II.E. Homomorphisms and isomorphisms

In §II.A it was mentioned that from the assumption

$$
\varphi(a b)=\varphi(a) \varphi(b)
$$

on the $\operatorname{map} \varphi: G \rightarrow H$ (i.e., the defining property of a homomorphism) follow other properties:

- $\varphi(1)=\varphi(1 \cdot 1)=\varphi(1) \varphi(1) \underset{\varphi(1)}{\stackrel{\text { cancel }}{\Rightarrow}} 1=\varphi(1)$
- $1=\varphi(1)=\varphi\left(x x^{-1}\right)=\varphi(x) \varphi\left(x^{-1}\right) \Longrightarrow \varphi\left(x^{-1}\right)=\varphi(x)^{-1}$
- $\varphi\left(x^{n}\right)=\varphi(x)^{n}$ etc.

You can also use a homomorphism to construct subgroups of G and H, called the kernel and image of φ :

- $\operatorname{ker}(\varphi):=\left\{g \in G \mid \varphi(g)=1_{H}\right\} \subset G$;
- $\operatorname{im}(\varphi):=\{h \in H \mid h=\varphi(g)$ for some $g \in G\} \subset H$.
(The image is also denoted $\varphi(G)$.)
II.E.1. Proposition. (i) $\operatorname{ker}(\varphi) \leq G$; and $($ ii) $\operatorname{im}(\varphi) \leq H$.

Proof. (i) $\varphi(g)=1=\varphi\left(g^{\prime}\right) \Longrightarrow \varphi\left(g g^{\prime}\right)=\varphi(g) \varphi\left(g^{\prime}\right)=1$.
(ii) $h=\varphi(g), h^{\prime}=\varphi\left(g^{\prime}\right) \Longrightarrow h h^{\prime}=\varphi(g) \varphi\left(g^{\prime}\right)=\varphi\left(g g^{\prime}\right)$.
II.E.2. EXAMPLES. (a) $\mathfrak{A}_{n}=\operatorname{ker}\left\{\operatorname{sgn}: \mathfrak{S}_{n} \rightarrow\{1,-1\}\right\}$.
(b) $S L_{n}(\mathbb{C})=\operatorname{ker}\left\{\operatorname{det}: G L_{n}(\mathbb{C}) \rightarrow \mathbb{C}^{*}\right\}$.
(c) $\left\langle e^{\frac{2 \pi \mathrm{i}}{n}}\right\rangle=\operatorname{im}\left\{\xi_{n}: \mathbb{Z}_{n} \rightarrow \mathbb{C}^{*}\right\}$, where ξ_{n} sends $\bar{a} \mapsto e^{\frac{2 \pi \mathrm{i} a}{n}}$.
(d) $\langle r\rangle=\operatorname{im}\left\{\varphi_{n}: \mathbb{Z}_{n} \rightarrow D_{n}\right\}$, where φ_{n} sends $\bar{a} \mapsto r^{a}$.
(e) $\Gamma(N):=\operatorname{ker}\left\{S L_{2}(\mathbb{Z}) \rightarrow S L_{2}(\mathbb{Z} / N \mathbb{Z})\right\}$. (The target of the map means 2×2 matrices with entries in \mathbb{Z}_{m} and determinant $\overline{1}$. The kernel can be thought of as integer matrices with determinant 1 and equivalent to the identity matrix $\bmod N$, entry by entry.)
(f) $2 \pi \mathbb{Z}=\operatorname{ker}\left\{(\mathbb{R},+, 0) \rightarrow\left(\mathbb{C}^{*}, \bullet, 1\right)\right\}$, where the homomorphism sends $\theta \mapsto e^{\mathrm{i} \theta}$.
$(\mathrm{g}) C(G)=\operatorname{ker}\{\imath: G \rightarrow \operatorname{Aut}(G)\}$. Here $\operatorname{Aut}(G)$ is the group of automorphisms of G, or isomorphisms ${ }^{7}$ from G to itself, under the binary operation of composing maps. The homomorphism \imath sends $g \mapsto \imath_{g}$,

[^0]where $\tau_{g}(x):=g x g^{-1}$ is the automorphism called conjugation by g. (These are also written Ψ and Ψ_{g}.) If G is abelian, then $C(G)=G$ and all l_{g} are just the identity map (sending $g \mapsto g$).

Note that if G is a cyclic group $\langle\alpha\rangle$, a homomorphism $\varphi: G \rightarrow H$ is completely determined by the image of α. (Why?)
II.E.3. Definition. A homomorphism $\varphi: G \rightarrow H$ is called

- trivial if $\operatorname{im}(\varphi)=\{1\}$ (or $\{0\}$ if the operation is " + "); equivalently, $\operatorname{ker}(\varphi)=G$.
- surjective (or "onto"), and written $G \rightarrow H$, if $\operatorname{im}(\varphi)=H$; an example is the reduction $\bmod n$ homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}_{n}$ sending $a \mapsto \bar{a}$.
- injective (or "1-to-1"), and written $G \hookrightarrow H$, if $\operatorname{ker}(\varphi)=\{1\}$ (or $\{0\}$ if the operation is " + "); an example is the $\operatorname{map} \mathbb{Z}_{n} \hookrightarrow \mathbb{Z}_{m n}$ sending $\bar{a} \mapsto \overline{m a}$.
- an isomorphism, and written $G \xlongequal{\cong} H$, if it is both injective and surjective; the conjugation map $\imath_{g}: G \xlongequal{\cong} G$ (for any $g \in G$) is an example, as is the identity map. Another would be the map $\mathbb{Z}_{n} \rightarrow\left\langle e^{\frac{2 \pi \mathrm{i}}{n}}\right\rangle$ sending $\bar{a} \mapsto e^{\frac{2 \pi \mathrm{i} a}{n}}$.

On one hand, a non-identity automorphism of a group (like conjugation by a non-central element in a non-abelian group) should be thought of as a structural symmetry. On the other, given two groups G and H, a priori differently presented and/or labeled, the existence of an isomorphism φ between them reveals that they are really the same group. We then say that G and H are isomorphic. Along these lines there is the
II.E.4. Proposition. If $G \cong H$ then G, H have:
(a) the same order (if finite);
(b) the same orders of subgroups and elements; and
(c) are either both abelian or both nonabelian. ${ }^{8}$

[^1]We will first prove two lemmas. The start with, we should justify calling injective homomorphisms "1-to-1".
II.E.5. LEMMA. For a homomorphism $\varphi: G \rightarrow H$, the following are equivalent:
(A) φ injective in the sense of II.E.3;
(B) φ is 1-to-1, i.e. injective in the set-theoretic sense; and
(C) φ is an isomorphism onto its image.

Proof. $(\mathrm{A}) \Longleftrightarrow(\mathrm{C})$: clear, since φ is always "surjective onto its image".
$(\mathrm{A}) \Longrightarrow(\mathrm{B})$: suppose $\varphi(x)=\varphi(y)$. Then $1=\varphi(y) \varphi(x)^{-1}=\varphi\left(y x^{-1}\right)$; since the kernel is trivial, this gives $y x^{-1}=1$ hence $x=y$.
$(\mathrm{B}) \Longrightarrow(\mathrm{A}): \varphi\left(1_{G}\right)=1_{H}$; since φ is 1-to-1, no other element of G goes to 1_{H}, so $\operatorname{ker}(\varphi)=\varphi^{-1}\left(1_{H}\right)=\{1\}$.

Part (ii) of the next lemma is useful for producing isomorphisms.
II.E.6. LEMMA. (i) Any $\varphi: G \stackrel{\cong}{\rightrightarrows} H$ is invertible: " $\varphi^{-1}: H \rightarrow G^{\prime \prime}$ is well-defined, a homomorphism and an isomorphism, with $\varphi \circ \varphi^{-1}=\mathrm{id}_{H}$ and $\varphi^{-1} \circ \varphi=\mathrm{id}_{G}$.
(ii) If homomorphisms $\varphi: G \rightarrow H$ and $\eta: H \rightarrow G$ are such that $\varphi \circ \eta=$ id_{H} and $\eta \circ \varphi=\mathrm{id}_{G}$, then φ and η are isomorphisms.

Proof. (i) Let $h \in H$. Since φ is 1-to- 1 [resp. onto], $\varphi^{-1}(h)$ is ≤ 1 [resp. ≥ 1] element; i.e. $\varphi^{-1}(h) \in G$ is exactly one element. Writing $h=\varphi(g)$ and $h^{\prime}=\varphi\left(g^{\prime}\right)$, applying φ^{-1} to $\varphi(g) \varphi\left(g^{\prime}\right)=\varphi\left(g g^{\prime}\right)$ gives $\varphi^{-1}\left(h h^{\prime}\right)=g g^{\prime}=\varphi^{-1}(h) \varphi^{-1}\left(h^{\prime}\right)$. Finally, since φ is everywhere defined (on G) [resp. well-defined], φ^{-1} is onto [resp. 1-to-1].
(ii) We check this for φ. For surjectivity: given $h \in H$, we have $h=\operatorname{id}_{\mathrm{H}}(h)=\varphi(\eta(h))$. For injectivity: if $\varphi(g)=1$, then $1=\eta(1)=$ $\eta(\varphi(g))=\operatorname{id}_{G}(g)=g$.

Proof OF II.E.4. We have some $\varphi: G \stackrel{\cong}{\rightrightarrows} H$.
(a) By II.E.6(i), φ is a bijection of sets; so the orders are the same.
(b) φ is a bijection, and for any $G^{\prime} \leq G$, we have $\varphi\left(G^{\prime}\right) \leq H$ (by II.E.1(ii)) and $G^{\prime} \cong \varphi\left(G^{\prime}\right)$ (given by restricting φ to G^{\prime}). Similarly,
taking $H^{\prime} \leq H, \varphi^{-1}\left(H^{\prime}\right) \leq G$ and $H^{\prime} \cong \varphi^{-1}\left(H^{\prime}\right)$. So orders of subgroups (in particular, the cyclic groups generated by elements) are the same.
(c) Applying φ to $x y=y x$ yields $\varphi(x) \varphi(y)=\varphi(y) \varphi(x)$; and any pair of elements of H can be written as $\varphi(x), \varphi(y)$. So G abelian $\Longrightarrow H$ abelian; and the converse holds by using φ^{-1} in the same way.

Here is a very useful way to construct isomorphisms for finite groups (which saves work involved in II.E.6(ii)).
II.E.7. PROPOSITION. If $\varphi: G \rightarrow H$ is an injective homomorphism and $|G|=|H|<\infty$, then φ is an isomorphism.

PROOF. To get surjectivity, apply the "pigeonhole principle": you have a map from an n-element set G to an n-element set H; no 2 elements of G go to the same element of H, and so every element of H gets "hit".

The contrapositive of II.E. 4 says: if any of the structural properties (a), (b), (c) of 2 groups differ, they cannot be isomorphic. This will be our first main application - telling groups apart (cf. (ii), (iii), (iv) below). But let's start with an isomorphism:
II.E.8. EXAMPLES. (i) The symmetries of a regular n-gon yield permutations of the vertices (numbered 1 to n), which produces a homomorphism $\varphi: D_{n} \rightarrow \mathfrak{S}_{n}$. If vertices stay in place then clearly there is no motion, and so φ is injective. (By II.E.5(c), you can think of this as saying: there is $(\forall n)$ a subgroup of \mathfrak{S}_{n} isomorphic to D_{n}.) For $n=3,\left|D_{3}\right|=6=\left|\mathfrak{S}_{3}\right| \Longrightarrow \varphi$ is an isomorphism (by II.E.7); numbering the vertices of the triangle counterclockwise, with " 1 " fixed by the reflection h, we have $\varphi(h)=(23)$ and $\varphi(r)=(123)$.
(ii) $\left|D_{6}\right|=12=\left|\mathfrak{A}_{4}\right|$. An isomorphism doesn't "feel" natural, so instinct tells us to look for a difference in structure: D_{6} has 2 elements of order 3: r^{2} and r^{4}; while \mathfrak{A}_{4} has 8 elements of order 3: the 83 -cycles (123), (132), (124), (142), (134), (143), (234), (243). So $D_{6} \neq \mathfrak{A}_{4}$.
(iii) $\left|D_{12}\right|=\left|\mathfrak{S}_{4}\right|=\left|\mathbb{Z}_{24}\right|=24 . \mathbb{Z}_{24}$ is abelian; the other two are not: in $\mathfrak{S}_{4},(12)(23)=(123) \neq(132)=(23)(12)$, while in D_{12}, $h r=r^{-1} h \neq r h$. So $\mathbb{Z}_{24} \nsubseteq D_{12}, \mathfrak{S}_{4}$.

Now write out the cycle types for \mathfrak{S}_{4} :

form of decomp. into disjoint cycles	order	how many such elements?
$(\cdots \cdot)$	4	6
$(\cdots)(\cdot)$	3	8
$(\cdots)(\cdot \cdot)$	2	3
$(\cdots)(\cdot)(\cdot)$	2	6
$(\cdot)(\cdot)(\cdot)(\cdot)$	1	1

The last row is just the identity element; the two rows above it indicate that there are $3+6=9$ elements of order 2 in \mathfrak{S}_{4}. Now D_{12} has 13 elements of order 2: the 12 reflections $\left\{h r^{a} \mid a=0,1, \ldots, 11\right\}$, and one 180°-rotation r^{6}. So $D_{12} \not \approx \mathfrak{S}_{4}$.
(iv) $|V|=\left|\mathbb{Z}_{4}\right|=4$. The orders of elements are $1,2,2,2$ for V, and $1,4,2,4$ for \mathbb{Z}_{4}. So $V \nsubseteq \mathbb{Z}_{4}$.
(v) All cyclic groups of order N are isomorphic to $\left(\mathbb{Z}_{N},+\right)$. Just write down the homomorphism from $\mathbb{Z}_{N} \rightarrow\langle\alpha\rangle$ sending $\overline{1} \mapsto \alpha$ hence $\bar{m} \mapsto \alpha^{m}$.

We now formalize a construction touched on in II.C.3(iv):
II.E.9. Definition. The direct product of two groups H and K is (a group)

$$
H \times K:=\{(h, k) \mid h \in H, k \in K\}
$$

with $(h, k) \cdot\left(h^{\prime}, k^{\prime}\right):=\left(h h^{\prime}, k k^{\prime}\right),(h, k)^{-1}=\left(h^{-1}, k^{-1}\right)$, and $1_{H \times K}=$ $\left(1_{H}, 1_{K}\right)$. [If H, K are abelian, we will frequently write this additively: $(h, k)+\left(h^{\prime}, k^{\prime}\right)=\left(h+h^{\prime}, k+k^{\prime}\right),-(h, k)=(-h,-k)$, and $0_{H \times K}=$ $\left(0_{H}, 0_{K}\right)$.]
II.E.10. Alternate Definition. A group P is a direct product of groups H and K if there exist homomorphisms $p_{H}: P \rightarrow H$ and
$p_{K}: P \rightarrow K$ such that for all groups G and homomorphisms $f_{H}: G \rightarrow H$ and $f_{K}: G \rightarrow K$, there exists a unique homomorphism $f: G \rightarrow P$ which makes

commute.

This kind of characterization of direct products is called universal, and the italicized statement their universal property. In the HW, you will check that $P=H \times K$ (from II.E.9) indeed is a direct product in this sense (of II.E.10).

Now clearly $|H \times K|=|H| \cdot|K|$, which brings us to the
II.E.11. Direct Product Theorem. Let $H, K \leq G$. Put $H K:=$ $\{h k \mid h \in H, k \in K\}$. (This is not necessarily a group!) Consider the possible assumptions

$$
\begin{aligned}
& \text { (A) } h k=k h \quad(\forall h \in H, k \in K) \\
& \text { (B) } H \cap K=\left\{1_{G}\right\} .
\end{aligned}
$$

Then
(i) $(\mathrm{A}) \Longrightarrow H K \leq G$
(ii) $(\mathrm{A})+(\mathrm{B}) \Longrightarrow H K \cong H \times K$
(iii) $(\mathrm{A})+(\mathrm{B})+H K=G \Longrightarrow G \cong H \times K$
(iv) $(\mathrm{A})+(\mathrm{B})+|G|<\infty+|H||K|=|G| \Longrightarrow G \cong H \times K$.

Proof. (i) We only need to check that $1 \in H K,(h k)\left(h^{\prime} k^{\prime}\right)=$ $h h^{\prime} k k^{\prime} \in H K\left(\right.$ by (A)), and $(h k)^{-1}=(k h)^{-1}=h^{-1} k^{-1} \in H K$ (again by (A)).
(ii) Define $\varphi: H \times K \rightarrow H K$ by $\varphi(h, k):=h k$. This is a homomorphism since $\varphi(h, k) \varphi\left(h^{\prime}, k^{\prime}\right)=h k h^{\prime} k^{\prime}=h h^{\prime} k k^{\prime}=\varphi\left(h h^{\prime}, k k^{\prime}\right)=$ $\varphi\left((h, k) \cdot\left(h^{\prime}, k^{\prime}\right)\right)$ (by (A)), injective because $1=\varphi(h, k)=h k \Longrightarrow$ $k^{-1}=h \in H \cap K=\{1\} \Longrightarrow(h, k)=(1,1)$ (by (B)), and obviously surjective by the description of $H K$.
(iii) is clear from (ii).
(iv) By (i), $G \geq H K$, so

$$
|G| \geq|H K| \stackrel{(i i)}{=}|H \times K|=|H||K|=|G|
$$

forces $|G|=|H K|$. Hence $G=H K$, whence (by (iii)) $G \cong H \times K$.
II.E.12. EXAMPLE. Given $r, s \in \mathbb{N}$, let $\ell:=\operatorname{lcm}(r, s), g:=\operatorname{gcd}(r, s)$. Put $\tilde{s}:=s / g \in \mathbb{N}$ and $G:=\mathbb{Z}_{r} \times \mathbb{Z}_{s}$. Now let H denote the isomorphic image of $\mathbb{Z}_{\ell} \hookrightarrow \mathbb{Z}_{r} \times \mathbb{Z}_{s}$ ($\operatorname{via}^{9} \bar{a} \mapsto(\bar{a}, \bar{a})$), and K denote the isomorphic image of $\mathbb{Z}_{g} \hookrightarrow \mathbb{Z}_{r} \times \mathbb{Z}_{S}\left(\right.$ via $\left.^{10} \bar{b} \mapsto(\overline{0}, \overline{b \tilde{s}})\right)$. Since $\ell g=r s$, we get $|H||K|=|G|$.

Now in II.E.11, (A) holds since G is abelian. To see (B), we need $H \cap K=\{(\overline{0}, \overline{0})\}$. Take $(\bar{a}, \bar{a}) \equiv(\overline{0}, \bar{b} \tilde{s}) \in H \cap K \subset \mathbb{Z}_{r} \times \mathbb{Z}_{s}$. It's enough to show that the left-hand side is zero, i.e. $a \equiv 0 \bmod r$ and $\bmod s$. We already have $a \underset{(r)}{\equiv} 0$ and $a \underset{(s)}{\overline{\bar{s}}} b \tilde{s}$, which yield $r \mid a$ and $\tilde{s}|s|(a-b \tilde{s})$. Hence $r, \tilde{s} \mid a$; and since r and \tilde{s} are relatively prime, we get $\ell=r \tilde{s} \mid a$. But $r, s \mid \ell$, and so $r, s \mid a$ as desired. At this point, by II.E.11(iv) we obtain $H \times K \cong G$, or

$$
\mathbb{Z}_{\ell} \times \mathbb{Z}_{g} \cong \mathbb{Z}_{r} \times \mathbb{Z}_{s}
$$

II.E.13. EXAMPLE. The special case $\mathbb{Z}_{r s} \xlongequal{\cong} \mathbb{Z}_{r} \times \mathbb{Z}_{s}$ for $(r, s)=1$ is also valid for multiplicative groups:

$$
\begin{aligned}
\varphi: & \mathbb{Z}_{r s}^{*} \\
& \cong \mathbb{Z}_{r}^{*} \times \mathbb{Z}_{s}^{*} \\
& \longmapsto(\bar{a}, \bar{a}) .
\end{aligned}
$$

[This is clearly also a multiplicative homomorphism, and so invertible congruence classes $(\bmod r s)$ go to pairs of such. For surjectivity, the point is to use the surjectivity of $\mathbb{Z}_{r s} \rightarrow \mathbb{Z}_{r} \times \mathbb{Z}_{s}$ that we already know. Given $(\bar{b}, \bar{c}) \in \mathbb{Z}_{r}^{*} \times \mathbb{Z}_{s}^{*}$, there is $(\bar{\beta}, \bar{\gamma}) \in \mathbb{Z}_{r}^{*} \times \mathbb{Z}_{s}^{*}$ with $\overline{\beta b}=\overline{1}$ and $\overline{\gamma c}=\overline{1}$; and that surjectivity yields $\bar{a}, \bar{\alpha} \in \mathbb{Z}_{r s}$ with $(\bar{a}, \bar{a})=(\bar{b}, \bar{c})$

[^2]and $(\bar{\alpha}, \bar{\alpha})=(\bar{\beta}, \bar{\gamma})$. So we get $\overline{a \alpha} \stackrel{\varphi}{\mapsto}(\overline{b \beta}, \overline{c \gamma})=(\overline{1}, \overline{1})$. Since φ is injective on a set-theoretic level, $\overline{a \alpha}$ must be $=\overline{1}$, hence $\bar{a} \in \mathbb{Z}_{r s}^{*}$.]

This example has a beautiful number-theoretic application.
II.E.14. Proposition. The Euler phi-function

$$
\phi(n)=n \prod_{\substack{p \mid n \\ p \text { prime }}}\left(1-\frac{1}{p}\right)
$$

Proof. Write the prime factorization of n

$$
n=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}
$$

Inductively applying II.E.13,

$$
\mathbb{Z}_{n}^{*} \cong \mathbb{Z}_{p_{1} e_{1}}^{*} \times \cdots \times \mathbb{Z}_{p_{t} e_{t}}^{*}
$$

and taking orders on both sides gives

$$
\phi(n)=\prod_{i} \phi\left(p_{i}^{e_{i}}\right)
$$

Now, for a prime p, everything in $\left\{0,1, \ldots, p^{e}-1\right\}$ is relatively prime to p^{e} except for multiples of p. As there are p^{e-1} such multiples,

$$
\phi\left(p^{e}\right)=p^{e}-p^{e-1}=p^{e}\left(1-\frac{1}{p}\right)
$$

so $\phi(n)=\prod_{i} p_{i}^{e_{i}} \prod_{i}\left(1-\frac{1}{p_{i}}\right)=n \prod_{i}\left(1-\frac{1}{p_{i}}\right)$.
II.E.15. EXAMPLES. (i) $D_{6} \cong D_{3} \times \mathbb{Z}_{2}$: apply II.E.11(iv) to $G=$ $D_{6}, H=\left\langle r^{3}\right\rangle \cong \mathbb{Z}_{2}$, and $K=\left\langle r^{2}, h\right\rangle \cong D_{3}$. (Think of a regular triangle inside a regular hexagon, sharing 3 of its vertices.) Since $H=\left\{1, r^{3}\right\}$ and $K=\left\{1, r^{2}, r^{4}, h, h r^{2}, h r^{4}\right\}$, we have $H \cap K=\{1\} ;$ $|H||K|=2 \cdot 6=12=\left|D_{6}\right|$; and r^{3} commutes with powers of r, and also with h (in general, $r^{i} h=h r^{-i}$, but $r^{3}=r^{-3}$ in D_{6}).
(ii) $V \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$: use $H=\langle(12)(34)\rangle$ and $K=\langle(14)(23)\rangle$, same idea as above.

[^0]: ${ }^{7}$ see II.E. 3 just below

[^1]: ${ }^{8}$ One could also add (say) that G and H have the same minimal number of generators.

[^2]: ${ }^{9}$ In more detail, this sends $a \bmod \ell$ to $(a \bmod r, a \bmod s)$. Since $r, s \mid \ell$, this makes sense. The map is injective because if \bar{a} goes to $(\overline{0}, \overline{0})$, this means that $r, s \mid a$, so that their $\operatorname{lcm} \ell \mid a$ and the original \bar{a} was $\overline{0}$.
 ${ }^{10}$ Here $g|b \Longrightarrow s=g \tilde{s}| b \tilde{s}$, so it is well-defined.

