34 II. GROUPS
ILF. Group actions and Cayley’s theorem

II.E1. DEFINITION. Let X be a set and G a group. An action of G
on X is a function

GxX—=X

(g,x) — g.x
satisfying:
(i) (gh).x = g.(h.x) forall g,h € G and x € X; and

(ii) 1g.x = x for all x € X.
A set X with G-action is called a G-set.

IL.LE.2. PROPOSITION. A G-action on X is the same thing as a homo-
morphism ¢: G — Ox.

PROOF. Given an action, x — g.x is a permutation of X (i.e. bijec-
tion from X to itself), since

(i

~

(g7'9)x =1x Dy — g 1-to-1

< (gg V) x=1x Wy — g onto.

g ' (gx)

IS

g.(g7 1)

Setting ¢(g)x := g.x therefore exhibits ¢(g) as an element of Sx.
This is a homomorphism because

(i)
9(@)p(h)x = g.(h.x) = (gh).x = p(gh)x (Vx)
= ¢(g)e(h) = g(gh).
Conversely, given ¢, define g.x = ¢(g)x. O
I find ¢(g)x more notationally confusing than g.x, but viewing
an action as a homomorphism ¢: G — &y is conceptually useful. If

@ is injective, we call the action faithful or effective. In that case the
action presents G as a subgroup of Sx (cf. IL.E.5).

II.LE3. DEFINITION. Let G act on X. The orbit of x is the subset

G(x):={gx|geG}CX
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consisting of its “G-translates”, and the stabilizer of x is the sub-
group!!
Gyr={g€G|gx=x}<G

of elements “fixing” x. The action of G is transitive if G(x) = X (for
some, hence any, x).

ILE4. EXAMPLES. (i) G = (Z, +) acts on X = R by translation:
nr:=r+n (reR, ne2z).

[Check: (n1 +np).r = r+ny+ny = (ny.r) + ny = np.(ny.r); and
0.r =r+0=r.] Letx € R. The orbitis G(x) = {x+n | n € Z} and
the stabilizer is G, = {0}.
(ii) “Tautological” examples:
e G=G,actsonX={1,...,n} by
ca:=o(a) (o€ &y acX).
We have G(a) = X and G, = &,,_1, where the &,,_1 arises from

permutations of {1,...,n}\ {a}.
e GL,(R) acts on X = R" by matrix multiplication.

(iii) Dg actson X = {1,...,6} by viewing X as the vertices of a regu-
lar hexagon:

1) h: flip

(r: rotation)

6

It’s helpful to use homomorphism notation here:
¢(r) = (123456)
¢(h) = (26)(35).
Since Dg is generated by 7, h, ¢(Dg) = ((123456), (26)(35)) < .

11[]acobson]’s notation: Stab(x).
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(iv) The group St of rotational symmetries of the regular tetrahedron
acts faithfully on its set of vertices X = {1,2,3,4}. Viewing this as
an embedding (i.e. injective homomorphism) ¢: St — &4 realizes
St as 4. This is because ¢(St) contains all the 3-cycles, like (123),
which we may see as follows:

4 «— fix

Since 3-cycles already generate 24, we don’t need more pictures, but
the other type of element — the products of disjoint transpositions
— can be visualized too, e.g. (13)(24):

.~QSO°

On the other hand there are no single transpositions such as (12).
(We are not allowing reflections.) So

Ql4 < (P(ST) < 64 — 9(4 = QO(ST),

using Lagrange’s theorem (how?).

(v) One can play the same game with the group Sc of rotational sym-
metries of the cube, acting (faithfully) on ...
e ... the vertex set: S¢c — Gg
o ... theedgeset: Sc — &1
e ... thefaceset: Sc — &g
e ...thesetofinterior diagonals: S¢c — &4




ILF. GROUP ACTIONS AND CAYLEY’'S THEOREM

37

where “interior diagonals” connect antipodal points of the cube, as
shown. Let X be the 4-element set comprising these diagonals. The

following table describes the non-identity elements of Sc:

# of ) total
. . , possible
rotation type action on X | possible # of
angles
axes elements
about facet midpoints
1] 4-cycl °, 180°
cycles, 3 90°, 180 3.3_9
(-)()’s 270°
about edge midpoints
\ 2-cycles 6 180° | 6-1=6
about vertices
(on the diagonals)
3-cycles 4 120°,240° | 4-2 =38

Adding the identity, we see that Sc has at least 24 elements. Since
the action on X is faithful, it can have at most 4! = 24 elements.
Applying ILE.7 to the homomorphism ¢: Sc < &4, we see that

Sc X Gy

The example just concluded should have convinced you that there
are many natural ways of looking at some groups as subgroups of
permutation groups. But there is one “canonical” way:

ILE5. CAYLEY’'S THEOREM. Every group G is a subgroup of the sym-
metric group Sg. (In particular, if |G| = n is finite, then G is a subgroup

of G,.)
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PROOF. Let G act onitself (X = G) by left translation:

g8 =8¢
Clearly (g¢h).¢’ = ghg' = ¢.(h.g") because group multiplication is as-
sociative; and also 1.¢' = 1¢’ = ¢’. By ILE.2, this yields a homomor-
phism ¢: G — Sg. It is injective because if ¢ € G has ¢(g) = idg,
then ¢ = ¢1 = ¢.1 = ¢(g)1 = idg(1) = 1. So ¢ gives an isomor-
phism from G onto its image ¢(G) < &g. O

ILF.6. REMARK. We could also have used right translation in the
proof, i.e.
/ / 71.

88 ‘=88
This works because

g(hg)=g(gh ) =gn g =4 (gh)™" = (gh).g"

Notice that the actions in the proof and remark aren’t so interest-
ing: the orbit of any element is the entire group. Fortunately, groups
also act on themselves in a more interesting way, which is our next
topic.



