II.F. Group actions and Cayley's theorem

II.F.1. DEFINITION. Let X be a set and *G* a group. An **action of G on X** is a function

$$G \times X \to X$$
$$(g, x) \mapsto g.x$$

satisfying:

(i) (gh).x = g.(h.x) for all $g, h \in G$ and $x \in X$; and (ii) $1_G.x = x$ for all $x \in X$.

A set X with *G*-action is called a *G*-set.

II.F.2. PROPOSITION. A *G*-action on X is the same thing as a homomorphism $\varphi: G \to \mathfrak{S}_X$.

PROOF. *Given* an action, $x \mapsto g.x$ is a permutation of X (i.e. bijection from X to itself), since

$$g^{-1}.(g.x) \stackrel{\text{(i)}}{=} (g^{-1}g).x = 1.x \stackrel{\text{(ii)}}{=} x \implies g \text{ 1-to-1}$$
$$g.(g^{-1}.x) \stackrel{\text{(i)}}{=} (gg^{-1}).x = 1.x \stackrel{\text{(ii)}}{=} x \implies g \text{ onto.}$$

Setting $\varphi(g)x := g.x$ therefore exhibits $\varphi(g)$ as an element of \mathfrak{S}_X . This is a homomorphism because

$$\varphi(g)\varphi(h)x = g.(h.x) \stackrel{\text{(i)}}{=} (gh).x = \varphi(gh)x \quad (\forall x)$$
$$\implies \qquad \varphi(g)\varphi(h) = \varphi(gh).$$

Conversely, given φ , define $g.x = \varphi(g)x$.

I find $\varphi(g)x$ more notationally confusing than g.x, but viewing an action as a homomorphism $\varphi: G \to \mathfrak{S}_X$ is conceptually useful. If φ is injective, we call the action *faithful* or *effective*. In that case the action presents *G* as a subgroup of \mathfrak{S}_X (cf. II.E.5).

II.F.3. DEFINITION. Let *G* act on X. The **orbit** of *x* is the subset

$$G(x) := \{g.x \mid g \in G\} \subset \mathsf{X}$$

consisting of its "*G*-translates", and the **stabilizer** of *x* is the subgroup¹¹

$$G_x := \{g \in G \mid g.x = x\} \le G$$

of elements "fixing" *x*. The action of *G* is **transitive** if G(x) = X (for some, hence any, *x*).

II.F.4. EXAMPLES. (i) $G = (\mathbb{Z}, +)$ acts on $X = \mathbb{R}$ by translation:

$$n.r := r + n \quad (r \in \mathbb{R}, n \in \mathbb{Z}).$$

[Check: $(n_1 + n_2).r = r + n_1 + n_2 = (n_1.r) + n_2 = n_2.(n_1.r)$; and 0.r = r + 0 = r.] Let $x \in \mathbb{R}$. The orbit is $G(x) = \{x + n \mid n \in \mathbb{Z}\}$ and the stabilizer is $G_x = \{0\}$.

(ii) "Tautological" examples:

• $G = \mathfrak{S}_n$ acts on $X = \{1, \ldots, n\}$ by

$$\sigma.a:=\sigma(a)\quad (\sigma\in\mathfrak{S}_n,\ a\in X).$$

We have G(a) = X and $G_a \cong \mathfrak{S}_{n-1}$, where the \mathfrak{S}_{n-1} arises from permutations of $\{1, \ldots, n\} \setminus \{a\}$.

• $GL_n(\mathbb{R})$ acts on $X = \mathbb{R}^n$ by matrix multiplication.

(iii) D_6 acts on $X = \{1, ..., 6\}$ by viewing X as the vertices of a regular hexagon:

It's helpful to use homomorphism notation here:

$$\varphi(r) = (123456)$$

 $\varphi(h) = (26)(35).$

Since D_6 is generated by $r, h, \varphi(D_6) = \langle (123456), (26)(35) \rangle \leq \mathfrak{S}_6$.

 $[\]overline{{}^{11}$ [**Jacobson**]'s notation: Stab(*x*).

II. GROUPS

(iv) The group S_T of *rotational* symmetries of the regular tetrahedron acts faithfully on its set of vertices $X = \{1, 2, 3, 4\}$. Viewing this as an embedding (i.e. injective homomorphism) $\varphi: S_T \hookrightarrow \mathfrak{S}_4$ realizes S_T as \mathfrak{A}_4 . This is because $\varphi(S_T)$ contains all the 3-cycles, like (123), which we may see as follows:

Since 3-cycles already generate \mathfrak{A}_4 , we don't need more pictures, but the other type of element — the products of disjoint transpositions — can be visualized too, e.g. (13)(24):

On the other hand there are no single transpositions such as (12). (We are not allowing reflections.) So

$$\mathfrak{A}_4 \leq \varphi(S_T) < \mathfrak{S}_4 \implies \mathfrak{A}_4 = \varphi(S_T),$$

using Lagrange's theorem (how?).

(v) One can play the same game with the group S_C of rotational symmetries of the cube, acting (faithfully) on . . .

- ... the vertex set: $S_C \hookrightarrow \mathfrak{S}_8$
- . . . the edge set: $S_C \hookrightarrow \mathfrak{S}_{12}$
- ... the face set: $S_C \hookrightarrow \mathfrak{S}_6$
- . . . the set of interior diagonals: $S_C \hookrightarrow \mathfrak{S}_4$

36

where "interior diagonals" connect antipodal points of the cube, as shown. Let X be the 4-element set comprising these diagonals. The following table describes the non-identity elements of S_C :

rotation type	action on X	# of possible axes	possible angles	total # of elements
about facet midpoints	4-cycles, $(\cdots)(\cdots)$'s	3	90°, 180° 270°	$3 \cdot 3 = 9$
about edge midpoints	2-cycles	6	180°	$6 \cdot 1 = 6$
about vertices (on the diagonals)	3-cycles	4	120°, 240°	$4 \cdot 2 = 8$

Adding the identity, we see that S_C has at least 24 elements. Since the action on X is faithful, it can have at most 4! = 24 elements. Applying II.E.7 to the homomorphism $\varphi \colon S_C \hookrightarrow \mathfrak{S}_4$, we see that $S_C \cong \mathfrak{S}_4$.

The example just concluded should have convinced you that there are *many* natural ways of looking at some groups as subgroups of permutation groups. But there is one "canonical" way:

II.F.5. CAYLEY'S THEOREM. Every group G is a subgroup of the symmetric group \mathfrak{S}_G . (In particular, if |G| = n is finite, then G is a subgroup of \mathfrak{S}_n .)

PROOF. Let *G* act on itself (X = G) by *left translation*:

$$g.g' := gg'.$$

Clearly (gh).g' = ghg' = g.(h.g') because group multiplication is associative; and also 1.g' = 1g' = g'. By II.F.2, this yields a homomorphism $\varphi \colon G \to \mathfrak{S}_G$. It is injective because if $g \in G$ has $\varphi(g) = \mathrm{id}_G$, then $g = g1 = g.1 = \varphi(g)1 = \mathrm{id}_G(1) = 1$. So φ gives an isomorphism from G onto its image $\varphi(G) \leq \mathfrak{S}_G$.

II.F.6. REMARK. We could also have used *right translation* in the proof, i.e.

$$g.g' := g'g^{-1}.$$

This works because

$$g.(h.g') = g.(g'h^{-1}) = g'h^{-1}g^{-1} = g'(gh)^{-1} = (gh).g'.$$

Notice that the actions in the proof and remark aren't so interesting: the orbit of any element is the entire group. Fortunately, groups also act on themselves in a more interesting way, which is our next topic.

38