II.F. Group actions and Cayley's theorem

II.F.1. Definition. Let X be a set and G a group. An action of G on X is a function

$$
\begin{aligned}
G \times X & \rightarrow \mathrm{X} \\
(g, x) & \mapsto g \cdot x
\end{aligned}
$$

satisfying:
(i) $(g h) \cdot x=g$.(h.x) for all $g, h \in G$ and $x \in X$; and
(ii) $1_{G} \cdot x=x$ for all $x \in \mathrm{X}$.

A set X with G-action is called a G-set.
II.F.2. Proposition. A G-action on X is the same thing as a homomorphism $\varphi: G \rightarrow \mathfrak{S}_{X}$.

Proof. Given an action, $x \mapsto g . x$ is a permutation of X (i.e. bijection from X to itself), since

$$
\begin{aligned}
& g^{-1} \cdot(g \cdot x) \stackrel{(\mathrm{i})}{=}\left(g^{-1} g\right) \cdot x=1 \cdot x \stackrel{(\mathrm{ii})}{=} x \Longrightarrow g \text { 1-to- } 1 \\
& g \cdot\left(g^{-1} \cdot x\right) \stackrel{(\mathrm{i})}{=}\left(g g^{-1}\right) \cdot x=1 \cdot x \stackrel{(\mathrm{ii})}{=} x \Longrightarrow g \text { onto. }
\end{aligned}
$$

Setting $\varphi(g) x:=g \cdot x$ therefore exhibits $\varphi(g)$ as an element of $\mathfrak{S}_{\mathrm{X}}$. This is a homomorphism because

$$
\begin{aligned}
\varphi(g) \varphi(h) x=g \cdot(h \cdot x) \stackrel{(\mathrm{i})}{=}(g h) \cdot x=\varphi(g h) x & (\forall x) \\
& \Longrightarrow \varphi(g) \varphi(h)=\varphi(g h)
\end{aligned}
$$

Conversely, given φ, define $g \cdot x=\varphi(g) x$.
I find $\varphi(g) x$ more notationally confusing than $g \cdot x$, but viewing an action as a homomorphism $\varphi: G \rightarrow \mathfrak{S}_{X}$ is conceptually useful. If φ is injective, we call the action faithful or effective. In that case the action presents G as a subgroup of \mathfrak{S}_{X} (cf. II.E.5).
II.F.3. Definition. Let G act on X. The orbit of x is the subset

$$
G(x):=\{g \cdot x \mid g \in G\} \subset X
$$

consisting of its " G-translates", and the stabilizer of x is the subgroup 11

$$
G_{x}:=\{g \in G \mid g \cdot x=x\} \leq G
$$

of elements "fixing" x. The action of G is transitive if $G(x)=\mathrm{X}$ (for some, hence any, x).
II.F.4. EXAMPLES. (i) $G=(\mathbb{Z},+)$ acts on $X=\mathbb{R}$ by translation:

$$
n . r:=r+n \quad(r \in \mathbb{R}, n \in \mathbb{Z}) .
$$

[Check: $\left(n_{1}+n_{2}\right) \cdot r=r+n_{1}+n_{2}=\left(n_{1} \cdot r\right)+n_{2}=n_{2} \cdot\left(n_{1} \cdot r\right)$; and $0 . r=r+0=r$.] Let $x \in \mathbb{R}$. The orbit is $G(x)=\{x+n \mid n \in \mathbb{Z}\}$ and the stabilizer is $G_{x}=\{0\}$.
(ii) "Tautological" examples:

- $G=\mathfrak{S}_{n}$ acts on $X=\{1, \ldots, n\}$ by

$$
\sigma \cdot a:=\sigma(a) \quad\left(\sigma \in \mathfrak{S}_{n}, a \in X\right)
$$

We have $G(a)=X$ and $G_{a} \cong \mathfrak{S}_{n-1}$, where the \mathfrak{S}_{n-1} arises from permutations of $\{1, \ldots, n\} \backslash\{a\}$.

- $G L_{n}(\mathbb{R})$ acts on $\mathrm{X}=\mathbb{R}^{n}$ by matrix multiplication.
(iii) D_{6} acts on $X=\{1, \ldots, 6\}$ by viewing X as the vertices of a regular hexagon:

It's helpful to use homomorphism notation here:

$$
\begin{aligned}
& \varphi(r)=(123456) \\
& \varphi(h)=(26)(35) .
\end{aligned}
$$

Since D_{6} is generated by $r, h, \varphi\left(D_{6}\right)=\langle(123456),(26)(35)\rangle \leq \mathfrak{S}_{6}$.

[^0](iv) The group S_{T} of rotational symmetries of the regular tetrahedron acts faithfully on its set of vertices $X=\{1,2,3,4\}$. Viewing this as an embedding (i.e. injective homomorphism) $\varphi: S_{T} \hookrightarrow \mathfrak{S}_{4}$ realizes S_{T} as \mathfrak{A}_{4}. This is because $\varphi\left(S_{T}\right)$ contains all the 3-cycles, like (123), which we may see as follows:

Since 3-cycles already generate \mathfrak{A}_{4}, we don't need more pictures, but the other type of element - the products of disjoint transpositions — can be visualized too, e.g. (13)(24):

On the other hand there are no single transpositions such as (12). (We are not allowing reflections.) So

$$
\mathfrak{A}_{4} \leq \varphi\left(S_{T}\right)<\mathfrak{S}_{4} \quad \Longrightarrow \quad \mathfrak{A}_{4}=\varphi\left(S_{T}\right)
$$

using Lagrange's theorem (how?).
(v) One can play the same game with the group S_{C} of rotational symmetries of the cube, acting (faithfully) on ...

- ... the vertex set: $S_{C} \hookrightarrow \mathfrak{S}_{8}$
- ... the edge set: $S_{C} \hookrightarrow \mathfrak{S}_{12}$
- . . . the face set: $S_{C} \hookrightarrow \mathfrak{S}_{6}$
- . . . the set of interior diagonals: $S_{C} \hookrightarrow \mathfrak{S}_{4}$

where "interior diagonals" connect antipodal points of the cube, as shown. Let X be the 4 -element set comprising these diagonals. The following table describes the non-identity elements of S_{C} :

rotation type	action on X	\# of possible axes	possible angles	total \# of elements
about facet midpoints	4-cycles, $(\cdot \cdot)(\cdot \cdot) \text { 's }$	3	$\begin{gathered} 90^{\circ}, 180^{\circ} \\ 270^{\circ} \end{gathered}$	$3 \cdot 3=9$
about edge midpoints	2-cycles	6	180°	$6 \cdot 1=6$
about vertices (on the diagonals)	3-cycles	4	$120^{\circ}, 240^{\circ}$	$4 \cdot 2=8$

Adding the identity, we see that S_{C} has at least 24 elements. Since the action on X is faithful, it can have at most $4!=24$ elements. Applying II.E. 7 to the homomorphism $\varphi: S_{C} \hookrightarrow \mathfrak{S}_{4}$, we see that $S_{C} \cong \mathfrak{S}_{4}$.

The example just concluded should have convinced you that there are many natural ways of looking at some groups as subgroups of permutation groups. But there is one "canonical" way:
II.F.5. CAYLEY's THEOREM. Every group G is a subgroup of the symmetric group \mathfrak{S}_{G}. (In particular, if $|G|=n$ is finite, then G is a subgroup of \mathfrak{S}_{n}.)

Proof. Let G act on itself $(X=G)$ by left translation:

$$
g \cdot g^{\prime}:=g g^{\prime}
$$

Clearly $(g h) . g^{\prime}=g h g^{\prime}=g .\left(h . g^{\prime}\right)$ because group multiplication is associative; and also $1 . g^{\prime}=1 g^{\prime}=g^{\prime}$. By II.F.2, this yields a homomorphism $\varphi: G \rightarrow \mathfrak{S}_{G}$. It is injective because if $g \in G$ has $\varphi(g)=\operatorname{id}_{G}$, then $g=g 1=g .1=\varphi(g) 1=\operatorname{id}_{G}(1)=1$. So φ gives an isomorphism from G onto its image $\varphi(G) \leq \mathfrak{S}_{G}$.
II.F.6. REMARK. We could also have used right translation in the proof, i.e.

$$
g \cdot g^{\prime}:=g^{\prime} g^{-1}
$$

This works because

$$
g \cdot\left(h \cdot g^{\prime}\right)=g \cdot\left(g^{\prime} h^{-1}\right)=g^{\prime} h^{-1} g^{-1}=g^{\prime}(g h)^{-1}=(g h) \cdot g^{\prime} .
$$

Notice that the actions in the proof and remark aren't so interesting: the orbit of any element is the entire group. Fortunately, groups also act on themselves in a more interesting way, which is our next topic.

[^0]: ${ }^{11}$ [Jacobson]'s notation: $\operatorname{Stab}(x)$.

