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II.G. Conjugacy and the orbit-stabilizer theorem

I1.G.1. PROPOSITION. Let ¢ € G. Mapping h — ghg ™! defines an
isomorphism ig: G — G.

PROOF. HW. [Hint: use IL.E.6(ii).] O]

I1.G.2. DEFINITION. (i) 1, is called conjugation by g.
(ii) ¢, 8" € G are said to be conjugate if there is a ¢ € G such that
8" =14(8)
(iii) H', H" < G are said to be conjugate if there is a ¢ € G such that
H" =1,(H).

I1.G.3. PROPOSITION. (i) Conjugate groups are isomorphic.
(ii) Conjugate elements are of the same order.

PROOF. The restriction of 1¢ gives the isomorphism in (i), and (ii)
follows from (i) by taking H' = (¢’), H" = (¢"'). O

Now consider the action of G on itself by conjugation

(ILG.4) 880 := 8808 -

The orbits of this action are called the conjugacy classes of G. There
are two notational ambiguities to get rid of here: first, since G can
act on itself in more than one way, we don’t write G(g); second, if
an element lies in a subgroup H < G, we need to distinguish G- and
H-orbits. (Even if the G-orbit lies in H, the H-orbit can be smaller.)

I.G.5. DEFINITION. Let go € G. The conjugacy class of gp in G
is
clc(go) == {8808 [ g € G}
The conjugacy class of 1 € G is always just the singleton {1}.

I.G.6. PROPOSITION. G is abelian if and only if all of its conjugacy
classes have one element.

PROOF. gh = hg (Vg,h € G) < ghg ! =h (Vg,h € G) <
cclg(h) = {h} (Vh € G). O
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So let’s find the conjugacy classes in a couple of groups.

II.G.7. EXAMPLE. Let’s consider G = &3. We know that cclg, (1) =
{1}. Computing, one finds that

ccle, ((12)) = {1(12)177, (12)(12)(12) "% (13)(12)(13) 7,
(123)(12)(123)71; (132)(12)(132) 1, (23)(12)(23) 1}
= {(12); (23); (13)}
= cclg, ((13)) = cclg,((23)),

consists of all the transpositions, while

ccle, ((123)) = {(12)(123)(12) 7 1,.. .}
= {(132), (123)} = ccls,((132))

contains both 3-cycles.

Now, rather than using brute force, we could cut down our work
by noticing that elements of cclg, ((12)) must (like (12)) have order
2, hence be transpositions. But there is a still more powerful result.

I1.G.8. DEFINITION. The cycle-structure of a permutationc € &,
is the sequence
by = # of fixed elements
by = # of transpositions
by = # of 3-cycles

by = #of n-cycles
in ¢’s complete factorization into disjoint cycles. (More commonly,

we represent it symbolically, viz. (--)(--)(---)(-).)

I1.G.9. THEOREM. cclg, () consists of all permutations with the same
cycle-structure as o.

PROOF. Write o = (aya1z---ayq,) - - - (@x10x2 - - - akq,) s a prod-
uct of disjoint cycles (of lengths dy,...,dy), with each element of
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{1,...,n} appearing exactly once. For each € &,, we have

;70_17—1 — 17(1111012 .. 'ﬁ1d1)77_1 <. W(aklakz T akdk)ﬂ_l

= (n(a1)n(a12) - - -n(awa,)) - - - (n(ax)y(ax2) - - -1 (axa, )

by your last HW. That is, we just apply 7 to all the “contents”, which
preserves the disjointness (7 is bijective) and the lengths of the cy-
cles, hence the cycle structure. Finally, given any permutation with
the same cycle structure as o

o' = (bubiz- - b1gy) - (g -+ - by, )

7= a11412 - - - Akd,
bi1b1o - - - byg,

we have o/ = oy~ L. O

then taking

I1.G.10. EXAMPLE. Consider G = Ds. Recall that i = hr~! (and
h=h"1,and r~! = r%); that s,

-1

rhr ™! = rth = *h — " = r*

hh™t =1 it =T = R =

So cclp, (h) = {h,r*h,v*h,r®h = rh,r®h = r*h} = cclp,(r*h) = - -
and cclp,(r) = {r,7*}, cclp,(r?) = {r%, 3}, cclp, (1) = {1}. Ina
picture,

o Pk Ph

r 7’4 ‘ 7’2 1’3 ‘

displays the four conjugacy classes in Ds.

The conjugacy classes in the last two examples partition G into
disjoint subsets. This is true in general:

x~y <= 3g€Gsty=gxg
(x and y are conjugate)

defines an equivalence relation on G. The equivalence classes are the
conjugacy classes; and if we take one representative g; of each, then
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(by I.A.5) we have
(IL.G.11) G =] Jccl(gi)
i

More generally, if G acts on a set X and we define!®

x~y <<= yeGiG(x)
def.

<= |x,yinsame G-orbit| ()

then

~ is reflexive: x € G(x) = x ~x
~ is symmetric: clear from ()

~ is transitive: y = g.xandz =hy = z = h.(g.x) = hg.x.

hence defines an equivalence relation. Of course, X/~ is the set of
orbits G(x), which by I.A.5 are disjoint with union all of X. If |X| <
oo, and we pick one element x; in each orbit, then

(I1.G.12) X=]]Gx).

Now we turn to our first counting result — a sort of analogue of
Lagrange’s Theorem for group actions.

I1.G.13. EXAMPLE. First let’s look at the sizes of orbits and stabi-
lizers in the actions by conjugation from our last two examples:
(i) orbit: ccle,((12)) = {(12),(23), (13)} (3 elements)

stabilizer: (&3)(12) = {1,(12)} (2 elements)

...and |&3] =6=3"2.
(ii) orbit: cclp, (h) = {h,rh,r*h,r*h, r*h} (5 elements)

stabilizer: (Ds);, = {1,h} (2 elements)

...and |D5| =10=5-2.

It appears we are on to something. In the (big) statement that
follows, G/ G, will denote the set of left cosets of G in G.

1275 see the second “ <= ” below: the forward implication is trivial, since x €
G(x) too. Conversely, suppose x,y are in the same G-orbit G(z), viz. x = .z and
y=hz Thenhg lx=hg l¢gz=hz=y,soy € G(x).
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I1.G.14. THEOREM. Let x € X be fixed.
(i) There is a 1-to-1 correspondence between points in the orbit of x and
cosets of its stabilizer — that is, a bijective map of sets:

G(x) L G/G,
g.x — ¢Gy.
(ii) [Orbit-Stabilizer Theorem] If |G| < oo, then

G(x)] - [Gx| = |G-

(iii) If x,x" belong to the same orbit, then Gy and Gy are conjugate as
subgroups of G (hence of the same order/etc.).

(iv) If g, §' belong to the same (left) coset of G, then they act the same way
on X.

PROOF. (i) Wehave g.x = ¢'x <= x =g ¢x < ¢71¢' €
Gy <= ¢ '¢Gy = Gy <= ¢gGy = ¢'G,, which proves (1) is
well-defined and injective. Surjectivity is obvious.

(ii) LHS(*) has size |G(x)|; while RHS(t) has size |G/Gy| = # of
cosets of Gy, which by Lagrange’s Theorem is |G|/ |Gy|.

(iii) The calculation is: if ' = g.x, then h € Gy <= hx = x
— ghx = gx < ghgl.(¢x) = gx < ghg™! € Gy. So
Gy = 14(Gy).

(iv) is pretty much a direct verbal translation of (i). (]

We want to apply I1.G.14 to compute conjugacy classes. Recall
once more that in a group G, acting on itself by conjugation (and
x € G), the orbit

G(x) = {gxg~" | g € G} =t cclg(x)
is called the conjugacy class of x; while the stabilizer

Gr={ge€G|gxg ! =x} =Cg(x)
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is called the centralizer of x. The Orbit-Stabilizer Theorem then says
that

(ILG.15) lcclg(x)] - |Co(x)] = |G|

Next recall (Theorem I1.G.9) that for ¢ € &, cclg, (o) consists of all
permutations with the same cycle-structure as o. Since it is already the
cycle-structure which determines whether an element is in 2, it fol-
lows that

(I.G.16) ifo € 2,, then cclg, (o) C Ap.

Here is a counting result for conjugacy classes in &,,.

I1.G.17. PROPOSITION. The number of permutations in &, with cycle-
structure by, by, ..., by (cf. ILG.8) is

n!

PROOF. First, lay out the “chambers” into which you are going
to insert the elements {1,...,n} to get a cycle:

CHCE)E) G () () ete
N’ N—
b=3 b3=1 by=2

Choose an ordering of {1, ..., n} (there are n! possibilities) and plop
them down in that order. Now divide by the cyclic permutations
within each chamber (there are [T;_; kbe = 2b23b34bs . .. of these). Fi-
nally, divide out by permutations of chambers of the same length
(there are [T;_; by! of these). O

Before going on, you should reconceptualize this proof as an ap-
plication of (IL.G.15).

I1.G.18. EXAMPLES. (i) |ccle, ((12)(34)(56))| = 5o5m = 15.

(ii) |ccle, ((12345)(6))| = #&11,) = 144.
(ifi) |ccle, (1234)(56))| = Sy = 90

6!

The order of the centralizer is, in each case, T, ("
6
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Now in spite of I.G.16, we may not have cclg, () = ccly, (o) for
o e Uy,

I1.G.19. THEOREM. Given o € 2, one has EITHER

@) |ecly, (0)| = |eclg, (0)] <= Cg, (o) contains an odd permutation
equiv.

OR
D) |ccly, (0)] = 3|ccls, (0)] <= Cg,(0) C A

equiv.

In the second case, one says that the conjugacy class “breaks” in 2,,.
PROOF. By (I.G.15) (applied twice),

(I1.G.20) |ecly, (0)]|Car, ()] = [2n| = 36| = 3lccls, (0)]|Cs, (7).

If Cs,(0) C 2y, then Cy, (0) = Cg, (0) and so by (IL.G.20) |ccly, (0)| =
lecle, ()]

Otherwise, Cg, (0) contains an element of &,\2, (the odd per-
mutations), and Cy, (¢) < Cg, (¢), which by Lagrange means that

|Cs, (@)
[Ca, (0)]
But by (I1.G.20) ccly, (¢) C cclg,(0) = |edg, (0)||Ca, ()| >
3lecls, (0)]|Cs, (0)| =

> 2.

|Cs, (0)]
|Ca, ()]

)|
<2
)|
(hence = 2). It follows that |cclg, (0)| = |ccly, (0)]. O

I1.G.21. EXAMPLES. (i) All 3-cycles are conjugate in 2s: since “all
3-cycles” is a conjugacy class (of some o, say (123)) in S5, we are
claiming cclg,((123)) = ccly,((123)). By IL.G.19, it is enough to
show that Cg,((123)) contains an odd permutation —i.e., that (123)
commutes with an odd permutation; and (45) does the job.

(i) All 3-cycles are not conjugate in 2y: that is, ccly, ((123)) is not
all the 3-cycles (= cclg,((123))), and we are in case (II) of I1.G.19.
To check this, we need to compute Cg, ((123)): what permutations
1 satisfy 7(123)7 1 (= (5(1)n(2)5(3))) = (123)? Clearly just the
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cyclic group (

7lecls, ((123))
o Ui

——
(iii) How about ccly, ((123)(4567)) and ccly, ((123)(45678))?

(123)), which is indeed in 24 et |ccly, ((123))] =
|.

e 0 commutes with an odd permutation, namely (4567), and so ¢

has the same conjugacy classes in g and Gg.
e 77 commutes with only elements of the group ((123), (45678)) which

consists of even permutations. So |ccly, (77)] = 3|ccle, (7).

We mention in passing the conjugacy classes of a couple of other

groups: for Dy, (odd dihedral group) they are
(0, {r,7= 1y, {22, {7 {h b v?h,. . PP )

and for Dy, (even dihedral group)

{1}, {r,ril}, {1,2’1,72}, e, {r”fl,r*”H}, {r"};
{h,7?h,7*h,...,¥*"2n}, {rh,h,...,r*"" K}

These are obtained by repeatedly applying rh = hr~! as in IL.G.10.
There is also Hamilton’s famous quaternion group:

I1.G.22. DEFINITION. Q := {#1,&+i, +j, £k}, with ijk = i?

i?=k>=—1.

The conjugacy classes are {1}, {—1}, {i,—i}, {j, —j}, {k —k}.
For example, jij_1 = —jij = jij(kk) = j(ijk) k = —jk = iijk = —i.

I1.G.23. REMARK. Hamilton arrived at the multiplication table for

Q by “formally dividing vectors in R3”, allowing himself
¥ _ Re(¥)

X o« X § X
—=-, = 3=, and = =
px By Z 2 7 Re(®)

for any rotation Ry in the plane spanned by X and #. One is also

supposed to think ”§ -ij = X”, but don’t try to think too literally in

terms of linear transformations!

<
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Taking I, ], K to be the standard basis of R3, one can write (using
90° rotations' about I, J, and K respectively)

. _ K_ -] s._1_ =K I =1
i=f=% j=k=o, k=1=7

which Hamilton encoded in a diagram:

Furthermore, we have i’ = _T] = }K =X = % =k,
ji=g-%=1=—k=—jjandijk= .5 5 = —1,and soon.

Now, to be honest, there are problems with the idea of “divid-
ing vectors in R3”, since at the end of the day there can be no “3-
dimensional division algebra over IR” (as we'll see later this semes-
ter). In any case, we get the right nonabelian group of order 8 and
that’s all we care about presently!

130ne s supposed to think of i as “counterclockwise rotation around I” and so on.



