III. Rings

III.A. Examples of rings

The theory of rings and ideals grew out of several 19th and early 20th Century sources:

- polynomials (Gauss, Eisenstein, Hilbert, etc.);
- number rings (Dirichlet, Kummer ["ideal numbers"], Kronecker, Dedekind ["ideals in number rings"], Hilbert, etc.); and
- matrix rings and hypercomplex numbers (Hamilton [quaternions], Cayley [octonions], etc.).
Specifically, the term Zahlring showed up in the study of what we would now call rings of integers in algebraic number fields; e.g. cyclotomic rings such as $\mathbb{Z}\left[\zeta_{5}\right]\left(\zeta_{5}=\right.$ a 5 th root of 1$)$ arose in the context od attempts to prove Fermat's last theorem, and ζ_{5} "cycles back to itself" (suggesting a ring) upon repeatedly taking powers. Here is the modern definition, due to E. Noether (~1920):
III.A.1. Definition. A ring $(R,+, \bullet, 0,1)$ comprises a set R together with 2 binary operations and distinguished elements, satisfying:
(i) $(R,+, 0)$ is an abelian group;
(ii) $(R, \bullet, 1)$ is a monoid; and
(iii) distributive laws:

$$
r\left(s_{1}+s_{2}\right)=r s_{1}+r s_{2} \quad \text { and }\left(r_{1}+r_{2}\right) s=r_{1} s+r_{2} s
$$

Note that we do not assume the existence of multiplicative inverses.
III.A.2. REMARK. (i) If we didn't assume that " + " was commutative, this would be forced upon us by the distributive laws as follows:

- $-(a+b)=(-b)+(-a)$ (not assuming $(R,+, 0)$ abelian)
- \exists "additive" inverse -1 of 1 (since $(R,+, 0)$ is a group)
- adding $-(0 r)$ on the left to $0 r=(0+0) r=0 r+0 r$ gives $0=0 r$
- adding $(-r)$ on the right to $(-r)+r=0=0 r=(-1+1) r=$ $(-1) r+1 r=(-1) r+r$ gives $-r=(-1) r$
- $-(a+b)=(-1)(a+b)=(-1) a+(-1) b=(-a)+(-b)$.
(ii) There is also the notion of a "rng" $(R,+, \bullet, 0)$ where (R, \bullet) is taken to be a "semigroup", meaning that one doesn't assume the existence of a multiplicative "i"dentity (or inverses). However, we can construct a ring containing R with underlying set $S=\mathbb{Z} \times R$, operations

$$
\left\{\begin{array}{l}
\left(n_{1}, r_{1}\right)+\left(n_{2}, r_{2}\right):=\left(n_{1}+n_{2}, r_{1}+r_{2}\right) \quad \text { and } \\
\left(n_{1}, r_{1}\right) \cdot\left(n_{2}, r_{2}\right):=\left(n_{1} n_{2}, n_{1} r_{2}+n_{2} r_{1}+r_{1} r_{2}\right),
\end{array}\right.
$$

and distinguished elements $1:=(1,0)$ and $0:=(0,0)$, by checking that the associative and distributive laws hold. (R consists of the elements $(0, r)$.)
(iii) A subring of R is a subset closed under,+- , and \bullet. Hence the intersection of subrings is a subring, and it makes sense to speak of the subring generated by a subset $\mathcal{S}(=$ intersection of all subrings containing \mathcal{S}).
(iv) A ring is called commutative if the multiplication " \bullet " is. (We don't use the term "abelian" for rings.)
III.A.3. ExAmples. (i) $(\mathbb{A},+, \bullet, 0,1)$, with $\mathbb{A}=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, or \mathbb{Z}_{m}.
(ii) Direct $\left\{\begin{array}{c}\text { products } \\ \text { sums }\end{array}\right.$ of rings ${ }^{1}\left\{\begin{array}{c}\prod_{i \in I} R_{i} \\ \oplus_{i \in I} R_{i}\end{array}\right.$. If $|I|<\infty$ then these are the same. Otherwise, the $\left\{\begin{array}{l}\Pi \\ \oplus\end{array}\right.$ consists of ∞-tuples

$$
\left\{\begin{array}{c}
\text { with no constraints } \\
\text { with all but finitely many entries zero. }
\end{array}\right.
$$

[^0](iii) Number rings. Let D be a squarefree integer, i.e. $\pm p_{1} \cdots p_{d}$ where p_{1}, \ldots, p_{d} are distinct primes. Inside \mathbb{C} (or \mathbb{R}, if $D>0$), it is easy to see the closure properties for the (quadratic) number field
$$
\mathbb{Q}[\sqrt{D}]:=\{a+b \sqrt{D} \mid a, b \in \mathbb{Q}\}
$$
and the (quadratic) number ring
$$
\mathbb{Z}[\sqrt{D}]:=\{a+b \sqrt{D} \mid a, b \in \mathbb{Z}\}
$$

What about

$$
\begin{aligned}
\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right]: & =\left\{\left.m+n\left(\frac{1+\sqrt{D}}{2}\right) \right\rvert\, m, n \in \mathbb{Z}\right\} \\
& =\left\{\left.\frac{a+b \sqrt{D}}{2} \right\rvert\, a, b \in \mathbb{Z}, a \underset{(2)}{\overline{(2)}} b\right\} ?
\end{aligned}
$$

(For the last equality, take $m=\frac{a-b}{2}$ and $n=b$.) Of course, the issue is multiplicative closure:

$$
\begin{aligned}
& \left(m+n\left(\frac{1+\sqrt{D}}{2}\right)\right)\left(m^{\prime}+n^{\prime}\left(\frac{1+\sqrt{D}}{2}\right)\right)= \\
& m m^{\prime}+\left(m n^{\prime}+n m^{\prime}\right)\left(\frac{1+\sqrt{D}}{2}\right)+\underbrace{n n^{\prime}\left(\frac{(1+D)+2 \sqrt{D}}{4}\right)}_{\frac{n n^{\prime}(D-1)}{4}+n n^{\prime}\left(\frac{1+\sqrt{D}}{2}\right)}
\end{aligned}
$$

Clearly closure holds $\Longleftrightarrow 4 \mid D-1 \Longleftrightarrow D \underset{(4)}{\overline{=}} 1$. As we shall see, the "ring of integers" in $\mathbb{Q}[\sqrt{D}]$ is

$$
\left\{\begin{array}{l}
\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] \text { if } D \underset{(4)}{\overline{(4)}} 1 \\
\mathbb{Z}[\sqrt{D}] \text { otherwise. }
\end{array}\right.
$$

Two special cases of interest are $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ and $\mathbb{Z}[\mathbf{i}]$.
(iv) Polynomial rings. Let R be a commutative ring. Set

$$
R[x]:=\{\text { sequences } \left.(r_{0}, r_{1}, \ldots, r_{n}, \underbrace{0,0, \ldots}_{\begin{array}{c}
\text { zero from } \\
\text { some point on }
\end{array}}) \right\rvert\, r_{i} \in R\}
$$

and define, given $\underline{a}=\left(a_{k}\right)_{k \geq 0}$ and $\underline{b}=\left(b_{k}\right)_{k \geq 0}$,

$$
\underline{a}+\underline{b}:=\left(a_{k}+b_{k}\right)_{k \geq 0} \quad \text { and } \underline{a} \cdot \underline{b}:=\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right)_{k \geq 0} .
$$

Also put $0:=(0,0,0, \ldots)$ and $1:=(1,0,0, \ldots)$. Then we have

$$
\begin{aligned}
(\underline{a}+\underline{b}) \cdot \underline{c} & =\left(\sum_{j=0}^{k}\left(a_{j}+b_{j}\right) c_{k-j}\right) \\
& =\left(\sum_{j=0}^{k} a_{j} c_{k-j}\right)+\left(\sum_{j=0}^{k} b_{j} c_{k-j}\right)=\underline{a} \cdot \underline{c}+\underline{b} \cdot \underline{c}
\end{aligned}
$$

and

$$
\begin{aligned}
(\underline{a} \cdot \underline{b}) \cdot \underline{c} & =\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) \cdot \underline{c}=\left(\sum_{\ell=0}^{k}\left(\sum_{i=0}^{\ell} a_{i} b_{\ell-i}\right) c_{k-\ell}\right) \\
& =\left(\sum_{i=0}^{k} a_{i} \sum_{j=0}^{k-i} b_{j} c(k-i)-j\right)=\underline{a} \cdot\left(\sum_{j=0}^{k} b_{j} c_{k-j}\right) \\
& =\underline{a} \cdot(\underline{b} \cdot \underline{c}),
\end{aligned}
$$

so that II.A.1(iii) is satisfied.
Now identify R with the subring $\{(r, 0,0, \ldots)\} \subset R[x]$. Taking $x:=(0,1,0,0, \ldots)$, we have $x^{n}=(\underbrace{0, \ldots, 0}_{n}, 1,0,0, \ldots)$ so that

$$
\left(r_{0}, r_{1}, r_{2}, \ldots, r_{n}, 0,0, \ldots\right)=r_{n} x^{n}+\cdots+r_{1} x+r_{0}
$$

which is obviously a much more appealing (and standard) notation. We can also (inductively) define polynomial rings in several variables by

$$
R\left[x_{1}, \ldots, x_{n}\right]:=\left(R\left[x_{1}, \ldots, x_{n-1}\right]\right)\left[x_{n}\right] .
$$

For any $r \in R$, we can consider the evaluation map

$$
\mathrm{ev}_{r}: R[x] \longrightarrow R
$$

sending $r_{n} x^{n}+\cdots+r_{1} x+r_{0} \longmapsto r_{n} r^{n}+\cdots+r_{1} r+r_{0}$.
More generally, we can take the product

$$
\prod_{r \in R} \mathrm{ev}_{r}: R[x] \rightarrow \prod_{R} R\left(=" R^{R "}\right)
$$

of all such maps, sending a polynomial to (essentially) its "graph". This is not always surjective (e.g. if $R=\mathbb{R}$) or injective (e.g. if $R=$ \mathbb{Z}_{3}).
(v) Quaternions. The ring version is built out of the group one: put

$$
\mathbb{H}:=\{a+\mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, d \in \mathbb{R}\},
$$

where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ have the same multiplicative properties as in the 8-element group Q. Clearly this is noncommutative. The " H ", of course, is for Hamilton.
(vi) Matrix rings. Let R be an arbitrary ring, $n \in \mathbb{N}$. We define a ring wth underlying set

$$
M_{n}(R):=\left\{\sum_{i, j=1}^{n} r_{i j} \mathbf{e}_{i j} \mid r_{i j} \in R\right\}
$$

where the $\mathbf{e}_{i j}$ are formal symbols. Taking $A=\sum_{i, j} a_{i j} \mathbf{e}_{i j}, B=\sum_{i, j} b_{i j} \mathbf{e}_{i j}$, we $\operatorname{set}^{2} \mathbf{0}:=\sum_{i, j=1}^{n} 0 \mathbf{e}_{i j}, \mathbb{1}:=\sum_{i, j=1}^{n} \delta_{i j} \mathbf{e}_{i j}=\sum_{i=1}^{n} \mathbf{e}_{i i}$, and

$$
A+B:=\sum_{i, j=1}^{n}\left(a_{i j}+b_{i j}\right) \mathbf{e}_{i j} \text { and } A B:=\sum_{i, j=1}^{n}\left(\sum_{k=1}^{n} a_{i k} b_{k j}\right) \mathbf{e}_{i j} .
$$

Associativity follows from

$$
(A B) C=\sum_{i, j=1}^{n}\left(\sum_{k, \ell=1}^{n} a_{i k} b_{k \ell} c_{\ell j}\right) \mathbf{e}_{i j}=A(B C)
$$

and the associativity of R; the rest is left to you. ${ }^{3}$ Of course, these can be represented in the standard way as matrices

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)
$$

and you may think of $\mathbf{e}_{i j}$ as the matrix with a 1 at the $(i, j)^{\text {th }}$ place and zeroes elsewhere. We have

$$
\mathbf{e}_{i j} \mathbf{e}_{k \ell}=\left\{\begin{array}{c}
\mathbf{0}, j \neq k \\
\mathbf{e}_{i \ell}, j=k
\end{array}\right.
$$

The noncommutativity is highly visible this way.

[^1]Here are some definitions which were clearly not possible (or not interesting) for groups.
III.A.4. Definition. Let R be a ring, $r \in R$ an element.
(i) r is a left [resp. right] zero-divisor $\Longleftrightarrow \exists r^{\prime} \in R \backslash\{0\}$ such that $r r^{\prime}=0$ [resp. $r^{\prime} r=0$].
(ii) r is nilpotent $\Longleftrightarrow \exists n \in \mathbb{N}$ such that $r^{n}=0$.
(iii) r is idempotent $\Longleftrightarrow r^{2}=r$.

These are easily illustrated in $M_{2}(\mathbb{R})$:
III.A.5. ExAmpLE. (i) In $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\mathbf{0}$, the boxed element is a left zero-divisor.
(ii) In $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)=\mathbf{0}$, the boxed element is nilpotent.
(iii) $\left.\operatorname{In} \begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, the boxed element is idempotent. (Think projection.)
III.A.6. Definition. The characteristic of a ring R is the (smallest) number of times one has to add 1 (the multiplicative identity element of R) to itself to obtain 0 , unless this is not possible. In the latter case, the characteristic is zero.
III.A.7. Examples. (i) $R=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}, M_{2}(\mathbb{R}), \mathbb{Q}[x]$ all have $\operatorname{char}(R)=0$.
(ii) $R=\mathbb{Z}_{m}, M_{n}\left(\mathbb{Z}_{m}\right), \mathbb{Z}_{m}[x]$ have $\operatorname{char}(R)=m$.
(iii) In a general commutative ring, we have

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} . \tag{III.A.8}
\end{equation*}
$$

If $\operatorname{char}(R)=p$, then $p\binom{p}{k}$ for $0<k<p \Longrightarrow$

$$
\begin{equation*}
(x+y)^{p}=x^{p}+y^{p}, \tag{III.A.9}
\end{equation*}
$$

the so-called "Freshman's dream".
Next are some definitions analogous to those in groups or monoids:
III.A.10. Definition. The center of R is

$$
C(R):=\{r \in R \mid r s=s r \forall s \in R\} .
$$

III.A.11. EXAMPLES. (i) $C(\mathbb{H})=\mathbb{R}$.
(ii) If R is commutative, $C\left(M_{n}(R)\right)=R$, where R is identified with the subring of diagonal matrices $\left(\begin{array}{lll}r & & 0 \\ & \ddots & \\ 0 & & r\end{array}\right)=r \mathbb{1}=$ " r ". More generally, $C\left(M_{n}(R)\right)=C(R)$.

Proof. Given $A \in C\left(M_{n}(\mathbb{R})\right)$,

$$
\begin{aligned}
\mathbf{0} & =A \mathbf{e}_{k \ell}-\mathbf{e}_{k \ell} A=\sum_{i, j=1}^{n} a_{i j}\left(\mathbf{e}_{i j} \mathbf{e}_{k \ell}-\mathbf{e}_{k \ell} \mathbf{e}_{i j}\right) \\
& =\sum_{i=1}^{n} a_{i k} \mathbf{e}_{i \ell}-\sum_{j=1}^{n} a_{\ell j} \mathbf{e}_{k j} .
\end{aligned}
$$

In particular, the $(k, \ell)^{\text {th }}$ entry of the last line is $a_{k k}-a_{\ell \ell}$ and the $(i, \ell)^{\text {th }}$ entry (for $i \neq k$) is $a_{i k}$. So off-diagonal entries of \underline{A} are 0 and the diagonal ones are all equal. Finally, consider $A r-r A$.
III.A.12. Definition. $r \in R$ is a unit (or invertible) $\Longleftrightarrow \exists r^{\prime} \in R$ such that $r r^{\prime}=1=r^{\prime} r$. (It is not enough in a general noncommutative ring to have $r r^{\prime}=1$ or $r^{\prime} r=1$ for invertibility.) The units in R form a group R^{*} under multiplication. ${ }^{4}$

To begin with a few easy examples: for $R=\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}$, and more generally for division rings (see the next section), the units R^{*} are all nonzero elements. But that is not its general meaning. For instance, we have $\mathbb{Z}^{*}=\{ \pm 1\}$ and $\mathbb{Z}_{8}^{*}=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Another example is $M_{n}(\mathbb{R})^{*}=\mathrm{GL}_{n}(\mathbb{R})$, which everyone knows is the matrices with determinant in $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$. But for matrices over a more general ring R ? You'd think determinants might help, but not if R is noncommutative:
III.A.13. Example. Consider $\left(\begin{array}{cc}\mathbf{k} & 1 \\ \mathbf{j} & \mathbf{i}\end{array}\right) \in M_{2}(\mathbb{H})$. The "determinant" $\mathbf{k i}-1 \mathbf{j}=\mathbf{j}-\mathbf{j}=0$, but

$$
\left(\begin{array}{ll}
\mathbf{k} & 1 \\
\mathbf{j} & \mathbf{i}
\end{array}\right)\left(\begin{array}{cc}
-\frac{\mathbf{k}}{2} & -\mathbf{j} \\
\frac{1}{2} & -\frac{\mathbf{i}}{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\mathbb{1} .
$$

[^2]So we can only hope for invertibility of matrices to be easily detected via determinants when the entries are in a commutative ring.

Another key example of units in a commutative ring is problem \#7 from HW 1. Recall that this produced a group structure ($\cong \mathbb{Z} \times$ \mathbb{Z}_{2}) on integer solutions to $x^{2}-5 y^{2}= \pm 4$. I claim that this can be interpreted as an isomorphism

$$
\begin{align*}
\mathbb{Z} \times \mathbb{Z}_{2} & \cong\left(\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]\right)^{*} \tag{III.A.14}\\
(a, \pm 1) & \mapsto \pm\left(\frac{1+\sqrt{5}}{2}\right)^{a}
\end{align*}
$$

Given $\alpha=\frac{x+y \sqrt{5}}{2} \in R:=\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$, write $\tilde{\alpha}:=\frac{x-y \sqrt{5}}{2} \in R$. The composition law that led to the group structure on LHS(III.A.14) was exactly multiplication in R. Moreover, (x, y) solves the above equation $\Longleftrightarrow \alpha \cdot(\pm \tilde{\alpha})=1 \Longrightarrow \alpha \in R^{*}$. Conversely, if $\alpha \in R^{*}$, then there exists $\alpha^{\prime}=\frac{x^{\prime}+y^{\prime} \sqrt{5}}{2} \in R$ with $\alpha \alpha^{\prime}=1$, and then $(\alpha \tilde{\alpha})\left(\alpha^{\prime} \tilde{\alpha}^{\prime}\right)=\alpha \alpha^{\prime} \widetilde{\alpha \alpha^{\prime}}=$ $1 \tilde{1}=1$. Since $x \underset{(2)}{\equiv} y$, we have that $x^{2} \underset{(4)}{\equiv} 5 y^{2} \Longrightarrow \alpha \tilde{\alpha}=\frac{x^{2}-5 y^{2}}{4} \in \mathbb{Z}$, and similarly for $\alpha^{\prime} \tilde{\alpha}^{\prime}$. So the only way the product of $\alpha \tilde{\alpha}$ and $\widetilde{\alpha \alpha^{\prime}}$ is 1 , is if they are both ± 1, and then $\alpha \in R^{*}$.

So far we have discussed only quadratic number fields and number rings. To give a brief glimpse ahead, a general result of Dirichlet says that for a number field K with r_{1} distinct real embeddings and r_{2} pairs of conjugate complex embeddings, ${ }^{5}$

$$
\begin{equation*}
\mathcal{O}_{K}^{*} \cong \mathbb{Z}^{r_{1}+r_{2}-1} \times\{\text { torsion group }\} \tag{III.A.15}
\end{equation*}
$$

where $\mathcal{O}_{K} \subset K$ is the ring of integers of K. The main point is that (III.A.14) is a special case (with $r_{1}=2$ and $r_{2}=0$) of a much more general result.

[^3]
[^0]: ${ }^{1}$ The products are also written $\times_{i \in I} R_{i}$, more typically when there are finitely many, viz. $R_{1} \times \cdots \times R_{k}$. We won't use " \oplus " for finite sums/products of rings.

[^1]: ${ }^{2}$ Here $\delta_{i j}$ ($=1$ if $i=j$, and 0 otherwise) is the Kronecker delta.
 ${ }^{3}$ It is important to realize here that the order matters, not just of $A B$ vs. $B A$, but of $a_{i k} b_{k j}$ vs. $b_{k j} a_{i k}$, because R may not be commutative.

[^2]: ${ }^{4}$ In Jacobson, R^{*} means $R \backslash\{0\}$, and $U(R)$ is the group of units. We will not use this notation; the notation given above is more standard.

[^3]: ${ }^{5}$ All number fields can be viewed as vector spaces over Q of some finite dimension, called the degree $[K: Q]$. In this case, that degree is $r_{1}+2 r_{2}$. (An embedding of fields means an injective homomorphism, in this case into \mathbb{R} or \mathbb{C}. These notions will be discussed later.) The case $K=\mathbb{Q}[\sqrt{D}]$ has $r_{1}=0$ and $r_{2}=1$ if $D<0$, or $r_{1}=2$ and $r_{2}=1$ if $D>0$.

