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II.H. Cauchy’s Theorem

By Lagrange, the order of an element g ∈ G divides |G|. The
converse statement, that for any positive integer n dividing G there ex-
ists g ∈ G of order n, is in general false. (Even for abelian groups:
Z2 ×Z2 ×Z2 contains no element of order 4.) But there is a pretty
application of the theory of group actions we have developed to the
case where n is prime. We’ll give two proofs; for the first you’ll have
to accept something that we will prove later.

We begin with some preliminaries: recall the

II.H.1. DEFINITION. The center of a group is

C(G) := {x ∈ G | gxg−1 = x ∀g ∈ G} ,

the elements commuting with all the other elements of G.

Obviously we have:

(i) G is abelian ⇐⇒ G = C(G);
(ii) C(G) is itself always abelian; and

(iii) |cclG(x)| = 1 ⇐⇒ x ∈ C(G).

Recall also that if we take one representative xi in each conjugacy
class of G (|G| < ∞), then G = qicclG(xi) and so

(II.H.2) |G| = ∑i|cclG(xi)|.

Each element in C(G) has its own conjugacy class, and the right-
hand side of (II.H.2) becomes |C(G)|+ ∑i |cclG(xi)|, where the sum
is now over representatives xi of conjugacy classes with more than
one element. Finally, by the Orbit-Stabilizer Theorem

|cclG(xi)| =
|G|

|CG(xi)|
= [G:CG(xi)],

and we get the

II.H.3. CLASS EQUATION. |G| = |C(G)|+ ∑i[G:CG(xi)].

This will be used to prove
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II.H.4. CAUCHY’S THEOREM. If |G| < ∞ and p ∈ N is a prime
dividing |G|, then G contains an element of order p.

PROOF (A). by induction on m ≥ 1, where |G| = mp.
base case (m = 1): We have |G| = p. Take any g ∈ G\{1}. Its order
is > 1 and divides p by Lagrange; hence |〈g〉| = p.
inductive step: [Assume we know the result for groups of order kp,
k < m.] Either (i) p

∣∣|CG(x)| for some x ∈ G\C(G), or (ii) p 6
∣∣|CG(x)|

for all x ∈ G\C(G).
In case (i), x /∈ C(G) =⇒ |cclG(x)| > 1, and so

|CG(x)| = |G|
|cclG(x)| < |G|.

By Lagrange, |CG(x)|
∣∣|G|; and so |CG(x)| is a proper factor of |G| =

mp divisible by p. That is, |CG(x)| = kp for some k < m (with
k | m); and we get an element in CG(x) of order p by the inductive
assumption.

In case (ii), let {xi} be a set of representatives of the conjugacy
classes outside the center; we have p 6

∣∣|CG(xi)| =⇒ p
∣∣[G : CG(xi)]

for each i. So p divides the left-hand side of II.H.3 and the sum on
the right, hence also |C(G)|. Now we use the

Fact: Any finite abelian group is a direct product of cyclic groups.

to write C(G) ∼= Zm1 × · · · ×Zmr . Clearly p must divide some mj,
which gives a direct factor of C(G) of the form Zap. The element ā in
this factor has order p in C(G), thus also in G. �

PROOF (B). Inside Gp = G× · · · × G consider the set

X := {(g0, g1, . . . , gp−1) ∈ Gp | g0g1 · · · gp−1 = 1}.

Having chosen entries g1, . . . , gp−1, we must take g0 = (g1 · · · gp−1)
−1

to get an element of X, and so

|X| = |G|p−1.

Introduce an action of Zp on X by cyclic permutation:

ā.(g0, g1, . . . , gp−1) := (ga, . . . , gp−1, g0, g1, . . . , ga−1).
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This remains in X since g0g1 · · · gp−1 = 1 =⇒

ga · · · gp−1g0g1 · · · ga−1 = (g0 · · · ga−1)
−1(g0g1 · · · gp−1)(g0 · · · ga−1)

= (g0 · · · ga−1)
−1(g0 · · · ga−1) = 1

as required.
Now for given x ∈ X, the Orbit-Stabilizer Theorem gives

|Zp(x)||(Zp)x| = |Zp| = p

and so |Zp(x)| = 1 or p (depending on x). Clearly,

|Zp(x)| = 1 ⇐⇒ x invariant under cyclic permutations

⇐⇒ x = (g, . . . , g) for some g ∈ G with gp = 1

Let α resp. β denote the number of 1- resp. p-element orbits in X;
since (1, . . . , 1) ∈ X is fixed, α > 0. If we can show that α > 1, then
there is some g 6= 1 with gp = 1, and we are done!

Finally, as X is a disjoint union of Zp-orbits, we have

|G|p−1 = |X| = α + pβ;

and since p
∣∣|G|, this yields p

∣∣α+pβ =⇒ p | α > 0. So α ≥ p and we
are through. �

We can use Cauchy’s Theorem to start classifying groups:

II.H.5. THEOREM. Let p be an odd prime, |G| = 2p. Then G ∼= Z2p

(cyclic) or Dp (dihedral).14

PROOF. By Cauchy, there exist a, b ∈ G with |〈a〉| = 2 (hence
a = a−1) and |〈b〉| = p. Now a /∈ 〈b〉 since the order of a doesn’t
divide p, and so

(II.H.6) ba /∈ 〈b〉

14Note that Z2 ×Zp ∼= Z2p since (2, p) = 1.
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since otherwise ba = br =⇒ a = br−1 ∈ 〈b〉. Since [G:〈b〉] = 2, there
are 2 cosets:

G = 〈b〉 q a〈b〉

= {1, b, b2, . . . , bp−1} q {a, ab, ab2, . . . , abp−1}.

Thus

(II.H.6) =⇒ ba = abr (for some r ∈ [0, p− 1] ∩Z)

=⇒ aba−1 = br

=⇒ b = abra−1 = (aba−1)r = (br)r = br2

=⇒ br2−1 = 1

=⇒ p | r2−1 = (r + 1)(r− 1)

=⇒ p | r+1 or p | r−1

=⇒ 1 = br+1 or br−1

=⇒ b−1 = br or b = br

=⇒ aba−1 = b−1
(i)

or b
(ii)

.

In case (ii), a and b commute; use II.E.11 (on direct products) to de-
duce that G ∼= Zp ×Z2. In case (i), we have just described the mul-
tiplication laws of Dp. �

II.H.7. DEFINITION. A group G with order |G| = pn (p, n ∈
N, p prime) is called a p-group. (When we use this terminology, it is
understood that p is a prime.)

II.H.8. THEOREM. Any p-group G has nontrivial15 center C(G).

PROOF. We must show |C(G)| 6= 1. Recall the class equation

|G| = |C(G)|+ ∑
i
[G:CG(xi)],

15That is, C(G) 6= {1}.
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where xi are representatives of those conjugacy classes with more
than one element. By the orbit-stabilizer theorem,

[G:CG(xi)] = |cclG(xi)| > 1 ;

and by Lagrange’s theorem, [G:CG(xi)]
∣∣|G|. Hence, p

∣∣[G:CG(xi)]

for every i, and so (by the class equation and p
∣∣|G|) it follows that

p
∣∣|C(G)|. �

For G a non-p-group, trivial center is possible: e.g., C(Sn) = {1}
for n ≥ 3.

II.H.9. COROLLARY. If |G| = p2, p prime, then G is abelian (and
∼= Zp2 or Zp ×Zp).

PROOF. By II.H.8, |C(G)| > 1. By Lagrange, there are two cases:
Case (i): |C(G)| = p. Taking h ∈ G\C(G),

1 < |cclG(h)| =
OST

[G:CG(h)]
∣∣|G| = p2.

Since 1 /∈ cclG(h), we have |cclG(h)| = p (rather than p2) and thus
|CG(h)| = p; and since CG(h) ≥ C(G) > {1}, we must have CG(h) =
C(G). But h ∈ CG(h) (commutes with itself) and h /∈ C(G), a contra-
diction. So the only possibility is . . .

Case (ii): |C(G)| = p2. We have |C(G)| = p2 = |G| =⇒ C(G) =

G =⇒ G abelian. By Cauchy’s theorem, G 3 h of order p; let
H := 〈h〉. Take g ∈ G\H; it has order > 1 dividing p2. If this order
is p2 then G ∼= 〈g〉 ∼= Zp2 .

Otherwise, |〈g〉| = p; and setting K := 〈g〉, we have:

• H ∩ K < K with order dividing |K| = p =⇒ H ∩ K = {1};
• hk = kh for every h ∈ H, k ∈ K because G is abelian; and
• |H||K| = p2 = |G|.
Thus by II.E.11 G ∼= H × K ∼= Zp ×Zp. �


