II. GROUPS

II.E. Homomorphisms and isomorphisms

In §II.A it was mentioned that from the assumption

$$\varphi(ab) = \varphi(a)\varphi(b)$$

on the map φ : $G \rightarrow H$ (i.e., the defining property of a homomorphism) follow other properties:

• $\varphi(1) = \varphi(1 \cdot 1) = \varphi(1)\varphi(1) \xrightarrow[\varphi(1)]{\text{cancel}} 1 = \varphi(1)$

•
$$1 = \varphi(1) = \varphi(xx^{-1}) = \varphi(x)\varphi(x^{-1}) \implies \varphi(x^{-1}) = \varphi(x)^{-1}$$

•
$$\varphi(x^n) = \varphi(x)^n$$
 etc.

You can also use a homomorphism to construct subgroups of *G* and *H*, called the **kernel** and **image** of φ :

- $\operatorname{ker}(\varphi) := \{g \in G \mid \varphi(g) = 1_H\} \subset G;$
- $\operatorname{im}(\varphi) := \{h \in H \mid h = \varphi(g) \text{ for some } g \in G\} \subset H.$

(The image is also denoted $\varphi(G)$.)

II.E.1. PROPOSITION. (i) ker(φ) \leq *G*; and (ii) im(φ) \leq *H*.

PROOF. (i)
$$\varphi(g) = 1 = \varphi(g') \implies \varphi(gg') = \varphi(g)\varphi(g') = 1.$$

(ii) $h = \varphi(g), h' = \varphi(g') \implies hh' = \varphi(g)\varphi(g') = \varphi(gg').$

II.E.2. EXAMPLES. (a) $\mathfrak{A}_n = \ker\{\operatorname{sgn}: \mathfrak{S}_n \to \{1, -1\}\}$. (b) $SL_n(\mathbb{C}) = \ker\{\det: GL_n(\mathbb{C}) \to \mathbb{C}^*\}$. (c) $\langle e^{\frac{2\pi i}{n}} \rangle = \operatorname{im}\{\xi_n : \mathbb{Z}_n \to \mathbb{C}^*\}$, where ξ_n sends $\bar{a} \mapsto e^{\frac{2\pi i a}{n}}$. (d) $\langle r \rangle = \operatorname{im}\{\varphi_n : \mathbb{Z}_n \to D_n\}$, where φ_n sends $\bar{a} \mapsto r^a$. (e) $\Gamma(N) := \ker\{SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/N\mathbb{Z})\}$. (The target of the map means 2×2 matrices with entries in \mathbb{Z}_m and determinant $\bar{1}$. The kernel can be thought of as integer matrices with determinant 1 and equivalent to the identity matrix mod N, entry by entry.) (f) $2\pi\mathbb{Z} = \ker\{(\mathbb{R}, +, 0) \to (\mathbb{C}^*, \bullet, 1)\}$, where the homomorphism sends $\theta \mapsto e^{i\theta}$.

(g) $C(G) = \ker{\iota: G \to \operatorname{Aut}(G)}$. Here $\operatorname{Aut}(G)$ is the group of **automorphisms** of *G*, or isomorphisms⁷ from *G* to itself, under the binary operation of composing maps. The homomorphism ι sends $g \mapsto \iota_g$,

⁷see II.E.3 just below

where $\iota_g(x) := gxg^{-1}$ is the automorphism called *conjugation by* g. (These are also written Ψ and Ψ_g .) If G is abelian, then C(G) = G and all ι_g are just the identity map (sending $g \mapsto g$).

Note that if *G* is a cyclic group $\langle \alpha \rangle$, a homomorphism $\varphi \colon G \to H$ is completely determined by the image of α . (Why?)

II.E.3. DEFINITION. A homomorphism $\varphi \colon G \to H$ is called

- trivial if im(φ) = {1} (or {0} if the operation is "+"); equivalently, ker(φ) = G.
- **surjective** (or "onto"), and written $G \rightarrow H$, if $im(\varphi) = H$; an example is the *reduction mod n* homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}_n$ sending $a \mapsto \bar{a}$.
- **injective** (or "1-to-1"), and written $G \hookrightarrow H$, if ker(φ) = {1} (or {0} if the operation is "+"); an example is the map $\mathbb{Z}_n \hookrightarrow \mathbb{Z}_{mn}$ sending $\bar{a} \mapsto \overline{ma}$.
- an **isomorphism**, and written $G \stackrel{\cong}{\to} H$, if it is both injective and surjective; the conjugation map $\iota_g \colon G \stackrel{\cong}{\to} G$ (for any $g \in G$) is an example, as is the identity map. Another would be the map $\mathbb{Z}_n \to \langle e^{\frac{2\pi i a}{n}} \rangle$ sending $\bar{a} \mapsto e^{\frac{2\pi i a}{n}}$.

On one hand, a non-identity automorphism of a group (like conjugation by a non-central element in a non-abelian group) should be thought of as a structural *symmetry*. On the other, given two groups *G* and *H*, *a priori* differently presented and/or labeled, the existence of an isomorphism φ between them reveals that they are really the same group. We then say that *G* and *H* are **isomorphic**. Along these lines there is the

II.E.4. PROPOSITION. If $G \cong H$ then G, H have:

- (a) the same order (if finite);
- (b) the same orders of subgroups and elements; and
- (*c*) are either both abelian or both nonabelian.⁸

⁸One could also add (say) that G and H have the same minimal number of generators.

We will first prove two lemmas. The start with, we should justify calling injective homomorphisms "1-to-1".

II.E.5. LEMMA. For a homomorphism $\varphi: G \to H$, the following are equivalent:

(A) φ injective in the sense of II.E.3;

(B) φ is 1-to-1, i.e. injective in the set-theoretic sense; and

(C) φ is an isomorphism onto its image.

PROOF. (A) \iff (C): clear, since φ is always "surjective onto its image".

(A) \implies (B): suppose $\varphi(x) = \varphi(y)$. Then $1 = \varphi(y)\varphi(x)^{-1} = \varphi(yx^{-1})$; since the kernel is trivial, this gives $yx^{-1} = 1$ hence x = y.

(B) \implies (A): $\varphi(1_G) = 1_H$; since φ is 1-to-1, no other element of *G* goes to 1_H , so ker(φ) = $\varphi^{-1}(1_H) = \{1\}$.

Part (ii) of the next lemma is useful for producing isomorphisms.

II.E.6. LEMMA. (i) Any $\varphi: G \xrightarrow{\cong} H$ is invertible: " $\varphi^{-1}: H \to G$ " is well-defined, a homomorphism and an isomorphism, with $\varphi \circ \varphi^{-1} = \mathrm{id}_H$ and $\varphi^{-1} \circ \varphi = \mathrm{id}_G$.

(ii) If homomorphisms $\varphi \colon G \to H$ and $\eta \colon H \to G$ are such that $\varphi \circ \eta = id_H$ and $\eta \circ \varphi = id_G$, then φ and η are isomorphisms.

PROOF. (i) Let $h \in H$. Since φ is 1-to-1 [resp. onto], $\varphi^{-1}(h)$ is ≤ 1 [resp. ≥ 1] element; i.e. $\varphi^{-1}(h) \in G$ is exactly one element. Writing $h = \varphi(g)$ and $h' = \varphi(g')$, applying φ^{-1} to $\varphi(g)\varphi(g') = \varphi(gg')$ gives $\varphi^{-1}(hh') = gg' = \varphi^{-1}(h)\varphi^{-1}(h')$. Finally, since φ is everywhere defined (on *G*) [resp. well-defined], φ^{-1} is onto [resp. 1-to-1]. (ii) We check this for φ . For surjectivity: given $h \in H$, we have $h = id_H(h) = \varphi(\eta(h))$. For injectivity: if $\varphi(g) = 1$, then $1 = \eta(1) = \eta(\varphi(g)) = id_G(g) = g$.

PROOF OF II.E.4. We have some $\varphi \colon G \xrightarrow{\cong} H$.

(a) By II.E.6(i), φ is a bijection of sets; so the orders are the same.

(b) φ is a bijection, and for any $G' \leq G$, we have $\varphi(G') \leq H$ (by II.E.1(ii)) and $G' \cong \varphi(G')$ (given by restricting φ to G'). Similarly,

28

taking $H' \leq H$, $\varphi^{-1}(H') \leq G$ and $H' \cong \varphi^{-1}(H')$. So orders of subgroups (in particular, the cyclic groups generated by elements) are the same.

(c) Applying φ to xy = yx yields $\varphi(x)\varphi(y) = \varphi(y)\varphi(x)$; and any pair of elements of *H* can be written as $\varphi(x)$, $\varphi(y)$. So *G* abelian \implies *H* abelian; and the converse holds by using φ^{-1} in the same way.

Here is a very useful way to construct isomorphisms for finite groups (which saves work involved in II.E.6(ii)).

II.E.7. PROPOSITION. If $\varphi: G \to H$ is an injective homomorphism and $|G| = |H| < \infty$, then φ is an isomorphism.

PROOF. To get surjectivity, apply the "pigeonhole principle": you have a map from an *n*-element set *G* to an *n*-element set *H*; no 2 elements of *G* go to the same element of *H*, and so every element of *H* gets "hit".

The contrapositive of II.E.4 says: if any of the structural properties (a), (b), (c) of 2 groups differ, they *cannot be isomorphic*. This will be our first *main* application — telling groups apart (cf. (ii), (iii), (iv) below). But let's start with an isomorphism:

II.E.8. EXAMPLES. (i) The symmetries of a regular *n*-gon yield permutations of the vertices (numbered 1 to *n*), which produces a homomorphism $\varphi: D_n \to \mathfrak{S}_n$. If vertices stay in place then clearly there is no motion, and so φ is injective. (By II.E.5(c), you can think of this as saying: *there is* $(\forall n)$ *a subgroup of* \mathfrak{S}_n *isomorphic to* D_n .) For n = 3, $|D_3| = 6 = |\mathfrak{S}_3| \implies \varphi$ is an isomorphism (by II.E.7); numbering the vertices of the triangle counterclockwise, with "1" fixed by the reflection *h*, we have $\varphi(h) = (23)$ and $\varphi(r) = (123)$.

(ii) $|D_6| = 12 = |\mathfrak{A}_4|$. An isomorphism doesn't "feel" natural, so instinct tells us to look for a difference in structure: D_6 has 2 elements of order 3: r^2 and r^4 ; while \mathfrak{A}_4 has 8 elements of order 3: the 8 3-cycles (123), (132), (124), (142), (134), (143), (234), (243). So $D_6 \ncong \mathfrak{A}_4$.

II. GROUPS

(iii) $|D_{12}| = |\mathfrak{S}_4| = |\mathbb{Z}_{24}| = 24$. \mathbb{Z}_{24} is abelian; the other two are not: in \mathfrak{S}_4 , $(12)(23) = (123) \neq (132) = (23)(12)$, while in D_{12} , $hr = r^{-1}h \neq rh$. So $\mathbb{Z}_{24} \ncong D_{12}, \mathfrak{S}_4$.

Now write out the cycle types for \mathfrak{S}_4 :

form of decomp.	order	how many
into disjoint cycles		such elements?
(\cdots)	4	6
$(\cdots)(\cdot)$	3	8
$(\cdot \cdot)(\cdot \cdot)$	2	3
$(\cdot \cdot)(\cdot)(\cdot)$	2	6
$(\cdot)(\cdot)(\cdot)(\cdot)$	1	1

The last row is just the identity element; the two rows above it indicate that there are 3 + 6 = 9 elements of order 2 in \mathfrak{S}_4 . Now D_{12} has 13 elements of order 2: the 12 reflections { $hr^a \mid a = 0, 1, ..., 11$ }, and one 180°-rotation r^6 . So $D_{12} \ncong \mathfrak{S}_4$.

(iv) $|V| = |\mathbb{Z}_4| = 4$. The orders of elements are 1, 2, 2, 2 for *V*, and 1, 4, 2, 4 for \mathbb{Z}_4 . So $V \ncong \mathbb{Z}_4$.

(v) All cyclic groups of order *N* are isomorphic to $(\mathbb{Z}_N, +)$. Just write down the homomorphism from $\mathbb{Z}_N \to \langle \alpha \rangle$ sending $\overline{1} \mapsto \alpha$ hence $\overline{m} \mapsto \alpha^m$.

We now formalize a construction touched on in II.C.3(iv):

II.E.9. DEFINITION. The **direct product** of two groups *H* and *K* is (a group)

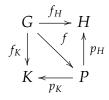
$$H \times K := \{(h,k) \mid h \in H, k \in K\}$$

with $(h,k) \cdot (h',k') := (hh',kk')$, $(h,k)^{-1} = (h^{-1},k^{-1})$, and $1_{H \times K} = (1_H, 1_K)$. [If *H*, *K* are abelian, we will frequently write this additively: (h,k) + (h',k') = (h+h',k+k'), -(h,k) = (-h,-k), and $0_{H \times K} = (0_H, 0_K)$.]

II.E.10. ALTERNATE DEFINITION. A group *P* is a **direct product** of groups *H* and *K* if there exist homomorphisms $p_H: P \rightarrow H$ and

30

 $p_K: P \to K$ such that for all groups G and homomorphisms $f_H: G \to H$ and $f_K: G \to K$, there exists a unique homomorphism $f: G \to P$ which makes



commute.

This kind of characterization of direct products is called *universal*, and the italicized statement their *universal property*. In the HW, you will check that $P = H \times K$ (from II.E.9) indeed is a direct product in this sense (of II.E.10).

Now clearly $|H \times K| = |H| \cdot |K|$, which brings us to the

II.E.11. DIRECT PRODUCT THEOREM. Let $H, K \leq G$. Put $HK := \{hk \mid h \in H, k \in K\}$. (This is not necessarily a group!) Consider the possible assumptions

(A)
$$hk = kh$$
 ($\forall h \in H, k \in K$)
(B) $H \cap K = \{1_G\}.$

Then

 $\begin{array}{l} (i) \ (A) \implies HK \leq G \\ (ii) \ (A) + (B) \implies HK \cong H \times K \\ (iii) \ (A) + (B) + HK = G \implies G \cong H \times K \\ (iv) \ (A) + (B) + \ |G| < \infty + \ |H||K| = |G| \implies G \cong H \times K. \end{array}$

PROOF. (*i*) We only need to check that $1 \in HK$, $(hk)(h'k') = hh'kk' \in HK$ (by (A)), and $(hk)^{-1} = (kh)^{-1} = h^{-1}k^{-1} \in HK$ (again by (A)).

(*ii*) Define $\varphi : H \times K \to HK$ by $\varphi(h,k) := hk$. This is a homomorphism since $\varphi(h,k)\varphi(h',k') = hkh'k' = hh'kk' = \varphi(hh',kk') = \varphi((h,k) \cdot (h',k'))$ (by (A)), injective because $1 = \varphi(h,k) = hk \Longrightarrow k^{-1} = h \in H \cap K = \{1\} \implies (h,k) = (1,1)$ (by (B)), and obviously surjective by the description of *HK*.

(*iii*) is clear from (*ii*).

(*iv*) By (*i*), $G \ge HK$, so

$$|G| \ge |HK| \stackrel{\text{(ii)}}{=} |H \times K| = |H||K| = |G|$$

....

forces |G| = |HK|. Hence G = HK, whence (by (*iii*)) $G \cong H \times K$.

II.E.12. EXAMPLE. Given $r, s \in \mathbb{N}$, let $\ell := \operatorname{lcm}(r, s), g := \operatorname{gcd}(r, s)$. Put $\tilde{s} := s/g \in \mathbb{N}$ and $G := \mathbb{Z}_r \times \mathbb{Z}_s$. Now let H denote the isomorphic image of $\mathbb{Z}_\ell \hookrightarrow \mathbb{Z}_r \times \mathbb{Z}_s$ (via⁹ $\bar{a} \mapsto (\bar{a}, \bar{a})$), and K denote the isomorphic image of $\mathbb{Z}_g \hookrightarrow \mathbb{Z}_r \times \mathbb{Z}_s$ (via¹⁰ $\bar{b} \mapsto (\bar{0}, \overline{b}\tilde{s})$). Since $\ell g = rs$, we get |H||K| = |G|.

Now in II.E.11, (A) holds since *G* is abelian. To see (B), we need $H \cap K = \{(\bar{0}, \bar{0})\}$. Take $(\bar{a}, \bar{a}) \equiv (\bar{0}, \overline{bs}) \in H \cap K \subset \mathbb{Z}_r \times \mathbb{Z}_s$. It's enough to show that the left-hand side is zero, i.e. $a \equiv 0 \mod r$ and mod *s*. We already have $a \equiv 0$ and $a \equiv b\tilde{s}$, which yield r|a and $\tilde{s}|s|(a - b\tilde{s})$. Hence $r, \tilde{s}|a$; and since *r* and \tilde{s} are relatively prime, we get $\ell = r\tilde{s}|a$. But $r, s|\ell$, and so r, s|a as desired. At this point, by II.E.11(*iv*) we obtain $H \times K \cong G$, or

$$\mathbb{Z}_{\ell} \times \mathbb{Z}_{g} \cong \mathbb{Z}_{r} \times \mathbb{Z}_{s}.$$

II.E.13. EXAMPLE. The special case $\mathbb{Z}_{rs} \xrightarrow{\cong} \mathbb{Z}_r \times \mathbb{Z}_s$ for (r, s) = 1 is also valid for multiplicative groups:

$$\varphi \colon \mathbb{Z}_{rs}^* \xrightarrow{\cong} \mathbb{Z}_r^* \times \mathbb{Z}_s^*$$
$$\bar{a} \longmapsto (\bar{a}, \bar{a}).$$

[This is clearly also a multiplicative homomorphism, and so invertible congruence classes (mod *rs*) go to pairs of such. For surjectivity, the point is to use the surjectivity of $\mathbb{Z}_{rs} \to \mathbb{Z}_r \times \mathbb{Z}_s$ that we already know. Given $(\bar{b}, \bar{c}) \in \mathbb{Z}_r^* \times \mathbb{Z}_s^*$, there is $(\bar{\beta}, \bar{\gamma}) \in \mathbb{Z}_r^* \times \mathbb{Z}_s^*$ with $\overline{\beta b} = \bar{1}$ and $\overline{\gamma c} = \bar{1}$; and that surjectivity yields $\bar{a}, \bar{a} \in \mathbb{Z}_{rs}$ with $(\bar{a}, \bar{a}) = (\bar{b}, \bar{c})$

32

⁹In more detail, this sends $a \mod \ell$ to $(a \mod r, a \mod s)$. Since $r, s|\ell$, this makes sense. The map is injective because if \bar{a} goes to $(\bar{0}, \bar{0})$, this means that r, s|a, so that their lcm $\ell|a$ and the original \bar{a} was $\bar{0}$.

¹⁰Here $g|b \implies s = g\tilde{s}|b\tilde{s}$, so it is well-defined.

and $(\bar{\alpha}, \bar{\alpha}) = (\bar{\beta}, \bar{\gamma})$. So we get $\bar{a}\bar{\alpha} \stackrel{\varphi}{\mapsto} (\bar{b}\bar{\beta}, \bar{c}\bar{\gamma}) = (\bar{1}, \bar{1})$. Since φ is injective on a set-theoretic level, $\bar{a}\bar{\alpha}$ must be $= \bar{1}$, hence $\bar{a} \in \mathbb{Z}_{rs}^*$.]

This example has a beautiful number-theoretic application.

II.E.14. PROPOSITION. The Euler phi-function

$$\phi(n) = n \prod_{\substack{p \mid n \\ p \text{ prime}}} (1 - \frac{1}{p}).$$

PROOF. Write the prime factorization of n

$$n=p_1^{e_1}\cdots p_t^{e_t}.$$

Inductively applying II.E.13,

$$\mathbb{Z}_n^*\cong\mathbb{Z}_{p_1^{e_1}}^*\times\cdots\times\mathbb{Z}_{p_t^{e_t}}^*$$
,

and taking orders on both sides gives

$$\phi(n) = \prod_i \phi(p_i^{e_i}).$$

Now, for a prime *p*, everything in $\{0, 1, ..., p^e - 1\}$ is relatively prime to p^e except for multiples of *p*. As there are p^{e-1} such multiples,

$$\phi(p^{e}) = p^{e} - p^{e-1} = p^{e}(1 - \frac{1}{p}),$$

so $\phi(n) = \prod_{i} p_{i}^{e_{i}} \prod_{i} (1 - \frac{1}{p_{i}}) = n \prod_{i} (1 - \frac{1}{p_{i}}).$

II.E.15. EXAMPLES. (i) $D_6 \cong D_3 \times \mathbb{Z}_2$: apply II.E.11(iv) to $G = D_6$, $H = \langle r^3 \rangle \cong \mathbb{Z}_2$, and $K = \langle r^2, h \rangle \cong D_3$. (Think of a regular triangle inside a regular hexagon, sharing 3 of its vertices.) Since $H = \{1, r^3\}$ and $K = \{1, r^2, r^4, h, hr^2, hr^4\}$, we have $H \cap K = \{1\}$; $|H||K| = 2 \cdot 6 = 12 = |D_6|$; and r^3 commutes with powers of r, and also with h (in general, $r^i h = hr^{-i}$, but $r^3 = r^{-3}$ in D_6).

(ii) $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$: use $H = \langle (12)(34) \rangle$ and $K = \langle (14)(23) \rangle$, same idea as above.