
III. Rings

III.A. Examples of rings

The theory of rings and ideals grew out of several 19th and early
20th Century sources:

• polynomials (Gauss, Eisenstein, Hilbert, etc.);
• number rings (Dirichlet, Kummer [“ideal numbers”], Kronecker,

Dedekind [“ideals in number rings”], Hilbert, etc.); and
• matrix rings and hypercomplex numbers (Hamilton [quaternions],

Cayley [octonions], etc.).

Specifically, the term Zahlring showed up in the study of what we
would now call rings of integers in algebraic number fields; e.g. cy-
clotomic rings such as Z[ζ5] (ζ5 = a 5th root of 1) arose in the context
od attempts to prove Fermat’s last theorem, and ζ5 “cycles back to
itself” (suggesting a ring) upon repeatedly taking powers. Here is
the modern definition, due to E. Noether (∼1920):

III.A.1. DEFINITION. A ring (R,+, •, 0, 1) comprises a set R to-
gether with 2 binary operations and distinguished elements, satisfy-
ing:
(i) (R,+, 0) is an abelian group;
(ii) (R, •, 1) is a monoid; and
(iii) distributive laws:

r(s1 + s2) = rs1 + rs2 and (r1 + r2)s = r1s + r2s.

Note that we do not assume the existence of multiplicative inverses.

III.A.2. REMARK. (i) If we didn’t assume that “+” was commu-
tative, this would be forced upon us by the distributive laws as fol-
lows:
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100 III. RINGS

• −(a + b) = (−b) + (−a) (not assuming (R,+, 0) abelian)
• ∃ “additive” inverse −1 of 1 (since (R,+, 0) is a group)
• adding −(0r) on the left to 0r = (0 + 0)r = 0r + 0r gives 0 = 0r
• adding (−r) on the right to (−r) + r = 0 = 0r = (−1 + 1)r =

(−1)r + 1r = (−1)r + r gives −r = (−1)r
• −(a + b) = (−1)(a + b) = (−1)a + (−1)b = (−a) + (−b).

(ii) There is also the notion of a “rng” (R,+, •, 0) where (R, •) is
taken to be a “semigroup”, meaning that one doesn’t assume the
existence of a multiplicative “i”dentity (or inverses). However, we
can construct a ring containing R with underlying set S = Z× R,
operations{

(n1, r1) + (n2, r2) := (n1 + n2, r1 + r2) and
(n1, r1) · (n2, r2) := (n1n2, n1r2 + n2r1 + r1r2) ,

and distinguished elements 1 := (1, 0) and 0 := (0, 0), by checking
that the associative and distributive laws hold. (R consists of the
elements (0, r).)

(iii) A subring of R is a subset closed under +, −, and •. Hence the
intersection of subrings is a subring, and it makes sense to speak of
the subring generated by a subset S (= intersection of all subrings
containing S).

(iv) A ring is called commutative if the multiplication “•” is. (We
don’t use the term “abelian” for rings.)

III.A.3. EXAMPLES. (i) (A,+, •, 0, 1), with A = Z, Q, R, C, or Zm.

(ii) Direct

{
products

sums
of rings1

{
∏i∈I Ri

⊕i∈I Ri
. If |I| < ∞ then these are

the same. Otherwise, the

{
∏
⊕

consists of ∞-tuples

{
with no constraints

with all but finitely many entries zero.

1The products are also written×i∈I Ri, more typically when there are finitely many,
viz. R1 × · · · × Rk. We won’t use “⊕” for finite sums/products of rings.
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(iii) Number rings. Let D be a squarefree integer, i.e. ±p1 · · · pd

where p1, . . . , pd are distinct primes. Inside C (or R, if D > 0), it
is easy to see the closure properties for the (quadratic) number field

Q[
√

D] := {a + b
√

D | a, b ∈ Q}

and the (quadratic) number ring

Z[
√

D] := {a + b
√

D | a, b ∈ Z}.

What about

Z[1+
√

D
2 ] : = {m + n(1+

√
D

2 ) | m, n ∈ Z}

= { a+b
√

D
2 | a, b ∈ Z, a ≡

(2)
b} ?

(For the last equality, take m = a−b
2 and n = b.) Of course, the issue

is multiplicative closure:

(m + n(1+
√

D
2 ))(m′ + n′(1+

√
D

2 )) =

mm′ + (mn′ + nm′)(1+
√

D
2 ) + nn′( (1+D)+2

√
D

4 )︸ ︷︷ ︸ .

nn′(D−1)
4 +nn′(1+

√
D

2 )

Clearly closure holds ⇐⇒ 4 | D− 1 ⇐⇒ D ≡
(4)

1. As we shall see,

the “ring of integers” in Q[
√

D] isZ[1+
√

D
2 ] if D ≡

(4)
1

Z[
√

D] otherwise.

Two special cases of interest are Z[1+
√

5
2 ] and Z[i].

(iv) Polynomial rings. Let R be a commutative ring. Set

R[x] := {sequences (r0, r1, . . . , rn, 0, 0, . . .︸ ︷︷ ︸
zero from

some point on

) | ri ∈ R}
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and define, given a = (ak)k≥0 and b = (bk)k≥0,

a + b := (ak + bk)k≥0 and a · b := (∑k
j=0ajbk−j)k≥0.

Also put 0 := (0, 0, 0, . . .) and 1 := (1, 0, 0, . . .). Then we have

(a + b) · c = (∑k
j=0(aj + bj)ck−j)

= (∑k
j=0ajck−j) + (∑k

j=0bjck−j) = a · c + b · c

and

(a · b) · c = (∑k
i=0aibk−i) · c = (∑k

`=0(∑
`
i=0aib`−i)ck−`)

=
`=i+j

(∑k
i=0ai∑k−i

j=0bjc(k−i)−j) = a · (∑k
j=0bjck−j)

= a · (b · c),

so that II.A.1(iii) is satisfied.
Now identify R with the subring {(r, 0, 0, . . .)} ⊂ R[x]. Taking

x := (0, 1, 0, 0, . . .), we have xn = (0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, 0, . . .) so that

(r0, r1, r2, . . . , rn, 0, 0, . . .) = rnxn + · · ·+ r1x + r0,

which is obviously a much more appealing (and standard) notation.
We can also (inductively) define polynomial rings in several vari-
ables by

R[x1, . . . , xn] := (R[x1, . . . , xn−1]) [xn].

For any r ∈ R, we can consider the evaluation map

evr : R[x] −→ R

sending rnxn + · · ·+ r1x + r0 7−→ rnrn + · · ·+ r1r + r0.

More generally, we can take the product

∏
r∈R

evr : R[x]→∏
R

R (= “RR”)

of all such maps, sending a polynomial to (essentially) its “graph”.
This is not always surjective (e.g. if R = R) or injective (e.g. if R =

Z3).
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(v) Quaternions. The ring version is built out of the group one: put

H := {a + i + cj + dk | a, b, c, d ∈ R} ,

where i, j, k have the same multiplicative properties as in the 8-element
group Q. Clearly this is noncommutative. The “H”, of course, is for
Hamilton.

(vi) Matrix rings. Let R be an arbitrary ring, n ∈N. We define a ring
wth underlying set

Mn(R) := {∑n
i,j=1rijeij | rij ∈ R},

where the eij are formal symbols. Taking A = ∑i,j aijeij, B = ∑i,j bijeij,
we set2 0 := ∑n

i,j=1 0eij, 1 := ∑n
i,j=1 δijeij = ∑n

i=1 eii, and

A + B :=
n

∑
i,j=1

(aij + bij)eij and AB :=
n

∑
i,j=1

(∑n
k=1aikbkj)eij.

Associativity follows from

(AB)C =
n

∑
i,j=1

(∑n
k,`=1aikbk`c`j)eij = A(BC)

and the associativity of R; the rest is left to you.3 Of course, these can
be represented in the standard way as matrices

A =

a11 · · · a1n
... . . . ...

an1 · · · ann


and you may think of eij as the matrix with a 1 at the (i, j)th place
and zeroes elsewhere. We have

eijek` =

{
0, j 6= k

ei`, j = k.

The noncommutativity is highly visible this way.

2Here δij (= 1 if i = j, and 0 otherwise) is the Kronecker delta.
3It is important to realize here that the order matters, not just of AB vs. BA, but of
aikbkj vs. bkjaik, because R may not be commutative.



104 III. RINGS

Here are some definitions which were clearly not possible (or not
interesting) for groups.

III.A.4. DEFINITION. Let R be a ring, r ∈ R an element.
(i) r is a left [resp. right] zero-divisor ⇐⇒ ∃ r′ ∈ R\{0} such that
rr′ = 0 [resp. r′r = 0].
(ii) r is nilpotent ⇐⇒ ∃ n ∈N such that rn = 0.
(iii) r is idempotent ⇐⇒ r2 = r.

These are easily illustrated in M2(R):

III.A.5. EXAMPLE. (i) In
(

1 0
1 0

) (
0 0
0 1
)
=
(

0 0
0 0
)
= 0, the boxed

element is a left zero-divisor.
(ii) In

(
0 0
1 0
) (

0 0
1 0
)
= 0, the boxed element is nilpotent.

(iii) In
(

1 0
0 0
) (

1 0
0 0
)
=
(

1 0
0 0
)
, the boxed element is idempotent. (Think

projection.)

III.A.6. DEFINITION. The characteristic of a ring R is the (small-
est) number of times one has to add 1 (the multiplicative identity
element of R) to itself to obtain 0, unless this is not possible. In the
latter case, the characteristic is zero.

III.A.7. EXAMPLES. (i) R = Z, Q, R, C, H, M2(R), Q[x] all have
char(R) = 0.
(ii) R = Zm, Mn(Zm), Zm[x] have char(R) = m.
(iii) In a general commutative ring, we have

(III.A.8) (x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k.

If char(R) = p, then p
∣∣(p

k) for 0 < k < p =⇒

(III.A.9) (x + y)p = xp + yp,

the so-called “Freshman’s dream”.

Next are some definitions analogous to those in groups or monoids:

III.A.10. DEFINITION. The center of R is

C(R) := {r ∈ R | rs = sr ∀s ∈ R}.
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III.A.11. EXAMPLES. (i) C(H) = R.

(ii) If R is commutative, C(Mn(R)) = R, where R is identified with

the subring of diagonal matrices
( r 0

. . .
0 r

)
= r1 = “r”. More gener-

ally, C(Mn(R)) = C(R).

PROOF. Given A ∈ C(Mn(R)),

0 = Aek` − ek`A =
n

∑
i,j=1

aij(eijek` − ek`eij)

=
n

∑
i=1

aikei` −
n

∑
j=1

a`jekj.

In particular, the (k, `)th entry of the last line is akk − a`` and the
(i, `)th entry (for i 6= k) is aik. So off-diagonal entries of A are 0 and
the diagonal ones are all equal. Finally, consider Ar− rA. �

III.A.12. DEFINITION. r ∈ R is a unit (or invertible) ⇐⇒ ∃ r′ ∈ R
such that rr′ = 1 = r′r. (It is not enough in a general noncommutative
ring to have rr′ = 1 or r′r = 1 for invertibility.) The units in R form
a group R∗ under multiplication.4

To begin with a few easy examples: for R = Q, R, C, H, and more
generally for division rings (see the next section), the units R∗ are all
nonzero elements. But that is not its general meaning. For instance,
we have Z∗ = {±1} and Z∗8 = {1̄, 3̄, 5̄, 7̄} ∼= Z2 ×Z2. Another ex-
ample is Mn(R)∗ = GLn(R), which everyone knows is the matrices
with determinant in R∗ = R\{0}. But for matrices over a more gen-
eral ring R? You’d think determinants might help, but not if R is
noncommutative:

III.A.13. EXAMPLE. Consider
(

k 1
j i

)
∈ M2(H). The “determi-

nant” ki− 1j = j− j = 0, but(
k 1
j i

)(
− k

2 −
j
2

1
2 − i

2

)
=
(

1 0
0 1

)
= 1.

4In Jacobson, R∗ means R\{0}, and U(R) is the group of units. We will not use
this notation; the notation given above is more standard.
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So we can only hope for invertibility of matrices to be easily de-
tected via determinants when the entries are in a commutative ring.

Another key example of units in a commutative ring is problem
#7 from HW 1. Recall that this produced a group structure (∼= Z×
Z2) on integer solutions to x2 − 5y2 = ±4. I claim that this can be
interpreted as an isomorphism

(III.A.14)
Z×Z2

∼=
(

Z
[

1+
√

5
2

])∗
(a,±1) 7→ ±

(
1+
√

5
2

)a
.

Given α = x+y
√

5
2 ∈ R := Z[1+

√
5

2 ], write α̃ := x−y
√

5
2 ∈ R. The com-

position law that led to the group structure on LHS(III.A.14) was ex-
actly multiplication in R. Moreover, (x, y) solves the above equation
⇐⇒ α · (±α̃) = 1 =⇒ α ∈ R∗. Conversely, if α ∈ R∗, then there

exists α′ = x′+y′
√

5
2 ∈ R with αα′ = 1, and then (αα̃)(α′α̃′) = αα′α̃α′ =

11̃ = 1. Since x ≡
(2)

y, we have that x2 ≡
(4)

5y2 =⇒ αα̃ = x2−5y2

4 ∈ Z,

and similarly for α′α̃′. So the only way the product of αα̃ and α̃α′ is
1, is if they are both ±1, and then α ∈ R∗.

So far we have discussed only quadratic number fields and num-
ber rings. To give a brief glimpse ahead, a general result of Dirichlet
says that for a number field K with r1 distinct real embeddings and
r2 pairs of conjugate complex embeddings,5

(III.A.15) O∗K ∼= Zr1+r2−1 × {torsion group},

where OK ⊂ K is the ring of integers of K. The main point is that
(III.A.14) is a special case (with r1 = 2 and r2 = 0) of a much more
general result.

5All number fields can be viewed as vector spaces over Q of some finite dimension,
called the degree [K:Q]. In this case, that degree is r1 + 2r2. (An embedding of fields
means an injective homomorphism, in this case into R or C. These notions will be
discussed later.) The case K = Q[

√
D] has r1 = 0 and r2 = 1 if D < 0, or r1 = 2

and r2 = 1 if D > 0.


