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II.E. Homomorphisms and isomorphisms

In §II.A it was mentioned that from the assumption

ϕ(ab) = ϕ(a)ϕ(b)

on the map ϕ : G → H (i.e., the defining property of a homomor-
phism) follow other properties:

• ϕ(1) = ϕ(1 · 1) = ϕ(1)ϕ(1) cancel
=⇒
ϕ(1)

1 = ϕ(1)

• 1 = ϕ(1) = ϕ(xx−1) = ϕ(x)ϕ(x−1) =⇒ ϕ(x−1) = ϕ(x)−1

• ϕ(xn) = ϕ(x)n etc.

You can also use a homomorphism to construct subgroups of G and
H, called the kernel and image of ϕ:

• ker(ϕ) := {g ∈ G | ϕ(g) = 1H} ⊂ G;
• im(ϕ) := {h ∈ H | h = ϕ(g) for some g ∈ G} ⊂ H.

(The image is also denoted ϕ(G).)

II.E.1. PROPOSITION. (i) ker(ϕ) ≤ G; and (ii) im(ϕ) ≤ H.

PROOF. (i) ϕ(g) = 1 = ϕ(g′) =⇒ ϕ(gg′) = ϕ(g)ϕ(g′) = 1.
(ii) h = ϕ(g), h′ = ϕ(g′) =⇒ hh′ = ϕ(g)ϕ(g′) = ϕ(gg′). �

II.E.2. EXAMPLES. (a) An = ker{sgn : Sn → {1,−1}}.
(b) SLn(C) = ker{det : GLn(C)→ C∗}.
(c) 〈e 2πi

n 〉 = im{ξn : Zn → C∗}, where ξn sends ā 7→ e
2πia

n .
(d) 〈r〉 = im{ϕn : Zn → Dn}, where ϕn sends ā 7→ ra.
(e) Γ(N) := ker{SL2(Z) → SL2(Z/NZ)}. (The target of the map
means 2 × 2 matrices with entries in Zm and determinant 1̄. The
kernel can be thought of as integer matrices with determinant 1 and
equivalent to the identity matrix mod N, entry by entry.)
(f) 2πZ = ker{(R,+, 0) → (C∗, •, 1)}, where the homomorphism
sends θ 7→ eiθ.
(g) C(G) = ker{ı : G → Aut(G)}. Here Aut(G) is the group of auto-
morphisms of G, or isomorphisms7 from G to itself, under the binary
operation of composing maps. The homomorphism ı sends g 7→ ıg,

7see II.E.3 just below
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where ıg(x) := gxg−1 is the automorphism called conjugation by g.
(These are also written Ψ and Ψg.) If G is abelian, then C(G) = G
and all ıg are just the identity map (sending g 7→ g).

Note that if G is a cyclic group 〈α〉, a homomorphism ϕ : G → H
is completely determined by the image of α. (Why?)

II.E.3. DEFINITION. A homomorphism ϕ : G → H is called

• trivial if im(ϕ) = {1} (or {0} if the operation is “+”); equiva-
lently, ker(ϕ) = G.
• surjective (or “onto”), and written G � H, if im(ϕ) = H; an

example is the reduction mod n homomorphism Z → Zn sending
a 7→ ā.
• injective (or “1-to-1”), and written G ↪→ H, if ker(ϕ) = {1} (or
{0} if the operation is “+”); an example is the map Zn ↪→ Zmn

sending ā 7→ ma.

• an isomorphism, and written G
∼=→ H, if it is both injective and

surjective; the conjugation map ıg : G
∼=→ G (for any g ∈ G) is

an example, as is the identity map. Another would be the map
Zn → 〈e

2πi
n 〉 sending ā 7→ e

2πia
n .

On one hand, a non-identity automorphism of a group (like con-
jugation by a non-central element in a non-abelian group) should be
thought of as a structural symmetry. On the other, given two groups
G and H, a priori differently presented and/or labeled, the existence
of an isomorphism ϕ between them reveals that they are really the
same group. We then say that G and H are isomorphic. Along these
lines there is the

II.E.4. PROPOSITION. If G ∼= H then G, H have:
(a) the same order (if finite);
(b) the same orders of subgroups and elements; and
(c) are either both abelian or both nonabelian.8

8One could also add (say) that G and H have the same minimal number of gener-
ators.
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We will first prove two lemmas. The start with, we should justify
calling injective homomorphisms “1-to-1”.

II.E.5. LEMMA. For a homomorphism ϕ : G → H, the following are
equivalent:
(A) ϕ injective in the sense of II.E.3;
(B) ϕ is 1-to-1, i.e. injective in the set-theoretic sense; and
(C) ϕ is an isomorphism onto its image.

PROOF. (A) ⇐⇒ (C): clear, since ϕ is always “surjective onto its
image”.
(A) =⇒ (B): suppose ϕ(x) = ϕ(y). Then 1 = ϕ(y)ϕ(x)−1 = ϕ(yx−1);
since the kernel is trivial, this gives yx−1 = 1 hence x = y.
(B) =⇒ (A): ϕ(1G) = 1H; since ϕ is 1-to-1, no other element of G
goes to 1H, so ker(ϕ) = ϕ−1(1H) = {1}. �

Part (ii) of the next lemma is useful for producing isomorphisms.

II.E.6. LEMMA. (i) Any ϕ : G
∼=→ H is invertible: “ϕ−1 : H → G” is

well-defined, a homomorphism and an isomorphism, with ϕ ◦ ϕ−1 = idH

and ϕ−1 ◦ ϕ = idG.
(ii) If homomorphisms ϕ : G → H and η : H → G are such that ϕ ◦ η =

idH and η ◦ ϕ = idG, then ϕ and η are isomorphisms.

PROOF. (i) Let h ∈ H. Since ϕ is 1-to-1 [resp. onto], ϕ−1(h) is ≤ 1
[resp. ≥ 1] element; i.e. ϕ−1(h) ∈ G is exactly one element. Writing
h = ϕ(g) and h′ = ϕ(g′), applying ϕ−1 to ϕ(g)ϕ(g′) = ϕ(gg′) gives
ϕ−1(hh′) = gg′ = ϕ−1(h)ϕ−1(h′). Finally, since ϕ is everywhere
defined (on G) [resp. well-defined], ϕ−1 is onto [resp. 1-to-1].
(ii) We check this for ϕ. For surjectivity: given h ∈ H, we have
h = idH(h) = ϕ(η(h)). For injectivity: if ϕ(g) = 1, then 1 = η(1) =
η(ϕ(g)) = idG(g) = g. �

PROOF OF II.E.4. We have some ϕ : G
∼=→ H.

(a) By II.E.6(i), ϕ is a bijection of sets; so the orders are the same.
(b) ϕ is a bijection, and for any G′ ≤ G, we have ϕ(G′) ≤ H (by
II.E.1(ii)) and G′ ∼= ϕ(G′) (given by restricting ϕ to G′). Similarly,
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taking H′ ≤ H, ϕ−1(H′) ≤ G and H′ ∼= ϕ−1(H′). So orders of
subgroups (in particular, the cyclic groups generated by elements)
are the same.
(c) Applying ϕ to xy = yx yields ϕ(x)ϕ(y) = ϕ(y)ϕ(x); and any pair
of elements of H can be written as ϕ(x), ϕ(y). So G abelian =⇒ H
abelian; and the converse holds by using ϕ−1 in the same way. �

Here is a very useful way to construct isomorphisms for finite
groups (which saves work involved in II.E.6(ii)).

II.E.7. PROPOSITION. If ϕ : G → H is an injective homomorphism
and |G| = |H| < ∞, then ϕ is an isomorphism.

PROOF. To get surjectivity, apply the “pigeonhole principle”: you
have a map from an n-element set G to an n-element set H; no 2
elements of G go to the same element of H, and so every element of
H gets “hit”. �

The contrapositive of II.E.4 says: if any of the structural proper-
ties (a), (b), (c) of 2 groups differ, they cannot be isomorphic. This will
be our first main application — telling groups apart (cf. (ii), (iii), (iv)
below). But let’s start with an isomorphism:

II.E.8. EXAMPLES. (i) The symmetries of a regular n-gon yield
permutations of the vertices (numbered 1 to n), which produces a
homomorphism ϕ : Dn → Sn. If vertices stay in place then clearly
there is no motion, and so ϕ is injective. (By II.E.5(c), you can think
of this as saying: there is (∀n) a subgroup of Sn isomorphic to Dn.) For
n = 3, |D3| = 6 = |S3| =⇒ ϕ is an isomorphism (by II.E.7);
numbering the vertices of the triangle counterclockwise, with “1”
fixed by the reflection h, we have ϕ(h) = (23) and ϕ(r) = (123).

(ii) |D6| = 12 = |A4|. An isomorphism doesn’t “feel” natural, so
instinct tells us to look for a difference in structure: D6 has 2 elements
of order 3: r2 and r4; while A4 has 8 elements of order 3: the 8 3-cycles
(123), (132), (124), (142), (134), (143), (234), (243). So D6 � A4.
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(iii) |D12| = |S4| = |Z24| = 24. Z24 is abelian; the other two are
not: in S4, (12)(23) = (123) 6= (132) = (23)(12), while in D12,
hr = r−1h 6= rh. So Z24 � D12,S4.

Now write out the cycle types for S4:

form of decomp.
into disjoint cycles

order
how many

such elements?
(· · · ·) 4 6
(· · ·)(·) 3 8
(· ·)(· ·) 2 3
(· ·)(·)(·) 2 6
(·)(·)(·)(·) 1 1

The last row is just the identity element; the two rows above it indi-
cate that there are 3 + 6 = 9 elements of order 2 in S4. Now D12 has
13 elements of order 2: the 12 reflections {hra | a = 0, 1, . . . , 11}, and
one 180◦-rotation r6. So D12 � S4.

(iv) |V| = |Z4| = 4. The orders of elements are 1, 2, 2, 2 for V, and
1, 4, 2, 4 for Z4. So V � Z4.

(v) All cyclic groups of order N are isomorphic to (ZN,+). Just write
down the homomorphism from ZN → 〈α〉 sending 1̄ 7→ α hence
m 7→ αm.

We now formalize a construction touched on in II.C.3(iv):

II.E.9. DEFINITION. The direct product of two groups H and K is
(a group)

H × K := {(h, k) | h ∈ H, k ∈ K}
with (h, k) · (h′, k′) := (hh′, kk′), (h, k)−1 = (h−1, k−1), and 1H×K =

(1H, 1K). [If H, K are abelian, we will frequently write this additively:
(h, k) + (h′, k′) = (h + h′, k + k′), −(h, k) = (−h,−k), and 0H×K =

(0H, 0K).]

II.E.10. ALTERNATE DEFINITION. A group P is a direct product
of groups H and K if there exist homomorphisms pH : P → H and
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pK : P → K such that for all groups G and homomorphisms fH : G → H
and fK : G → K, there exists a unique homomorphism f : G → P which
makes

G

fK
��

f

��

fH // H

K P
pK
oo

pH

OO

commute.

This kind of characterization of direct products is called universal,
and the italicized statement their universal property. In the HW, you
will check that P = H × K (from II.E.9) indeed is a direct product in
this sense (of II.E.10).

Now clearly |H × K| = |H| · |K|, which brings us to the

II.E.11. DIRECT PRODUCT THEOREM. Let H, K ≤ G. Put HK :=
{hk | h ∈ H, k ∈ K}. (This is not necessarily a group!) Consider the
possible assumptions

(A) hk = kh (∀h ∈ H, k ∈ K)

(B) H ∩ K = {1G}.

Then
(i) (A) =⇒ HK ≤ G
(ii) (A) + (B) =⇒ HK ∼= H × K
(iii) (A) + (B) + HK=G =⇒ G ∼= H × K
(iv) (A) + (B) + |G| < ∞ + |H||K|=|G| =⇒ G ∼= H × K.

PROOF. (i) We only need to check that 1 ∈ HK, (hk)(h′k′) =

hh′kk′ ∈ HK (by (A)), and (hk)−1 = (kh)−1 = h−1k−1 ∈ HK (again
by (A)).

(ii) Define ϕ : H × K → HK by ϕ(h, k) := hk. This is a homo-
morphism since ϕ(h, k)ϕ(h′, k′) = hkh′k′ = hh′kk′ = ϕ(hh′, kk′) =

ϕ((h, k) · (h′, k′)) (by (A)), injective because 1 = ϕ(h, k) = hk =⇒
k−1 = h ∈ H ∩ K = {1} =⇒ (h, k) = (1, 1) (by (B)), and obviously
surjective by the description of HK.
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(iii) is clear from (ii).
(iv) By (i), G ≥ HK, so

|G| ≥ |HK| (ii)
= |H × K| = |H||K| = |G|

forces |G| = |HK|. Hence G = HK, whence (by (iii)) G ∼= H× K. �

II.E.12. EXAMPLE. Given r, s ∈N, let ` := lcm(r, s), g := gcd(r, s).
Put s̃ := s/g ∈ N and G := Zr ×Zs. Now let H denote the isomor-
phic image of Z` ↪→ Zr ×Zs (via9 ā 7→ (ā, ā)), and K denote the iso-
morphic image of Zg ↪→ Zr ×Zs (via10 b̄ 7→ (0̄, bs̃)). Since `g = rs,
we get |H||K| = |G|.

Now in II.E.11, (A) holds since G is abelian. To see (B), we need
H ∩ K = {(0̄, 0̄)}. Take (ā, ā) ≡ (0̄, bs̃) ∈ H ∩ K ⊂ Zr ×Zs. It’s
enough to show that the left-hand side is zero, i.e. a ≡ 0 mod r and
mod s. We already have a ≡

(r)
0 and a ≡

(s)
bs̃, which yield r|a and

s̃|s|(a− bs̃). Hence r, s̃|a; and since r and s̃ are relatively prime, we
get ` = rs̃|a. But r, s|`, and so r, s|a as desired. At this point, by
II.E.11(iv) we obtain H × K ∼= G, or

Z` ×Zg ∼= Zr ×Zs.

II.E.13. EXAMPLE. The special case Zrs
∼=→ Zr ×Zs for (r, s) = 1

is also valid for multiplicative groups:

ϕ : Z∗rs
∼=→ Z∗r ×Z∗s

ā 7−→ (ā, ā).

[This is clearly also a multiplicative homomorphism, and so invert-
ible congruence classes (mod rs) go to pairs of such. For surjectivity,
the point is to use the surjectivity of Zrs → Zr ×Zs that we already
know. Given (b̄, c̄) ∈ Z∗r ×Z∗s , there is (β̄, γ̄) ∈ Z∗r ×Z∗s with βb = 1̄
and γc = 1̄; and that surjectivity yields ā, ᾱ ∈ Zrs with (ā, ā) = (b̄, c̄)

9In more detail, this sends a mod ` to (a mod r, a mod s). Since r, s|`, this makes
sense. The map is injective because if ā goes to (0̄, 0̄), this means that r, s|a, so that
their lcm `|a and the original ā was 0̄.
10Here g|b =⇒ s = gs̃|bs̃, so it is well-defined.
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and (ᾱ, ᾱ) = (β̄, γ̄). So we get aα
ϕ7→ (bβ, cγ) = (1̄, 1̄). Since ϕ is

injective on a set-theoretic level, aα must be = 1̄, hence ā ∈ Z∗rs.]

This example has a beautiful number-theoretic application.

II.E.14. PROPOSITION. The Euler phi-function

φ(n) = n ∏
p | n

p prime

(1− 1
p ).

PROOF. Write the prime factorization of n

n = pe1
1 · · · p

et
t .

Inductively applying II.E.13,

Z∗n
∼= Z∗p1

e1 × · · · ×Z∗pt
et ,

and taking orders on both sides gives

φ(n) = ∏
i

φ(pei
i ).

Now, for a prime p, everything in {0, 1, . . . , pe− 1} is relatively prime
to pe except for multiples of p. As there are pe−1 such multiples,

φ(pe) = pe − pe−1 = pe(1− 1
p ),

so φ(n) = ∏i pei
i ∏i(1− 1

pi
) = n ∏i(1− 1

pi
). �

II.E.15. EXAMPLES. (i) D6
∼= D3 ×Z2: apply II.E.11(iv) to G =

D6, H = 〈r3〉 ∼= Z2, and K = 〈r2, h〉 ∼= D3. (Think of a regular
triangle inside a regular hexagon, sharing 3 of its vertices.) Since
H = {1, r3} and K = {1, r2, r4, h, hr2, hr4}, we have H ∩ K = {1};
|H||K| = 2 · 6 = 12 = |D6|; and r3 commutes with powers of r, and
also with h (in general, rih = hr−i, but r3 = r−3 in D6).

(ii) V ∼= Z2 ×Z2: use H = 〈(12)(34)〉 and K = 〈(14)(23)〉, same
idea as above.


