2p, the possible orders of el-

1,(12)}, (13)H =

= { ,
= {(23),(132)}. Of

ements are 1, 2, p, and 2p (though in fact, no element of order 2p
exists).

Turning to consequences of Lagrange’s Theorem, first it should

be underscored why we call |(a)| the “order of a”: consider the se-

2

quence of powers 1,a,a",.. .,ak, with k the least power for which

one has a repetition (i.e. a¥ € {1,a,4%,...,a""1}). Then multiplying
k—i

a* = a' by a~ gives a¥~ = 1, contradicting the leastness of k unless

i=0. Hence a* = 1,and 1,a,4?,...,a" !

are distinct. Moreover, by
the Division Algorithm we may write (with 0 <r < k)

1
a" = gkt = (/{)qar —a" € {l,a,...,a"1}

forany m € Z;and so (a) = {1,a,a?,...,d" 1} = |(a)| = k.
Now we can deduce

I.D.7. COROLLARY. Given a € G, with |G| < oo, we have: (i) the
smallest k € Z.~ for which a* = 1 divides |G|; and (ii) al®! = 1.
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PROOF. (i) isimmediate from Lagrange and the discussion above;
1
and (i) follows since a/Cl = 4lG:@][(@)] = (M[G’W” =1 O

ILD.8. COROLLARY. If |G| = p is prime, the G is cyclic (hence also
abelian).

PROOF. Let 2 € G\ {1}. Since |[(a)| > 1 and |(a)|||G|=p, we
must have |(a)| = p. So a generates G. O

Euler’s phi-function ¢(m) counts the number of integers between
0 and m which are relatively prime to m; that is, ¢(m) = |Z},|. So

*

applying Corollary IL.D.7(ii) to G = Z;, gives

I1.D.9. EULER’S THEOREM. Let m > 2. In Z%,, we have a?(™) = 1.
(That is, a?(™) = 1 for any a with (a,m) = 1.)

A special case of this is Fermat's little theorem:

(I1.D.10) aP~! = 1 for p prime.
IL.D.11. EXAMPLE. Some subgroups of &4 and their orders:

o V=1{1,(12)(34),(13)(24), (14)(23) } “Klein 4-group”; |V| = 4.

e Dy < B4: think of actions of symmetries of a square on the ver-
tices (numbered 1,2,3,4); |Dy| = 8.

e 2l alternating group; |24] = 12.

To see the order of 2y, recall that |S4| = 4! = 24; it suffices to show

that [S4:4] = 2. This is true for any n, not just 4: multiplying by any

transposition gives a bijection between 2, and &,,\,,.

Since the elements of V have sgn 1 (why?), we have &,, > 2, >
V. These elements also arise from symmetries of the square (which
ones?), and so &, > D, > V. All of this agrees with Lagrange,
which also tells us that neither of 24 and D, can contain the other.

I1.D.12. DEFINITION. The exponent of a finite group G is
exp(G) :=minfec N | ¢ =1 (Vg€ G)}.

For example, exp(&,) = lem(l,...,n]. When n = 4 this is 12: the
elements of &4 have orders 1, 2, 3, and 4; so the smallest power that
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makes all of them 1 is 12. There is no element of actual order 12. (You
will check all of this in HW.) The next result says that we can blame
this on the fact that &4 is nonabelian:

I1.D.13. PROPOSITION. Let G be finite abelian. Then there exists a
g € G with order exp(G).

I1.D.14. LEMMA. Let G be abelian. Then for all g1, g2 € G,

(gl [(&2))) =1 = [(g182)| = [{g1)[(82)]-

PROOF. As the intersection (g1) N (g2) is a subgroup of both (g1)
and (g7), its order divides them both, hence must be 1. Write 0 :=
1(g182)|. Since G is abelian, (§182)’ =1 = gjg) =1 =
80 = £3° € (1) N {g2) = {1}. Now g§ = 1 = g8 means that |(g1)|
and |(g2)| divide o (why?), and so their lem — which in this case® is
just |(g1)]|{(g2)| — must also divide 0. Again using that G is abelian,
we have (g1¢2)I8011(82)l = 1, and it follows that o divides | (g1)]](g2)|-
So they are equal. O

PROOF OF I1.D.13. Let g be an element of maximal order. Sup-
pose |(g)| # exp(G), i.e. that there exists h € G with 1l # 1. Then
|(h)| does not divide |(g)|, and there exists a prime p with highest
powers p/ resp. p¢ dividing |(h)| resp. |(g)|, such that f > e. Hence
by ILD.14

7= WO g7 has order p/ Y (g)] > 1(8)],

N——

f
order p order |<§%€>I

in contradiction to the assumed maximality of |(g)|. O
I1.D.15. COROLLARY. Let G be a finite group. Then
Giscyclic <= exp(G)=|G| and G is abelian.

PROOF. ( =) is clear: consider a generator of G. For ( <),
IL.D.13 provides g € G with |(g)| = exp(G) (= |G|). Conclude that
(¢) =G. O

®Recall that lcm(a, b) - ged(a,b) =a-b.



