II.H. Cauchy's Theorem

By Lagrange, the order of an element $g \in G$ divides |G|. The converse statement, that *for any positive integer n dividing G there exists* $g \in G$ *of order n*, is in general *false*. (Even for abelian groups: $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ contains no element of order 4.) But there is a pretty application of the theory of group actions we have developed to the case where *n* is prime. We'll give two proofs; for the first you'll have to accept something that we will prove later.

We begin with some preliminaries: recall the

II.H.1. DEFINITION. The center of a group is

$$C(G) := \{x \in G \mid gxg^{-1} = x \; \forall g \in G\},\$$

the elements commuting with all the other elements of *G*.

Obviously we have:

- (i) *G* is abelian \iff *G* = *C*(*G*);
- (ii) C(G) is itself always abelian; and
- (iii) $|\operatorname{ccl}_G(x)| = 1 \iff x \in C(G).$

Recall also that if we take one representative x_i in each conjugacy class of $G(|G| < \infty)$, then $G = \coprod_i \operatorname{ccl}_G(x_i)$ and so

(II.H.2)
$$|G| = \sum_{i} |\operatorname{ccl}_{G}(x_{i})|$$

Each element in C(G) has its own conjugacy class, and the righthand side of (II.H.2) becomes $|C(G)| + \sum_i |\operatorname{ccl}_G(x_i)|$, where the sum is *now* over representatives x_i of conjugacy classes with more than one element. Finally, by the Orbit-Stabilizer Theorem

$$|ccl_G(x_i)| = \frac{|G|}{|C_G(x_i)|} = [G:C_G(x_i)],$$

and we get the

II.H.3. CLASS EQUATION.
$$|G| = |C(G)| + \sum_i [G:C_G(x_i)].$$

This will be used to prove

II.H.4. CAUCHY'S THEOREM. If $|G| < \infty$ and $p \in \mathbb{N}$ is a prime dividing |G|, then G contains an element of order p.

PROOF (A). by induction on $m \ge 1$, where |G| = mp. base case (m = 1): We have |G| = p. Take any $g \in G \setminus \{1\}$. Its order is > 1 and divides p by Lagrange; hence $|\langle g \rangle| = p$.

inductive step: [Assume we know the result for groups of order kp, $\overline{k < m}$.] Either (i) $p ||C_G(x)|$ for *some* $x \in G \setminus C(G)$, or (ii) $p / |C_G(x)|$ for *all* $x \in G \setminus C(G)$.

In case (i), $x \notin C(G) \implies |\operatorname{ccl}_G(x)| > 1$, and so

$$|C_G(x)| = \frac{|G|}{|\operatorname{ccl}_G(x)|} < |G|.$$

By Lagrange, $|C_G(x)|||G|$; and so $|C_G(x)|$ is a proper factor of |G| = mp divisible by p. That is, $|C_G(x)| = kp$ for some k < m (with $k \mid m$); and we get an element in $C_G(x)$ of order p by the inductive assumption.

In case (ii), let $\{x_i\}$ be a set of representatives of the conjugacy classes outside the center; we have $p \not| |C_G(x_i)| \implies p | [G : C_G(x_i)]$ for each *i*. So *p* divides the left-hand side of II.H.3 and the sum on the right, hence also |C(G)|. Now we use the

<u>Fact</u>: Any finite abelian group is a direct product of cyclic groups.

to write $C(G) \cong \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_r}$. Clearly p must divide some m_j , which gives a direct factor of C(G) of the form \mathbb{Z}_{ap} . The element \bar{a} in this factor has order p in C(G), thus also in G.

PROOF (B). Inside $G^p = G \times \cdots \times G$ consider the set

$$X := \{ (g_0, g_1, \dots, g_{p-1}) \in G^p \mid g_0 g_1 \cdots g_{p-1} = 1 \}.$$

Having chosen entries g_1, \ldots, g_{p-1} , we must take $g_0 = (g_1 \cdots g_{p-1})^{-1}$ to get an element of X, and so

$$|\mathbf{X}| = |G|^{p-1}.$$

Introduce an action of \mathbb{Z}_p on X by cyclic permutation:

$$\bar{a}.(g_0,g_1,\ldots,g_{p-1}):=(g_a,\ldots,g_{p-1},g_0,g_1,\ldots,g_{a-1}).$$

This remains in X since $g_0g_1 \cdots g_{p-1} = 1 \implies$

$$g_a \cdots g_{p-1} g_0 g_1 \cdots g_{a-1} = (g_0 \cdots g_{a-1})^{-1} (g_0 g_1 \cdots g_{p-1}) (g_0 \cdots g_{a-1})$$
$$= (g_0 \cdots g_{a-1})^{-1} (g_0 \cdots g_{a-1}) = 1$$

as required.

Now for given $x \in X$, the Orbit-Stabilizer Theorem gives

$$|\mathbb{Z}_p(x)||(\mathbb{Z}_p)_x| = |\mathbb{Z}_p| = p$$

and so $|\mathbb{Z}_p(x)| = 1$ or *p* (depending on *x*). Clearly,

 $|\mathbb{Z}_p(x)| = 1 \iff x$ invariant under cyclic permutations

 $\iff x = (g, \dots, g) \text{ for some } g \in G \text{ with } g^p = 1$

Let α resp. β denote the number of 1- resp. *p*-element orbits in X; since $(1, ..., 1) \in X$ is fixed, $\alpha > 0$. If we can show that $\alpha > 1$, then there is some $g \neq 1$ with $g^p = 1$, and we are done!

Finally, as X is a disjoint union of \mathbb{Z}_p -orbits, we have

$$|G|^{p-1} = |\mathsf{X}| = \alpha + p\beta;$$

and since p||G|, this yields $p|\alpha + p\beta \implies p | \alpha > 0$. So $\alpha \ge p$ and we are through.

We can use Cauchy's Theorem to start classifying groups:

II.H.5. THEOREM. Let p be an odd prime, |G| = 2p. Then $G \cong \mathbb{Z}_{2p}$ (cyclic) or D_p (dihedral).¹⁴

PROOF. By Cauchy, there exist $a, b \in G$ with $|\langle a \rangle| = 2$ (hence $a = a^{-1}$) and $|\langle b \rangle| = p$. Now $a \notin \langle b \rangle$ since the order of a doesn't divide p, and so

(II.H.6)
$$ba \notin \langle b \rangle$$

 $[\]overline{{}^{14}\text{Note that }\mathbb{Z}_2} \times \mathbb{Z}_p \cong \mathbb{Z}_{2p} \text{ since } (2, p) = 1.$

since otherwise $ba = b^r \implies a = b^{r-1} \in \langle b \rangle$. Since $[G:\langle b \rangle] = 2$, there are 2 cosets:

$$G = \langle b \rangle \amalg a \langle b \rangle$$

= {1, b, b², ..., b^{p-1}} II {a, ab, ab², ..., ab^{p-1}}.

Thus

(II.H.6)
$$\implies ba = ab^r$$
 (for some $r \in [0, p-1] \cap \mathbb{Z}$)
 $\implies aba^{-1} = b^r$
 $\implies b = ab^r a^{-1} = (aba^{-1})^r = (b^r)^r = b^{r^2}$
 $\implies b^{r^2-1} = 1$
 $\implies p \mid r^2-1 = (r+1)(r-1)$
 $\implies p \mid r+1 \text{ or } p \mid r-1$
 $\implies 1 = b^{r+1} \text{ or } b^{r-1}$
 $\implies b^{-1} = b^r \text{ or } b = b^r$
 $\implies aba^{-1} = b_{(i)}^{-1} \text{ or } b$.

In case (ii), *a* and *b* commute; use II.E.11 (on direct products) to deduce that $G \cong \mathbb{Z}_p \times \mathbb{Z}_2$. In case (i), we have just described the multiplication laws of D_p .

II.H.7. DEFINITION. A group *G* with order $|G| = p^n$ ($p, n \in \mathbb{N}$, p prime) is called a **p-group**. (When we use this terminology, it is understood that p is a prime.)

II.H.8. THEOREM. Any p-group G has nontrivial¹⁵ center C(G).

PROOF. We must show $|C(G)| \neq 1$. Recall the class equation

$$|G| = |C(G)| + \sum_{i} [G:C_G(x_i)],$$

 $\overline{^{15}\text{That is, }C(G)} \neq \{1\}.$

where x_i are representatives of those conjugacy classes with more than one element. By the orbit-stabilizer theorem,

$$[G:C_G(x_i)] = |\operatorname{ccl}_G(x_i)| > 1;$$

and by Lagrange's theorem, $[G:C_G(x_i)]||G|$. Hence, $p|[G:C_G(x_i)]$ for every *i*, and so (by the class equation and p||G|) it follows that p||C(G)|.

For *G* a *non-p*-group, trivial center *is* possible: e.g., $C(\mathfrak{S}_n) = \{1\}$ for $n \ge 3$.

II.H.9. COROLLARY. If $|G| = p^2$, p prime, then G is abelian (and $\cong \mathbb{Z}_{p^2}$ or $\mathbb{Z}_p \times \mathbb{Z}_p$).

PROOF. By II.H.8, |C(G)| > 1. By Lagrange, there are two cases: Case (i): |C(G)| = p. Taking $h \in G \setminus C(G)$,

$$1 < |\operatorname{ccl}_{G}(h)| = [G:C_{G}(h)] ||G| = p^{2}.$$

Since $1 \notin \operatorname{ccl}_G(h)$, we have $|\operatorname{ccl}_G(h)| = p$ (rather than p^2) and thus $|C_G(h)| = p$; and since $C_G(h) \ge C(G) > \{1\}$, we must have $C_G(h) = C(G)$. But $h \in C_G(h)$ (commutes with itself) and $h \notin C(G)$, a contradiction. So the only possibility is . . .

Case (ii): $|C(G)| = p^2$. We have $|C(G)| = p^2 = |G| \implies C(G) = G \implies G$ abelian. By Cauchy's theorem, $G \ni h$ of order p; let $H := \langle h \rangle$. Take $g \in G \setminus H$; it has order > 1 dividing p^2 . If this order is p^2 then $G \cong \langle g \rangle \cong \mathbb{Z}_{p^2}$.

Otherwise, $|\langle g \rangle| = p$; and setting $K := \langle g \rangle$, we have:

- $H \cap K < K$ with order dividing $|K| = p \implies H \cap K = \{1\};$
- hk = kh for every $h \in H$, $k \in K$ because *G* is abelian; and

•
$$|H||K| = p^2 = |G|.$$

Thus by II.E.11 $G \cong H \times K \cong \mathbb{Z}_p \times \mathbb{Z}_p$.