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II.G. Conjugacy and the orbit-stabilizer theorem

II.G.1. PROPOSITION. Let g ∈ G. Mapping h 7→ ghg−1 defines an
isomorphism ıg : G → G.

PROOF. HW. [Hint: use II.E.6(ii).] �

II.G.2. DEFINITION. (i) ıg is called conjugation by g.
(ii) g′, g′′ ∈ G are said to be conjugate if there is a g ∈ G such that
g′′ = ıg(g′).
(iii) H′, H′′ ≤ G are said to be conjugate if there is a g ∈ G such that
H′′ = ıg(H′).

II.G.3. PROPOSITION. (i) Conjugate groups are isomorphic.
(ii) Conjugate elements are of the same order.

PROOF. The restriction of ıg gives the isomorphism in (i), and (ii)
follows from (i) by taking H′ = 〈g′〉, H′′ = 〈g′′〉. �

Now consider the action of G on itself by conjugation

(II.G.4) g.g0 := gg0g−1.

The orbits of this action are called the conjugacy classes of G. There
are two notational ambiguities to get rid of here: first, since G can
act on itself in more than one way, we don’t write G(g); second, if
an element lies in a subgroup H ≤ G, we need to distinguish G- and
H-orbits. (Even if the G-orbit lies in H, the H-orbit can be smaller.)

II.G.5. DEFINITION. Let g0 ∈ G. The conjugacy class of g0 in G
is

cclG(g0) := {gg0g−1 | g ∈ G}.
The conjugacy class of 1 ∈ G is always just the singleton {1}.

II.G.6. PROPOSITION. G is abelian if and only if all of its conjugacy
classes have one element.

PROOF. gh = hg (∀g, h ∈ G) ⇐⇒ ghg−1 = h (∀g, h ∈ G) ⇐⇒
cclG(h) = {h} (∀h ∈ G). �
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So let’s find the conjugacy classes in a couple of groups.

II.G.7. EXAMPLE. Let’s consider G = S3. We know that cclS3(1) =
{1}. Computing, one finds that

cclS3((12)) = {1(12)1−1, (12)(12)(12)−1; (13)(12)(13)−1,

(123)(12)(123)−1; (132)(12)(132)−1, (23)(12)(23)−1}

= {(12); (23); (13)}

= cclS3((13)) = cclS3((23)),

consists of all the transpositions, while

cclS3((123)) = {(12)(123)(12)−1, . . .}

= {(132), (123)} = cclS3((132))

contains both 3-cycles.

Now, rather than using brute force, we could cut down our work
by noticing that elements of cclS3((12)) must (like (12)) have order
2, hence be transpositions. But there is a still more powerful result.

II.G.8. DEFINITION. The cycle-structure of a permutation σ ∈ Sn

is the sequence 

b1 = # of fixed elements
b2 = # of transpositions
b3 = # of 3-cycles

...
bn = # of n-cycles

in σ’s complete factorization into disjoint cycles. (More commonly,
we represent it symbolically, viz. (··)(··)(· · ·)(·).)

II.G.9. THEOREM. cclSn(σ) consists of all permutations with the same
cycle-structure as σ.

PROOF. Write σ = (a11a12 · · · a1d1) · · · (ak1ak2 · · · akdk
) as a prod-

uct of disjoint cycles (of lengths d1, . . . , dk), with each element of
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{1, . . . , n} appearing exactly once. For each η ∈ Sn, we have

ηση−1 = η(a11a12 · · · a1d1)η
−1 · · · η(ak1ak2 · · · akdk

)η−1

= (η(a11)η(a12) · · · η(a1d1)) · · · (η(ak1)η(ak2) · · · η(akdk
))

by your last HW. That is, we just apply η to all the “contents”, which
preserves the disjointness (η is bijective) and the lengths of the cy-
cles, hence the cycle structure. Finally, given any permutation with
the same cycle structure as σ

σ′ = (b11b12 · · · b1d1) · · · (bk1 · · · bkdk
)

then taking

η :=

(
a11a12 · · · akdk

b11b12 · · · bkdk

)
,

we have σ′ = ηση−1. �

II.G.10. EXAMPLE. Consider G = D5. Recall that rh = hr−1 (and
h = h−1, and r−1 = r4); that is,

rhr−1 = rrh = r2h =⇒ rahr−a = r2ah

hrh−1 = r−1hh−1 = r−1 =⇒ hrah−1 = r−a.

So cclD5(h) = {h, r2h, r4h, r6h = rh, r8h = r3h} = cclD5(r
2h) = · · ·

and cclD5(r) = {r, r4}, cclD5(r
2) = {r2, r3}, cclD5(1) = {1}. In a

picture,

h rh r2h r3h r4h

1 r r4 r2 r3

displays the four conjugacy classes in D5.

The conjugacy classes in the last two examples partition G into
disjoint subsets. This is true in general:

x ∼ y ⇐⇒ ∃ g ∈ G s.t. y = gxg−1

(x and y are conjugate)

defines an equivalence relation on G. The equivalence classes are the
conjugacy classes; and if we take one representative gi of each, then
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(by I.A.5) we have

(II.G.11) G = ä
i

ccl(gi).

More generally, if G acts on a set X and we define12

x ∼ y ⇐⇒
def.

y ∈ G(x)

⇐⇒ x, y in same G-orbit (∗)

then

∼ is reflexive: x ∈ G(x) =⇒ x ∼ x
∼ is symmetric: clear from (∗)
∼ is transitive: y = g.x and z = h.y =⇒ z = h.(g.x) = hg.x.

hence defines an equivalence relation. Of course, X/∼ is the set of
orbits G(x), which by I.A.5 are disjoint with union all of X. If |X| <
∞, and we pick one element xi in each orbit, then

(II.G.12) X = ä
i

G(xi).

Now we turn to our first counting result — a sort of analogue of
Lagrange’s Theorem for group actions.

II.G.13. EXAMPLE. First let’s look at the sizes of orbits and stabi-
lizers in the actions by conjugation from our last two examples:
(i) orbit: cclS3((12)) = {(12), (23), (13)} (3 elements)

stabilizer: (S3)(12) = {1, (12)} (2 elements)
. . . and |S3| = 6 = 3 · 2.

(ii) orbit: cclD5(h) = {h, rh, r2h, r3h, r4h} (5 elements)
stabilizer: (D5)h = {1, h} (2 elements)
. . . and |D5| = 10 = 5 · 2.

It appears we are on to something. In the (big) statement that
follows, G/Gx will denote the set of left cosets of Gx in G.

12To see the second “ ⇐⇒ ” below: the forward implication is trivial, since x ∈
G(x) too. Conversely, suppose x, y are in the same G-orbit G(z), viz. x = g.z and
y = h.z. Then hg−1.x = hg−1g.z = h.z = y, so y ∈ G(x).
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II.G.14. THEOREM. Let x ∈ X be fixed.
(i) There is a 1-to-1 correspondence between points in the orbit of x and
cosets of its stabilizer — that is, a bijective map of sets:

G(x)
(†)−→ G/Gx

g.x 7−→ gGx.

(ii) [Orbit-Stabilizer Theorem] If |G| < ∞, then

|G(x)| · |Gx| = |G|.

(iii) If x, x′ belong to the same orbit, then Gx and Gx′ are conjugate as
subgroups of G (hence of the same order/etc.).
(iv) If g, g′ belong to the same (left) coset of Gx, then they act the same way
on x.

PROOF. (i) We have g.x = g′.x ⇐⇒ x = g−1g′.x ⇐⇒ g−1g′ ∈
Gx ⇐⇒ g−1g′Gx = Gx ⇐⇒ gGx = g′Gx, which proves (†) is
well-defined and injective. Surjectivity is obvious.
(ii) LHS(†) has size |G(x)|; while RHS(†) has size |G/Gx| = # of
cosets of Gx, which by Lagrange’s Theorem is |G|/|Gx|.
(iii) The calculation is: if x′ = g.x, then h ∈ Gx ⇐⇒ h.x = x
⇐⇒ gh.x = g.x ⇐⇒ ghg−1.(g.x) = g.x ⇐⇒ ghg−1 ∈ Gx′ . So
Gx′ = ıg(Gx).
(iv) is pretty much a direct verbal translation of (i). �

We want to apply II.G.14 to compute conjugacy classes. Recall
once more that in a group G, acting on itself by conjugation (and
x ∈ G), the orbit

G(x) = {gxg−1 | g ∈ G} =: cclG(x)

is called the conjugacy class of x; while the stabilizer

Gx = {g ∈ G | gxg−1 = x} = CG(x)
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is called the centralizer of x. The Orbit-Stabilizer Theorem then says
that

(II.G.15) |cclG(x)| · |CG(x)| = |G|.

Next recall (Theorem II.G.9) that for σ ∈ Sn, cclSn(σ) consists of all
permutations with the same cycle-structure as σ. Since it is already the
cycle-structure which determines whether an element is in An, it fol-
lows that

(II.G.16) if σ ∈ An, then cclSn(σ) ⊂ An.

Here is a counting result for conjugacy classes in Sn.

II.G.17. PROPOSITION. The number of permutations in Sn with cycle-
structure b1, b2, . . . , bn (cf. II.G.8) is

n!
∏n

k=1 kbk bk!
.

PROOF. First, lay out the “chambers” into which you are going
to insert the elements {1, . . . , n} to get a cycle:

(··)(··)(··)︸ ︷︷ ︸
b2=3

(· · ·)︸ ︷︷ ︸
b3=1

(· · ··)(· · ··)︸ ︷︷ ︸
b4=2

etc.

Choose an ordering of {1, . . . , n} (there are n! possibilities) and plop
them down in that order. Now divide by the cyclic permutations
within each chamber (there are ∏n

k=1 kbk = 2b23b34b4 · · · of these). Fi-
nally, divide out by permutations of chambers of the same length
(there are ∏n

k=1 bk! of these). �

Before going on, you should reconceptualize this proof as an ap-
plication of (II.G.15).

II.G.18. EXAMPLES. (i) |cclS6((12)(34)(56))| = 6!
2·2·2·3! = 15.

(ii) |cclS6((12345)(6))| = 6!
(5·1!)(1·1!) = 144.

(iii) |cclS6(1234)(56))| = 6!
(4·1!)(2·1!) = 90.

The order of the centralizer is, in each case, 6!
|cclS6 (··· )|

.
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Now in spite of II.G.16, we may not have cclSn(σ) = cclAn(σ) for
σ ∈ An:

II.G.19. THEOREM. Given σ ∈ An, one has EITHER

(I) |cclAn(σ)| = |cclSn(σ)| ⇐⇒equiv.
CSn(σ) contains an odd permutation

OR
(II) |cclAn(σ)| = 1

2 |cclSn(σ)| ⇐⇒equiv.
CSn(σ) ⊂ An.

In the second case, one says that the conjugacy class “breaks” in An.

PROOF. By (II.G.15) (applied twice),

(II.G.20) |cclAn(σ)||CAn(σ)| = |An| = 1
2 |Sn| = 1

2 |cclSn(σ)||CSn(σ)|.

If CSn(σ) ⊂ An, then CAn(σ) = CSn(σ) and so by (II.G.20) |cclAn(σ)| =
1
2 |cclSn(σ)|.

Otherwise, CSn(σ) contains an element of Sn\An (the odd per-
mutations), and CAn(σ) < CSn(σ), which by Lagrange means that

|CSn(σ)|
|CAn(σ)|

≥ 2.

But by (II.G.20) cclAn(σ) ⊆ cclSn(σ) =⇒ |cclSn(σ)||CAn(σ)| ≥
1
2 |cclSn(σ)||CSn(σ)| =⇒

|CSn(σ)|
|CAn(σ)|

≤ 2

(hence = 2). It follows that |cclSn(σ)| = |cclAn(σ)|. �

II.G.21. EXAMPLES. (i) All 3-cycles are conjugate in A5: since “all
3-cycles” is a conjugacy class (of some σ, say (123)) in S5, we are
claiming cclS5((123)) = cclA5((123)). By II.G.19, it is enough to
show that CS5((123)) contains an odd permutation — i.e., that (123)
commutes with an odd permutation; and (45) does the job.

(ii) All 3-cycles are not conjugate in A4: that is, cclA4((123)) is not
all the 3-cycles (= cclS4((123))), and we are in case (II) of II.G.19.
To check this, we need to compute CS4((123)): what permutations
η satisfy η(123)η−1 (= (η(1)η(2)η(3))) = (123)? Clearly just the
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cyclic group 〈(123)〉, which is indeed in A4 =⇒
I I.G.19

|cclA4((123))| =
1
2 |cclS4((123))|.

(iii) How about cclA8(

σ︷ ︸︸ ︷
(123)(4567)) and cclA8(

η︷ ︸︸ ︷
(123)(45678))?

• σ commutes with an odd permutation, namely (4567), and so σ

has the same conjugacy classes in A8 and S8.
• η commutes with only elements of the group 〈(123), (45678)〉which

consists of even permutations. So |cclA8(η)| = 1
2 |cclS8(η)|.

We mention in passing the conjugacy classes of a couple of other
groups: for D2n+1 (odd dihedral group) they are

{1}, {r, r−1}, {r2, r−2}, . . . , {rn, r−n}; {h, rh, r2h, . . . , r2nh}

and for D2n (even dihedral group)

{1}, {r, r−1}, {r2, r−2}, . . . , {rn−1, r−n+1}, {rn};

{h, r2h, r4h, . . . , r2n−2h}, {rh, r3h, . . . , r2n−1h}.

These are obtained by repeatedly applying rh = hr−1 as in II.G.10.
There is also Hamilton’s famous quaternion group:

II.G.22. DEFINITION. Q := {±1,±i,±j,±k}, with ijk = i2 =

j2 = k2 = −1.

The conjugacy classes are {1}, {−1}, {i,−i}, {j,−j}, {k,−k}.
For example, jij−1 = −jij = jij(kk) = j(ijk)k = −jk = iijk = −i.

II.G.23. REMARK. Hamilton arrived at the multiplication table for
Q by “formally dividing vectors in R3”, allowing himself

α~x
β~x

=
α

β
,
~x
~y
· ~y
~z
=

~x
~z

, and
~x
~y
=

Rθ(~x)
Rθ(~y)

for any rotation Rθ in the plane spanned by ~x and ~y. One is also
supposed to think “~x

~y ·~y = ~x”, but don’t try to think too literally in
terms of linear transformations!
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Taking I, J, K to be the standard basis of R3, one can write (using
90◦ rotations13 about I, J, and K respectively)

i := K
J = −J

K , j := I
K = −K

I , k := J
I =

−I
J ,

which Hamilton encoded in a diagram:

I -JJ

K

-K

ii

ii

−jj

−jj

kk

−k−k

Furthermore, we have i2 = −J
K ·

K
J = −J

J = −1, ij = J
−K ·

−K
I = J

I = k,

ji = I
K ·

K
J = I

J = −k = −ij, and ijk = −J
K ·

−K
I ·

−I
J = −1, and so on.

Now, to be honest, there are problems with the idea of “divid-
ing vectors in R3”, since at the end of the day there can be no “3-
dimensional division algebra over R” (as we’ll see later this semes-
ter). In any case, we get the right nonabelian group of order 8 and
that’s all we care about presently!

13One is supposed to think of i as “counterclockwise rotation around I” and so on.


