48 II. GROUPS
ILLH. Cauchy’s Theorem

By Lagrange, the order of an element ¢ € G divides |G|. The
converse statement, that for any positive integer n dividing G there ex-
ists g € G of order n, is in general false. (Even for abelian groups:
Zy x Zy x Zy contains no element of order 4.) But there is a pretty
application of the theory of group actions we have developed to the
case where 7 is prime. We'll give two proofs; for the first you’ll have
to accept something that we will prove later.

We begin with some preliminaries: recall the

II.LH.1. DEFINITION. The center of a group is
C(G):={xcG|gxg ! =xVgeG},
the elements commuting with all the other elements of G.

Obviously we have:
(i) Gisabelian < G = C(G);
(ii) C(G) is itself always abelian; and
(iii) |eclg(x)| =1 <= x € C(G).
Recall also that if we take one representative x; in each conjugacy
class of G (|G| < o0), then G = II;cclg(x;) and so

(ILH.2) |G| = Lifcclg (x:)]-

Each element in C(G) has its own conjugacy class, and the right-
hand side of (II.LH.2) becomes |C(G)| + Y; |cclg(x;)|, where the sum
is now over representatives x; of conjugacy classes with more than
one element. Finally, by the Orbit-Stabilizer Theorem

Gl
|Co ()]

|cclg (x7)| = = [G:Cq(x:)],
and we get the
II.H.3. CLASS EQUATION. |G| = |C(G)|+ ¥;[G:Cs(x;)].

This will be used to prove
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ILH.4. CAUCHY’S THEOREM. If |G| < oo and p € N is a prime
dividing |G|, then G contains an element of order p.

PROOF (A). by induction on m > 1, where |G| = mp.
base case (m = 1): We have |G| = p. Take any ¢ € G\{1}. Its order
is > 1 and divides p by Lagrange; hence |(g)| = p.

inductive step: [Assume we know the result for groups of order kp,
k < m.] Either (i) p||Cg(x)| for some x € G\C(G), or (ii) p {|Cg(x)|
forall x € G\C(G).
In case (i), x ¢ C(G) = |cclg(x)| > 1, and so
Gl

[Ce(x)] = Teda ()] < |Gl

By Lagrange, |Cg(x)|||Gl; and so |Cg(x)| is a proper factor of |G| =

mp divisible by p. That is, |Cg(x)| = kp for some k < m (with
k | m); and we get an element in C(x) of order p by the inductive
assumption.

In case (ii), let {x;} be a set of representatives of the conjugacy
classes outside the center; we have p |Cq(x;)| = p|[G : Cg(xy)]
for each i. So p divides the left-hand side of II.H.3 and the sum on
the right, hence also |C(G)|. Now we use the

Fact: Any finite abelian group is a direct product of cyclic groups.

to write C(G) = Zy, X -+ X Zy,. Clearly p must divide some mj,
which gives a direct factor of C(G) of the form Z,,. The element @ in
this factor has order p in C(G), thus also in G. O

PROOF (B). Inside G = G X - - - x G consider the set

X:= {(80/g1/---;gp71) e GF |g0gl e po1 = 1}

Having chosen entries g1, ..., gy—1, wemust take go = (g1 - gp—1) *
to get an element of X, and so

X =GP~
Introduce an action of Z;, on X by cyclic permutation:

a-(g()/gl/- . -/gp—l) = (ga, .- -lgp—llg()/gl/- . -/ga—l)-
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This remains in X since gog1---¢p-1 =1 =

S 8p-18081 - 8a—1 = (80"~ &a—1) " (8081 &p—1)(80 " * - §a—1)
e (go . .gu_l)fl(go .. .ga_l) = 1

as required.
Now for given x € X, the Orbit-Stabilizer Theorem gives

Zy()[(Zp)x| = |Zp| = p
and so |Z,(x)| = 1 or p (depending on x). Clearly,
|Z,(x)| =1 <= xinvariant under cyclic permutations
< x=(g,...,8) forsome g € Gwithg? =1

Let a resp. B denote the number of 1- resp. p-element orbits in X;
since (1,...,1) € Xis fixed, « > 0. If we can show that « > 1, then
there is some g # 1 with g¥ = 1, and we are done!

Finally, as X is a disjoint union of Z.p-orbits, we have

GIPH = X| =+ pp;

and since p||G]|, this yields p|a+pp = p|a > 0.Soa > p and we
are through. O

We can use Cauchy’s Theorem to start classifying groups:

ILH.5. THEOREM. Let p be an odd prime, |G| = 2p. Then G = Z,
(cyclic) or D, (dihedral).*

PROOF. By Cauchy, there exist a,b € G with [(a)| = 2 (hence
a = a ') and |(b)| = p. Now a ¢ (b) since the order of a doesn’t
divide p, and so

(ILH.6) ba ¢ (b)

HNote that Zy x Zy = 7y since (2,p) =1.
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since otherwise ba = b" = a = b"~! € (b). Since [G:(b)] = 2, there
are 2 cosets:

G = (b) I a(b)
= {1,b,1%,...,bP" 1} 11 {a,ab,ab?, ..., abP '},
Thus
(ILH.6) ba = ab" (forsomer € [0,p —1]N2Z)
aba ' =V
b=ab'a ! = (aba™') = (V') =0b"
bl =1

p | r—1= (r+1)(r—1)
p|lr+lorp|r—1

1= br+1 or brfl

b l=borb="V"

aba ' =blorb.
(1) (ii)

In case (ii), 2 and b commute; use IL.LE.11 (on direct products) to de-

RN

duce that G = Z;, x Z. In case (i), we have just described the mul-
tiplication laws of D,,. [

ILH.7. DEFINITION. A group G with order |G| = p" (p,n €
IN, p prime) is called a p-group. (When we use this terminology, it is
understood that p is a prime.)

I1.H.8. THEOREM. Any p-group G has nontrivial™ center C(G).

PROOF. We must show |C(G)| # 1. Recall the class equation

|G| =[C(G)] + Z[Gicc(xi)],

I5That is, C(G) # {1}.
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where x; are representatives of those conjugacy classes with more
than one element. By the orbit-stabilizer theorem,

[G:Cg(x;)] = |eclg ()| > 1;

and by Lagrange’s theorem, [G:Cg(x;)]||G|. Hence, p|[G:Cg(x;)]
for every i, and so (by the class equation and p||G|) it follows that
plIC(G)I. N

For G a non-p-group, trivial center is possible: e.g., C(&,) = {1}
forn > 3.

ILH.9. COROLLARY. If |G| = p?, p prime, then G is abelian (and
> 7 0r Zy X Z).

PROOF. By ILLH.8, |C(G)| > 1. By Lagrange, there are two cases:
Case (i): |C(G)| = p. Taking h € G\C(G),

1< Jeclo(h)] =, [G:Co(h)][IG| = p?.

Since 1 ¢ cclg(h), we have |cclg(h)| = p (rather than p?) and thus
|Cg(h)| = p; and since Cg(h) > C(G) > {1}, we must have Cg(h) =
C(G). Buth € Cg(h) (commutes with itself) and 1 ¢ C(G), a contra-
diction. So the only possibility is . . .

Case (ii): |C(G)| = p?. We have |C(G)| = p> = |G| = C(G) =
G = G abelian. By Cauchy’s theorem, G > h of order p; let
H := (h). Take ¢ € G\H; it has order > 1 dividing p?. If this order
is p? then G & () & Z ».

p
Otherwise, |(g)| = p; and setting K := (g), we have:

e HNK < Kwith order dividing |K| =p = HNK = {1};

e hk = kh for every h € H, k € K because G is abelian; and

o |H|[K| = p* =G|.

Thus by ILE.11 G = H x K= Z, x Z,,. 0




