II.H. Cauchy's Theorem

By Lagrange, the order of an element $g \in G$ divides $|G|$. The converse statement, that for any positive integer n dividing G there exists $g \in G$ of order n, is in general false. (Even for abelian groups: $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ contains no element of order 4.) But there is a pretty application of the theory of group actions we have developed to the case where n is prime. We'll give two proofs; for the first you'll have to accept something that we will prove later.

We begin with some preliminaries: recall the
II.H.1. Definition. The center of a group is

$$
C(G):=\left\{x \in G \mid g x g^{-1}=x \forall g \in G\right\},
$$

the elements commuting with all the other elements of G.
Obviously we have:
(i) G is abelian $\Longleftrightarrow G=C(G)$;
(ii) $C(G)$ is itself always abelian; and
(iii) $\left|\operatorname{ccl}_{G}(x)\right|=1 \Longleftrightarrow x \in C(G)$.

Recall also that if we take one representative x_{i} in each conjugacy class of $G(|G|<\infty)$, then $G=\amalg_{i} \operatorname{ccl}_{G}\left(x_{i}\right)$ and so

$$
\begin{equation*}
|G|=\sum_{i}\left|\operatorname{ccl}_{G}\left(x_{i}\right)\right| . \tag{II.H.2}
\end{equation*}
$$

Each element in $C(G)$ has its own conjugacy class, and the righthand side of (II.H.2) becomes $|C(G)|+\sum_{i}\left|\operatorname{ccl}_{G}\left(x_{i}\right)\right|$, where the sum is now over representatives x_{i} of conjugacy classes with more than one element. Finally, by the Orbit-Stabilizer Theorem

$$
\left|\operatorname{ccl}_{G}\left(x_{i}\right)\right|=\frac{|G|}{\left|C_{G}\left(x_{i}\right)\right|}=\left[G: C_{G}\left(x_{i}\right)\right]
$$

and we get the
II.H.3. Class EQUATION. $|G|=|C(G)|+\sum_{i}\left[G: C_{G}\left(x_{i}\right)\right]$.

This will be used to prove
II.H.4. CAUCHY's THEOREM. If $|G|<\infty$ and $p \in \mathbb{N}$ is a prime dividing $|G|$, then G contains an element of order p.
$\operatorname{Proof}(\mathrm{A})$. by induction on $m \geq 1$, where $|G|=m p$. base case $(m=1)$: We have $|G|=p$. Take any $g \in G \backslash\{1\}$. Its order is >1 and divides p by Lagrange; hence $|\langle g\rangle|=p$.
inductive step: [Assume we know the result for groups of order $k p$, $k<m$.] Either (i) $p\left|\left|C_{G}(x)\right|\right.$ for some $x \in G \backslash C(G)$, or (ii) $\left.p \nmid\right| C_{G}(x) \mid$ for all $x \in G \backslash C(G)$.

In case (i), $x \notin C(G) \Longrightarrow\left|\operatorname{ccl}_{G}(x)\right|>1$, and so

$$
\left|C_{G}(x)\right|=\frac{|G|}{\left|\operatorname{ccl}_{G}(x)\right|}<|G| .
$$

By Lagrange, $\left|C_{G}(x)\right|||G|$; and so $| C_{G}(x) \mid$ is a proper factor of $|G|=$ $m p$ divisible by p. That is, $\left|C_{G}(x)\right|=k p$ for some $k<m$ (with $k \mid m)$; and we get an element in $C_{G}(x)$ of order p by the inductive assumption.

In case (ii), let $\left\{x_{i}\right\}$ be a set of representatives of the conjugacy classes outside the center; we have $p \nmid\left|C_{G}\left(x_{i}\right)\right| \Longrightarrow p \mid\left[G: C_{G}\left(x_{i}\right)\right]$ for each i. So p divides the left-hand side of II.H. 3 and the sum on the right, hence also $|C(G)|$. Now we use the

Fact: Any finite abelian group is a direct product of cyclic groups.
to write $C(G) \cong \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{r}}$. Clearly p must divide some m_{j}, which gives a direct factor of $C(G)$ of the form $\mathbb{Z}_{a p}$. The element \bar{a} in this factor has order p in $C(G)$, thus also in G.

Proof (B). Inside $G^{p}=G \times \cdots \times G$ consider the set

$$
X:=\left\{\left(g_{0}, g_{1}, \ldots, g_{p-1}\right) \in G^{p} \mid g_{0} g_{1} \cdots g_{p-1}=1\right\} .
$$

Having chosen entries g_{1}, \ldots, g_{p-1}, we must take $g_{0}=\left(g_{1} \cdots g_{p-1}\right)^{-1}$ to get an element of X, and so

$$
|X|=|G|^{p-1}
$$

Introduce an action of \mathbb{Z}_{p} on X by cyclic permutation:

$$
\bar{a} \cdot\left(g_{0}, g_{1}, \ldots, g_{p-1}\right):=\left(g_{a}, \ldots, g_{p-1}, g_{0}, g_{1}, \ldots, g_{a-1}\right)
$$

This remains in X since $g_{0} g_{1} \cdots g_{p-1}=1 \Longrightarrow$

$$
\begin{aligned}
& g_{a} \cdots g_{p-1} g_{0} g_{1} \cdots g_{a-1}=\left(g_{0} \cdots g_{a-1}\right)^{-1}\left(g_{0} g_{1} \cdots g_{p-1}\right)\left(g_{0} \cdots g_{a-1}\right) \\
&=\left(g_{0} \cdots g_{a-1}\right)^{-1}\left(g_{0} \cdots g_{a-1}\right)=1
\end{aligned}
$$

as required.
Now for given $x \in \mathrm{X}$, the Orbit-Stabilizer Theorem gives

$$
\left|\mathbb{Z}_{p}(x)\right|\left|\left(\mathbb{Z}_{p}\right)_{x}\right|=\left|\mathbb{Z}_{p}\right|=p
$$

and so $\left|\mathbb{Z}_{p}(x)\right|=1$ or p (depending on x). Clearly,

$$
\begin{aligned}
\left|\mathbb{Z}_{p}(x)\right|=1 & \Longleftrightarrow x \text { invariant under cyclic permutations } \\
& \Longleftrightarrow x=(g, \ldots, g) \text { for some } g \in G \text { with } g^{p}=1
\end{aligned}
$$

Let α resp. β denote the number of 1 - resp. p-element orbits in X ; since $(1, \ldots, 1) \in \mathrm{X}$ is fixed, $\alpha>0$. If we can show that $\alpha>1$, then there is some $g \neq 1$ with $g^{p}=1$, and we are done!

Finally, as X is a disjoint union of \mathbb{Z}_{p}-orbits, we have

$$
|G|^{p-1}=|\mathrm{X}|=\alpha+p \beta
$$

and since $p||G|$, this yields $p| \alpha+p \beta \Longrightarrow p \mid \alpha>0$. So $\alpha \geq p$ and we are through.

We can use Cauchy's Theorem to start classifying groups:
II.H.5. THEOREM. Let p be an odd prime, $|G|=2 p$. Then $G \cong \mathbb{Z}_{2 p}$ (cyclic) or D_{p} (dihedral). ${ }^{14}$

Proof. By Cauchy, there exist $a, b \in G$ with $|\langle a\rangle|=2$ (hence $a=a^{-1}$) and $|\langle b\rangle|=p$. Now $a \notin\langle b\rangle$ since the order of a doesn't divide p, and so

$$
\begin{equation*}
b a \notin\langle b\rangle \tag{II.H.6}
\end{equation*}
$$

[^0]since otherwise $b a=b^{r} \Longrightarrow a=b^{r-1} \in\langle b\rangle$. Since $[G:\langle b\rangle]=2$, there are 2 cosets:
\[

$$
\begin{aligned}
G & =\langle b\rangle \amalg a\langle b\rangle \\
& =\left\{1, b, b^{2}, \ldots, b^{p-1}\right\} \amalg\left\{a, a b, a b^{2}, \ldots, a b^{p-1}\right\} .
\end{aligned}
$$
\]

Thus

$$
\begin{aligned}
\text { (II.H.6) } & \Longrightarrow b a=a b^{r} \quad(\text { for some } r \in[0, p-1] \cap \mathbb{Z}) \\
& \Longrightarrow a b a^{-1}=b^{r} \\
& \Longrightarrow b=a b^{r} a^{-1}=\left(a b a^{-1}\right)^{r}=\left(b^{r}\right)^{r}=b^{r^{2}} \\
& \Longrightarrow b^{r^{2}-1}=1 \\
& \Longrightarrow p \mid r^{2}-1=(r+1)(r-1) \\
& \Longrightarrow p \mid r+1 \text { or } p \mid r-1 \\
& \Longrightarrow 1=b^{r+1} \text { or } b^{r-1} \\
& \Longrightarrow b^{-1}=b^{r} \text { or } b=b^{r} \\
& \Longrightarrow a b a^{-1}=b_{(\mathrm{i})}^{-1} \text { or } \underset{\text { (ii) }}{ }
\end{aligned}
$$

In case (ii), a and b commute; use II.E. 11 (on direct products) to deduce that $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{2}$. In case (i), we have just described the multiplication laws of D_{p}.
II.H.7. Definition. A group G with order $|G|=p^{n}(p, n \in$ \mathbb{N}, p prime) is called a p-group. (When we use this terminology, it is understood that p is a prime.)
II.H.8. THEOREM. Any p-group G has nontrivial ${ }^{15}$ center $C(G)$.

Proof. We must show $|C(G)| \neq 1$. Recall the class equation

$$
|G|=|C(G)|+\sum_{i}\left[G: C_{G}\left(x_{i}\right)\right]
$$

[^1]where x_{i} are representatives of those conjugacy classes with more than one element. By the orbit-stabilizer theorem,
$$
\left[G: C_{G}\left(x_{i}\right)\right]=\left|\operatorname{ccl}_{G}\left(x_{i}\right)\right|>1 ;
$$
and by Lagrange's theorem, $\left[G: C_{G}\left(x_{i}\right)\right]||G|$. Hence, $p|\left[G: C_{G}\left(x_{i}\right)\right]$ for every i, and so (by the class equation and $p \| G \mid$) it follows that $p||C(G)|$.

For G a non-p-group, trivial center is possible: e.g., $C\left(\mathfrak{S}_{n}\right)=\{1\}$ for $n \geq 3$.
II.H.9. Corollary. If $|G|=p^{2}, p$ prime, then G is abelian (and $\cong \mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$).

Proof. By II.H.8, $|C(G)|>1$. By Lagrange, there are two cases:
Case (i): $|C(G)|=p$. Taking $h \in G \backslash C(G)$,

$$
1<\left|\operatorname{ccl}_{G}(h)\right| \underset{\mathrm{OST}}{\overline{=}}\left[G: C_{G}(h)\right]| | G \mid=p^{2}
$$

Since $1 \notin \operatorname{ccl}_{G}(h)$, we have $\left|\operatorname{ccl}_{G}(h)\right|=p$ (rather than p^{2}) and thus $\left|C_{G}(h)\right|=p$; and since $C_{G}(h) \geq C(G)>\{1\}$, we must have $C_{G}(h)=$ $C(G)$. But $h \in C_{G}(h)$ (commutes with itself) and $h \notin C(G)$, a contradiction. So the only possibility is . . .

Case (ii): $|C(G)|=p^{2}$. We have $|C(G)|=p^{2}=|G| \Longrightarrow C(G)=$ $G \Longrightarrow G$ abelian. By Cauchy's theorem, $G \ni h$ of order p; let $H:=\langle h\rangle$. Take $g \in G \backslash H$; it has order >1 dividing p^{2}. If this order is p^{2} then $G \cong\langle g\rangle \cong \mathbb{Z}_{p^{2}}$.

Otherwise, $|\langle g\rangle|=p$; and setting $K:=\langle g\rangle$, we have:

- $H \cap K<K$ with order dividing $|K|=p \Longrightarrow H \cap K=\{1\}$;
- $h k=k h$ for every $h \in H, k \in K$ because G is abelian; and
- $|H||K|=p^{2}=|G|$.

Thus by II.E. $11 G \cong H \times K \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

[^0]:

[^1]: ${ }^{15}$ That is, $C(G) \neq\{1\}$.

