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II.F. Group actions and Cayley’s theorem

II.F.1. DEFINITION. Let X be a set and G a group. An action of G
on X is a function

G× X→ X

(g, x) 7→ g.x

satisfying:
(i) (gh).x = g.(h.x) for all g, h ∈ G and x ∈ X; and
(ii) 1G.x = x for all x ∈ X.
A set X with G-action is called a G-set.

II.F.2. PROPOSITION. A G-action on X is the same thing as a homo-
morphism ϕ : G → SX.

PROOF. Given an action, x 7→ g.x is a permutation of X (i.e. bijec-
tion from X to itself), since

g−1.(g.x)
(i)
= (g−1g).x = 1.x

(ii)
= x =⇒ g 1-to-1

g.(g−1.x)
(i)
= (gg−1).x = 1.x

(ii)
= x =⇒ g onto.

Setting ϕ(g)x := g.x therefore exhibits ϕ(g) as an element of SX.
This is a homomorphism because

ϕ(g)ϕ(h)x = g.(h.x)
(i)
= (gh).x = ϕ(gh)x (∀x)

=⇒ ϕ(g)ϕ(h) = ϕ(gh).

Conversely, given ϕ, define g.x = ϕ(g)x. �

I find ϕ(g)x more notationally confusing than g.x, but viewing
an action as a homomorphism ϕ : G → SX is conceptually useful. If
ϕ is injective, we call the action faithful or effective. In that case the
action presents G as a subgroup of SX (cf. II.E.5).

II.F.3. DEFINITION. Let G act on X. The orbit of x is the subset

G(x) := {g.x | g ∈ G} ⊂ X
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consisting of its “G-translates”, and the stabilizer of x is the sub-
group11

Gx := {g ∈ G | g.x = x} ≤ G

of elements “fixing” x. The action of G is transitive if G(x) = X (for
some, hence any, x).

II.F.4. EXAMPLES. (i) G = (Z,+) acts on X = R by translation:

n.r := r + n (r ∈ R, n ∈ Z).

[Check: (n1 + n2).r = r + n1 + n2 = (n1.r) + n2 = n2.(n1.r); and
0.r = r + 0 = r.] Let x ∈ R. The orbit is G(x) = {x + n | n ∈ Z} and
the stabilizer is Gx = {0}.

(ii) “Tautological” examples:

• G = Sn acts on X = {1, . . . , n} by

σ.a := σ(a) (σ ∈ Sn, a ∈ X).

We have G(a) = X and Ga ∼= Sn−1, where the Sn−1 arises from
permutations of {1, . . . , n} \ {a}.
• GLn(R) acts on X = Rn by matrix multiplication.

(iii) D6 acts on X = {1, . . . , 6} by viewing X as the vertices of a regu-
lar hexagon:

1

23

4

5 6

h: flip
(r: rotation)

It’s helpful to use homomorphism notation here:

ϕ(r) = (123456)

ϕ(h) = (26)(35).

Since D6 is generated by r, h, ϕ(D6) = 〈(123456), (26)(35)〉 ≤ S6.

11[Jacobson]’s notation: Stab(x).
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(iv) The group ST of rotational symmetries of the regular tetrahedron
acts faithfully on its set of vertices X = {1, 2, 3, 4}. Viewing this as
an embedding (i.e. injective homomorphism) ϕ : ST ↪→ S4 realizes
ST as A4. This is because ϕ(ST) contains all the 3-cycles, like (123),
which we may see as follows:

23

4 ← fix

1

Since 3-cycles already generate A4, we don’t need more pictures, but
the other type of element — the products of disjoint transpositions
— can be visualized too, e.g. (13)(24):

23

4

1

180◦

On the other hand there are no single transpositions such as (12).
(We are not allowing reflections.) So

A4 ≤ ϕ(ST) < S4 =⇒ A4 = ϕ(ST),

using Lagrange’s theorem (how?).

(v) One can play the same game with the group SC of rotational sym-
metries of the cube, acting (faithfully) on . . .

• . . . the vertex set: SC ↪→ S8

• . . . the edge set: SC ↪→ S12

• . . . the face set: SC ↪→ S6

• . . . the set of interior diagonals: SC ↪→ S4



II.F. GROUP ACTIONS AND CAYLEY’S THEOREM 37

where “interior diagonals” connect antipodal points of the cube, as
shown. Let X be the 4-element set comprising these diagonals. The
following table describes the non-identity elements of SC:

rotation type action on X
# of

possible
axes

possible
angles

total
# of

elements

about facet midpoints

4-cycles,
(··)(··)’s

3
90◦, 180◦

270◦
3 · 3 = 9

about edge midpoints

2-cycles 6 180◦ 6 · 1 = 6

about vertices

(on the diagonals)

3-cycles 4 120◦, 240◦ 4 · 2 = 8

Adding the identity, we see that SC has at least 24 elements. Since
the action on X is faithful, it can have at most 4! = 24 elements.
Applying II.E.7 to the homomorphism ϕ : SC ↪→ S4, we see that
SC
∼= S4.

The example just concluded should have convinced you that there
are many natural ways of looking at some groups as subgroups of
permutation groups. But there is one “canonical” way:

II.F.5. CAYLEY’S THEOREM. Every group G is a subgroup of the sym-
metric group SG. (In particular, if |G| = n is finite, then G is a subgroup
of Sn.)
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PROOF. Let G act on itself (X = G) by left translation:

g.g′ := gg′.

Clearly (gh).g′ = ghg′ = g.(h.g′) because group multiplication is as-
sociative; and also 1.g′ = 1g′ = g′. By II.F.2, this yields a homomor-
phism ϕ : G → SG. It is injective because if g ∈ G has ϕ(g) = idG,
then g = g1 = g.1 = ϕ(g)1 = idG(1) = 1. So ϕ gives an isomor-
phism from G onto its image ϕ(G) ≤ SG. �

II.F.6. REMARK. We could also have used right translation in the
proof, i.e.

g.g′ := g′g−1.

This works because

g.(h.g′) = g.(g′h−1) = g′h−1g−1 = g′(gh)−1 = (gh).g′.

Notice that the actions in the proof and remark aren’t so interest-
ing: the orbit of any element is the entire group. Fortunately, groups
also act on themselves in a more interesting way, which is our next
topic.


