III. Rings

III.A. Examples of rings

The theory of rings and ideals grew out of several 19th and early
20th Century sources:

e polynomials (Gauss, Eisenstein, Hilbert, etc.);

e number rings (Dirichlet, Kummer [“ideal numbers”], Kronecker,
Dedekind [“ideals in number rings”], Hilbert, etc.); and

e matrix rings and hypercomplex numbers (Hamilton [quaternions],
Cayley [octonions], etc.).

Specifically, the term Zahlring showed up in the study of what we
would now call rings of integers in algebraic number fields; e.g. cy-
clotomic rings such as Z[{5] ({5 = a 5th root of 1) arose in the context
od attempts to prove Fermat’s last theorem, and (5 “cycles back to
itself” (suggesting a ring) upon repeatedly taking powers. Here is
the modern definition, due to E. Noether (~1920):

IIT.A.1. DEFINITION. A ring (R, +,e,0,1) comprises a set R to-
gether with 2 binary operations and distinguished elements, satisfy-
ing:

(i) (R, +,0) is an abelian group;
(ii) (R, e,1) is a monoid; and
(iii) distributive laws:

r(s1+sp) =rsy+rsp and (r1 4 r2)s = 115 + 1s.
Note that we do not assume the existence of multiplicative inverses.

[II.A.2. REMARK. (i) If we didn’t assume that “+” was commu-
tative, this would be forced upon us by the distributive laws as fol-
lows:
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100 III. RINGS

e —(a+0b)=(=b)+ (—a) (not assuming (R, +,0) abelian)

e J “additive” inverse —1 of 1 (since (R, +,0) is a group)

e adding —(0r) on the left to Or = (0 + 0)r = Or + Or gives 0 = Or

e adding (—r) on the rightto (—r)+r =0 =0r = (-1+1)r =
(=D)r+1r = (=1)r+rgives —r = (—1)r

e —(a+b)=(-1(a+b)=(—Da+ (-1)b = (—a)+ (D).

(ii) There is also the notion of a “rng” (R, +,e,0) where (R, e) is

taken to be a “semigroup”, meaning that one doesn’t assume the

existence of a multiplicative “i”dentity (or inverses). However, we

can construct a ring containing R with underlying set S = Z x R,

operations

(711, 7’1) + (712, 7’2) = (711 +no, 171 + 1”2) and
(n1,71) - (n2,12) 1= (M1, nyry + nory +1112),

and distinguished elements 1 := (1,0) and 0 := (0,0), by checking
that the associative and distributive laws hold. (R consists of the
elements (0,7).)

(iii) A subring of R is a subset closed under +, —, and e. Hence the
intersection of subrings is a subring, and it makes sense to speak of
the subring generated by a subset S (= intersection of all subrings
containing S).

(iv) A ring is called commutative if the multiplication “e” is. (We
don’t use the term “abelian” for rings.)

II.A.3. EXAMPLES. (i) (A, +,9,0,1),with A =Z,Q,R,C, or Zj,.

duct 1 R;
(ii) Direct 4 10TV of rings’ [ier . If |I| < o then these are
sums Pic1R;

the same. Otherwise, the {IQ;I consists of co-tuples

with no constraints
with all but finitely many entries zero.

IThe products are also written X ;c;R;, more typically when there are finitely many,
viz. Ry X - - - X Rg. We won’t use “@®” for finite sums/products of rings.



II.A. EXAMPLES OF RINGS 101

(iii) Number rings. Let D be a squarefree integer, i.e. =£p;1---py

where py,..., py are distinct primes. Inside C (or R, if D > 0), it
is easy to see the closure properties for the (quadratic) number field

Q[vD] := {a+bVD | a,b € Q}
and the (quadratic) number ring
Z[VD]:={a+bVD |abe Z}.
What about
Z[%ﬁ] D= {m+n(1+T\@) |m,n €2}
— (=D g p e 7, a=b}?

(For the last equality, take m = % and n = b.) Of course, the issue
is multiplicative closure:

(m 4+ n(ZYP)) (m' + ' (HYR)) =
mm' + (mn’ + nm’)(HQ/E) + Zm’(—(HD):z@)j.
1+\/5)
2

nn'(D—1
(4 )+n7’1/(

Clearly closure holds <= 4| D —-1 <= D n 1. As we shall see,
the “ring of integers” in Q[v/D] is
{Z[#] ifD=1

4)
Z[\V/D] otherwise.

Two special cases of interest are Z[#] and Z[i].

(iv) Polynomial rings. Let R be a commutative ring. Set

R[x] := {sequences (ro, 1, ..., tn, 0,0,... )| r; € R}

zero from

some point on
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and define, given a = (ax),>0 and b = (by)x>o0,
a+b:= (a+ b0 and a-b:= (CS_gabk_)iz0-
Also put 0:= (0,0,0,...) and 1 := (1,0,0,...). Then we have
(@a+b)-c= (Tio(a + b))
= (Z0ajck—) + (Ti—objck—j) =a-c+b-c
and

(@a-b)-c = (T oaibr—i) - c = (Th_o(Xi—oaibe_i)ck—r)
= (X, Zk §bic—iy—;) = a- (Ci—objce—y)

so that I1.A.1(iii) is satisfied.
Now identify R with the subring {(r,0,0,...)} C R[x]. Taking
=(0,1,0,0,...), we have x" = (0,...,0,1,0,0,...) so that
—_——

n

(ro,71,72,-+-,71,0,0,...) = rpx"" + - +r1x + 19,

which is obviously a much more appealing (and standard) notation.
We can also (inductively) define polynomial rings in several vari-
ables by

R[x1,...,x5] :== (R]x1, ..., x51]) [xn].

For any r € R, we can consider the evaluation map
evy: R[x] — R
sending e A LA o (Mo P A SIS Y U R 1P

More generally, we can take the product

H ev,: R[x] — HR = ”RR”

reR
of all such maps, sending a polynomial to (essentially) its “graph”.
This is not always surjective (e.g. if R = R) or injective (e.g. if R =
Z3).
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(v) Quaternions. The ring version is built out of the group one: put
H:={a+i+c¢j+dk|ab,cdecR},

where i, j, k have the same multiplicative properties as in the 8-element
group Q. Clearly this is noncommutative. The “H”, of course, is for
Hamilton.

(vi) Matrix rings. Let R be an arbitrary ring, n € IN. We define a ring
wth underlying set

Mn(R) = {ZZj:lrijeij | rij € R},

where the e;; are formal symbols. Taking A = 2,-’]- ajjejj, B = Zi,j bijeij,
we set® 0 := Y Oejj, 1:= )\ 0ijejj = }.i_q e;j, and

ij=1 ij=1
n n
A+ B:= Z (ai]‘ + bz-j)ei]- and AB:= Z (Zzzlaikbk]-)eij.
ij=1 ij=1

Associativity follows from

n

(AB)C = Y _ (X} j—14ibiece;)eij = A(BC)
=1

and the associativity of R; the rest is left to you.3 Of course, these can
be represented in the standard way as matrices
S I (5 V'
A=
an1 - Ann

and you may think of e;j as the matrix with a 1 at the (i, /)™ place
and zeroes elsewhere. We have

_Joj#k
Sk = {ew, j=k

The noncommutativity is highly visible this way.

2Here d;j (= 1ifi = j, and 0 otherwise) is the Kronecker delta.

St is important to realize here that the order matters, not just of AB vs. BA, but of
ajkbyj vs. byjajx, because R may not be commutative.
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Here are some definitions which were clearly not possible (or not
interesting) for groups.

III.A.4. DEFINITION. Let R be aring, r € R an element.
(i)  is a left [resp. right] zero-divisor <= 31’ € R\{0} such that
rr’ = 0 [resp. r'r = 0].
(ii) r is nilpotent <= dn € IN such that r" = 0.

2

(iii) r is idempotent <= r~ =r.

These are easily illustrated in M (RR):

(

(i) In| (93)[(?9) = 0, the boxed element is nilpotent.

II.A.5. EXAMPLE. (i) In [(19)
element is a left zero-divisor.

?) = (88) = 0, the boxed

SO

@) In| (19)[(33) = (49), theboxed element is idempotent. (Think
projection.)

III.A.6. DEFINITION. The characteristic of a ring R is the (small-
est) number of times one has to add 1 (the multiplicative identity
element of R) to itself to obtain 0, unless this is not possible. In the
latter case, the characteristic is zero.

II.A.7. EXAMPLES. (i) R =7, Q, R, C, H, M>(R), Q]x] all have
char(R) = 0.
(i) R = Zy, My(Zy), Zm|x] have char(R) = m.
(iii) In a general commutative ring, we have

(IILA.8) (x+y)" = i (Z) =k,

k=0

If char(R) = p, then p|(}) for0 <k < p =

(IIL.A.9) (x+y)P =P + 4,

the so-called “Freshman’s dream”.
Next are some definitions analogous to those in groups or monoids:
III.A.10. DEFINITION. The center of R is

C(R):={reR|rs=srVseR}.
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IIT.A.11. EXAMPLES. (i) C(H) = R.
(i) If R is commutative, C(M,(R)) = R, where R is identified with
r 0

the subring of diagonal matrices < ) = rl = “r”. More gener-

ally, C(My(R)) = C(R). "

<

PROOF. Given A € C(M,(R)),

n
0= Aey — e A =) aji(ejjers — exeeyj)
ij=1

n n
=) fikeir — ) Asje;.
i—1 =1

In particular, the (k,£)™ entry of the last line is ay — a; and the
(i,0)™ entry (for i # k) is a;. So off-diagonal entries of A are 0 and
the diagonal ones are all equal. Finally, consider Ar — rA. O

III.A.12. DEFINITION. 7 € R is a unit (or invertible) <= 3’ € R
such that rr’ = 1 = r'r. (It is not enough in a general noncommutative
ring to have ¥/ = 1 or #'r = 1 for invertibility.) The units in R form
a group R* under multiplication.*

To begin with a few easy examples: for R = Q, R, C,IH, and more
generally for division rings (see the next section), the units R* are all
nonzero elements. But that is not its general meaning. For instance,
we have Z* = {+1} and Z} = {1,3,5,7} = Z, x Z,. Another ex-
ample is M, (R)* = GL,(IR), which everyone knows is the matrices
with determinant in R* = R\{0}. But for matrices over a more gen-
eral ring R? You'd think determinants might help, but not if R is
noncommutative:

IIL.A.13. EXAMPLE. Consider (‘; }) € My(H). The “determi-
nant” ki —1j =j —j =0, but

GO (F)-0n-n

4In Jacobson, R* means R\{0}, and U(R) is the group of units. We will not use
this notation; the notation given above is more standard.

AN
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So we can only hope for invertibility of matrices to be easily de-
tected via determinants when the entries are in a commutative ring.

Another key example of units in a commutative ring is problem
#7 from HW 1. Recall that this produced a group structure (= Z x
Z5) on integer solutions to x> — 5y> = +4. I claim that this can be
interpreted as an isomorphism

zxz = (2[50])
a

1ML.A.14
( ) (a,41) = +(5)"

Given o = M € R:= Z[HT\@], write & := #ﬁ € R. The com-
position law that led to the group structure on LHS(III.A.14) was ex-
actly multiplication in R. Moreover, (x,y) solves the above equation
<= wa- (&) =1 = a € R*. Conversely, if « € R*, then there

/ !/ —~
existsa’ = ~ +g V5 ¢ Rwithaa’ = 1,and then (a&)(a'd’) = ad’an’ =

= : _ 2 _ 2 - _ x5y
11 = 1. Since x 5 y, we have that x o Sy* = ak = —5*~ € Z,
2 4

and similarly for #’#. So the only way the product of a& and xa’ is
1, is if they are both £1, and then « € R*.

So far we have discussed only quadratic number fields and num-
ber rings. To give a brief glimpse ahead, a general result of Dirichlet
says that for a number field K with r; distinct real embeddings and
r5 pairs of conjugate complex embeddings,”

(IILA.15) Of = Z""271 x {torsion group},

where Ok C K is the ring of integers of K. The main point is that
(III.A.14) is a special case (with r; = 2 and rp = 0) of a much more
general result.

5 All number fields can be viewed as vector spaces over Q of some finite dimension,
called the degree [K:Q)]. In this case, that degree is 11 + 2rp. (An embedding of fields
means an injective homomorphism, in this case into R or C. These notions will be
discussed later.) The case K = Q[v/D] hasr; = 0andr, = 1if D < 0, or r; = 2
andr, =1if D > 0.



