26 IL. GROUPS
ILLE. Homomorphisms and isomorphisms
In §II.A it was mentioned that from the assumption
¢(ab) = ¢(a)¢(D)

on the map ¢: G — H (i.e., the defining property of a homomor-
phism) follow other properties:
cancel

e 9(1) =9(1-1) = ¢(1)e(1) o0 1=9¢(1)

o 1=9(1)=¢p(xx ) =px)p(x!) = o) =g
o ¢(x") = @(x)" etc.

You can also use a homomorphism to construct subgroups of G and

~U

H, called the kernel and image of ¢:

o ker(p):=1{g € Gl o) =1n}t C G

o im(¢p):={he H|h=¢(g) forsome g€ G} C H.
(The image is also denoted ¢(G).)

ILE.1. PROPOSITION. (i) ker(¢) < G; and (ii) im(¢) < H.

) =9(g)e(g) =1.
g') = p(gg) O

ILE.2. EXAMPLES. (a) 2, = ker{sgn: &,, — {1, —1}}.
(b) SLn( ) = ker{det: GL,(C) — C*}.
(c) <e ") =1im{&,: Z, — C*}, where &, sends @ — e =
(d) (r) = im{¢@n: Z, — D, }, where ¢, sends a — r".
(e) I'(N) := ker{SLy(Z) — SLp(Z/NZ)}. (The target of the map
means 2 X 2 matrices with entries in Z,, and determinant 1. The

PROOF. (i) p(g) =1=¢(g') = o¢(g¢
(i) h = (), W = @(g') = hh' = ¢(g)p(

kernel can be thought of as integer matrices with determinant 1 and
equivalent to the identity matrix mod N, entry by entry.)

(f) 2nZ = ker{(R,+,0) — (C*,o,1)}, where the homomorphism
sends 0 — e

(g) C(G) = ker{1: G — Aut(G)}. Here Aut(G) is the group of auto-
morphisms of G, or isomorphisms7 from G toitself, under the binary
operation of composing maps. The homomorphism 7 sends ¢ > 1g,

7see ILE.3 just below
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where 1(x) := gxg~ ! is the automorphism called conjugation by g.
(These are also written ¥ and ¥,.) If G is abelian, then C(G) = G
and all 7 are just the identity map (sending ¢ — g).

Note that if G is a cyclic group («), a homomorphism ¢: G — H
is completely determined by the image of a. (Why?)

I1.E.3. DEFINITION. A homomorphism ¢: G — H is called

e trivial if im(¢) = {1} (or {0} if the operation is “+”); equiva-
lently, ker(¢) = G.

e surjective (or “onto”), and written G — H, if im(¢) = H; an
example is the reduction mod n homomorphism Z — Z, sending
ar—a.

e injective (or “1-to-1”), and written G — H, if ker(¢) = {1} (or
{0} if the operation is “+”); an example is the map Z,, — Z;;,
sending @ + ma.

e an isomorphism, and written G = H, if it is both injective and
surjective; the conjugation map 14: G 5 G (for any ¢ € G) is
an example, as is the identity map. Another would be the map

27tia

27ri . _
Z, — (e ) sendinga s e n .

On one hand, a non-identity automorphism of a group (like con-
jugation by a non-central element in a non-abelian group) should be
thought of as a structural symmetry. On the other, given two groups
G and H, a priori differently presented and/or labeled, the existence
of an isomorphism ¢ between them reveals that they are really the
same group. We then say that G and H are isomorphic. Along these
lines there is the

II.E.4. PROPOSITION. If G = H then G, H have:
(a) the same order (if finite);
(b) the same orders of subgroups and elements; and
(c) are either both abelian or both nonabelian.®

80ne could also add (say) that G and H have the same minimal number of gener-
ators.
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We will first prove two lemmas. The start with, we should justify
calling injective homomorphisms “1-to-1".

ILE.5. LEMMA. For a homomorphism ¢: G — H, the following are
equivalent:
(A) @ injective in the sense of ILE.3;
(B) ¢ is 1-to-1, i.e. injective in the set-theoretic sense; and
(C) ¢ is an isomorphism onto its image.

PROOF. (A) <= (Q): clear, since ¢ is always “surjective onto its
image”.
(A) => (B):suppose ¢(x) = ¢(y). Then1 = ¢(y)p(x) " = p(yx~");
since the kernel is trivial, this gives yx~! = 1 hence x = y.
(B) = (A): ¢(1g) = 1p; since ¢ is 1-to-1, no other element of G
goes to 1y, so ker(¢9) = ¢~ (1) = {1}. O

Part (ii) of the next lemma is useful for producing isomorphisms.

ILE.6. LEMMA. (i) Any ¢: G = H is invertible: “p71:H — G”"is
well-defined, a homomorphism and an isomorphism, with ¢ o ¢~ ! = idy
and ¢~ 1o @ = idg.

(ii) If homomorphisms ¢: G — H and n: H — G are such that pon =
idy and n o ¢ = idg, then ¢ and n are isomorphisms.

PROOF. (i) Let h € H. Since ¢ is 1-to-1 [resp. onto], ¢! (h) is < 1
[resp. > 1] element; i.e. ¢~ !(h) € G is exactly one element. Writing
h=¢(g) and i' = ¢(g'), applying ¢~ to ¢(g)p(g’) = ¢(gg’) gives
o Y (hh') = g¢' = ¢ 1 (h)e ! (K'). Finally, since ¢ is everywhere
defined (on G) [resp. well-defined], (p_1 is onto [resp. 1-to-1].

(ii) We check this for ¢. For surjectivity: given h € H, we have
h = idy(h) = @(y(h)). For injectivity: if ¢(g) = 1, then 1 = 5(1) =
n(e(g)) =idg(g) = ¢ O

PROOF OF II.E.4. We have some ¢: G S H.
(a) By ILE.6(i), ¢ is a bijection of sets; so the orders are the same.
(b) ¢ is a bijection, and for any G’ < G, we have ¢(G') < H (by
ILE.1(ii)) and G’ = ¢(G’) (given by restricting ¢ to G’). Similarly,
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taking H < H, ¢ '(H') < Gand H' = ¢ 1(H’). So orders of
subgroups (in particular, the cyclic groups generated by elements)
are the same.

(c) Applying ¢ to xy = yx yields ¢(x)¢(y) = ¢(y)¢(x); and any pair
of elements of H can be written as ¢(x), ¢(y). So G abelian = H
abelian; and the converse holds by using ¢! in the same way. [

Here is a very useful way to construct isomorphisms for finite
groups (which saves work involved in IL.E.6(ii)).

ILE.7. PROPOSITION. If ¢: G — H is an injective homomorphism
and |G| = |H| < oo, then ¢ is an isomorphism.

PROOF. To get surjectivity, apply the “pigeonhole principle”: you
have a map from an n-element set G to an n-element set H; no 2
elements of G go to the same element of H, and so every element of
H gets “hit”. 0

The contrapositive of II.E.4 says: if any of the structural proper-
ties (a), (b), (c) of 2 groups differ, they cannot be isomorphic. This will
be our first main application — telling groups apart (cf. (ii), (iii), (iv)
below). But let’s start with an isomorphism:

IL.E.8. EXAMPLES. (i) The symmetries of a regular n-gon yield
permutations of the vertices (numbered 1 to 7n), which produces a
homomorphism ¢: D, — &,. If vertices stay in place then clearly
there is no motion, and so ¢ is injective. (By IL.E.5(c), you can think
of this as saying: there is (Vn) a subgroup of S, isomorphic to D,.) For
n =3 |D3s] =6 =|63] = ¢ isan isomorphism (by ILE.7);
numbering the vertices of the triangle counterclockwise, with “1”
fixed by the reflection 1, we have ¢(h) = (23) and ¢(r) = (123).

(i) |Dg¢| = 12 = |24]. An isomorphism doesn’t “feel” natural, so
instinct tells us to look for a difference in structure: Dg has 2 elements
of order 3: 2 and r*; while 2l has 8 elements of order 3: the 8 3-cycles
(123), (132), (124), (142), (134), (143), (234), (243). So Dg 2 4.
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(iii) |D12| = |84| = |Zos| = 24. Zy4 is abelian; the other two are
not: in &, (12)(23) = (123) # (132) = (23)(12), while in Dy,
hr = r~Yh # rh. So Zp4 % D1y, 4.

Now write out the cycle types for Gy:

form of decomp. order how many
into disjoint cycles such elements?
() 4 6
(. . )() 3 8
(. )( ) 2 3
()0 2 6
QIQIQIQ 1 1

The last row is just the identity element; the two rows above it indi-
cate that there are 3 + 6 = 9 elements of order 2 in &4. Now D5 has
13 elements of order 2: the 12 reflections {hr* | a = 0,1,...,11}, and
one 180°-rotation r°. So D1y % Sg.

(iv) |V| = |Z4] = 4. The orders of elements are 1,2,2,2 for V, and
1,4,2,4for Z4. SoV £ Z4.

(v) All cyclic groups of order N are isomorphic to (Zy, +). Just write
down the homomorphism from Zy — («) sending 1 — a hence
m— a

We now formalize a construction touched on in IL.C.3(iv):

ILE.9. DEFINITION. The direct product of two groups H and K is
(a group)
HxK:={(hk)|heH, ke K}
with (b, k) - (W, k') := (Wi, kK'), (h, k)™ = (b=, k1), and 1gxx =
(1m,1k). [If H, K are abelian, we will frequently write this additively:
(hk)y+ (W, k') = (h+W,k+K), —(hk) = (=h,—k), and Oxx =
(O, 0k )]

ILE.10. ALTERNATE DEFINITION. A group P is a direct product
of groups H and K if there exist homomorphisms py: P — H and
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pk: P — K such that for all groups G and homomorphisms fr: G — H
and fx: G — K, there exists a unique homomorphism f: G — P which
makes

H

fx TPH
P

N=—0

?| e

commuite.

This kind of characterization of direct products is called universal,
and the italicized statement their universal property. In the HW, you
will check that P = H x K (from II.E.9) indeed is a direct product in
this sense (of II.E.10).

Now clearly |H x K| = |H]| - |K|, which brings us to the

IL.LE.11. DIRECT PRODUCT THEOREM. Let H,K < G. Put HK :=
{hk | h € H, k € K}. (This is not necessarily a group!) Consider the
possible assumptions

(A) hk=kh (Vhe HkeK)
(B) HNK = {1c}.

Then

(i) (A) = HK <G

(ii) (A) + (B) = HK =~ H x K

(iii) (A) + (B) + HK=G — G~ H x K

(iv) (A) + (B) + |G| < o0 + |H||K|=|G|] = G= HxK.

PROOF. (i) We only need to check that 1 € HK, (hk)(h'k') =
hW'kk' € HK (by (A)), and (hk)~' = (kh)~! = h='k~! € HK (again
by (A)).

(ii) Define ¢: H x K — HK by ¢(h,k) := hk. This is a homo-
morphism since ¢(h,k)o(h', k') = hkh'k' = hh'kk! = @(hl, kk') =
¢((h,k)- (K, K)) (by (A)), injective because 1 = ¢(h, k) = hk —
k!'=he HNK= {1} = (hk) = (1,1) (by (B)), and obviously
surjective by the description of HK.



32 II. GROUPS

(i11) is clear from (7).
(iv) By (i), G > HK, so
G| > |HK| ® |H x K| = |[H||K| = |G|
forces |G| = |HK|. Hence G = HK, whence (by (iii))) G = H x K. O

ILE.12. EXAMPLE. Givenr,s € IN,let / := lem(r,s), g := ged(r, s).
Puts:=s/g € Nand G := Z, x Zs. Now let H denote the isomor-
phic image of Z, < Z, x Z (via’ a — (4,4)), and K denote the iso-
morphic image of Zy; — Z, x Z; (vial® b+ (0,b3)). Since £g = rs,
we get |H||K| = |G].

Now in ILLE.11, (A) holds since G is abelian. To see (B), we need
HNK = {(0,0)}. Take (4,4) = (0,b5) € HNK C Z, x Zs. It's
enough to show that the left-hand side is zero, i.e. 2 = 0 mod r and

mod s. We already have a (E) 0 and a (E) b3, which yield r|a and
r S

§|s|(a — bs). Hence r,5|a; and since r and § are relatively prime, we
get ¢ = r5la. Butr,s|¢, and so r,s|a as desired. At this point, by
II.LE.11(iv) we obtain H X K = G, or

Zy XLy =2y X Zs.

II.LE.13. EXAMPLE. The special case Zs = Z, X Zs for (r,s) =1
is also valid for multiplicative groups:

¢ 7 S 7 X T
a— (a,a).
[This is clearly also a multiplicative homomorphism, and so invert-
ible congruence classes (mod rs) go to pairs of such. For surjectivity,
the point is to use the surjectivity of Z,; — Z, x Zs that we already
know. Given (b,¢) € Z; x Z%, thereis (B,7) € Z; x Z* with gb = 1
and 7¢ = 1; and that surjectivity yields 4, & € Z,; with (7,a) = (b,¢)

n more detail, this sends @ mod ¢ to (2 mod r, a mod s). Since 7, s|¢, this makes
sense. The map is injective because if 4 goes to (0,0), this means that r, s|a, so that
their lem /|a and the original 7 was 0.

10Here ¢|b = s = g5|bs, so it is well-defined.
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and (a,&) = (B,7). So we get aa +» (bB,cy) = (1,1). Since g is
injective on a set-theoretic level, aw must be = 1, hence a € Z,.]

This example has a beautiful number-theoretic application.

I1.LE.14. PROPOSITION. The Euler phi-function

p(n)=n [T (1-1).

pln
p prime

PROOF. Write the prime factorization of n
n=py-p
Inductively applying IL.E.13,
7 = Z;lel X oo X Z;tet,
and taking orders on both sides gives

p(n) =T To(p).

Now, for a prime p, everythingin {0, 1, ..., p° — 1} is relatively prime
to p® except for multiples of p. As there are p*~! such multiples,

¢(p°) =p = p T =p (1),
so¢(n) =T1;pi TTi(1 — ) = nILi(1 ). O
IL.E.15. EXAMPLES. (i) D¢ = D3 x Zj: apply ILE.11(iv) to G =
D¢, H = (r®) = Z,, and K = (r?,h) = Dj. (Think of a regular
triangle inside a regular hexagon, sharing 3 of its vertices.) Since
H = {1,7*} and K = {1,7%,7*, h,hr*, ir*}, we have HN K = {1};
|H||K| =2-6 = 12 = |Dg|; and > commutes with powers of r, and

also with /1 (in general, r'h = hr=, but ¥ = =3 in Dg).

(i) V &2 Zp x Zy: use H = ((12)(34)) and K = ((14)(23)), same
idea as above.



