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III.B. Ring zoology
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We will define integrally closed domains, UFDs (also called “Fac-
torial” domains) and PIDs later.

III.B.2. DEFINITION. A Euclidean domain is a commutative do-
main which has a function

δ : R\{0} →N

with the following property: for all a ∈ R and b ∈ R\{0}, there exist
q, r ∈ R satisfying a = bq + r and either δ(r) < δ(b) or r = 0. (This δ

is called a Euclidean function and is not unique.)

Clearly, these are just the domains to which we can generalize the
(Euclidean) division algorithm I.B.3.

III.B.3. REMARK. The best choice for δ, when possible, is to have
δ(1) = 1 and δ−1(1) = R∗. This will be the case in all examples
below.

In the remainder of the section I simply comment on some of the
inclusions in (III.B.1) and give a few examples.

III.B.4. EXAMPLE. Given α = a + bi + cj + dk ∈ H\{0}, set ᾱ :=
a− bi− cj− dk. We have

αᾱ = a2 + b2 + c2 + d2 + ab(−i + i) + ac(−j + j) + ad(−k + k)

+ bc(−ij− ji) + bd(−ik− ki) + cd(−jk− kj)

=⇒ ᾱ
a2+b2+c2+d2 = α−1. This proves that

noncommutative division rings exist.

III.B.5. EXAMPLE. Z6 firnishes an example of a commutative ring
which is not a domain, due to the (obviously non-invertible) zero-
divisors 2̄, 3̄, and 4̄.

III.B.6. PROPOSITION. Given a field F, (a) F and (b) F[x] are Eu-
clidean domains.6

6As will be seen very easily later, F[x, y] is non-Euclidean.
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PROOF. (a) Put δ(r) := 1 ∀r ∈ F\{0}. Set q = b−1a, r = 0.
(b) Put δ(P(x)) := 2deg(P(x)). Use polynomial long division to con-
struct q, r. �

III.B.7. EXAMPLE. Q[i] is a field. (Here, and elsewhere, i :=
√
−1.)

To see this, simply write

1
a + bi

=
a− bi

(a + bi)(a− bi)
=

a
a2 + b2 −

b
a2 + b2 i.

Similarly, we can show Q[
√

d] is a field for any d ∈ Z.

III.B.8. PROPOSITION. (a) Z and (b) Z[i] are Euclidean domains.

PROOF. (a) Put δ(m) := |m| and use the division algorithm.
(b) Writing α = a + bi, put δ(α) := αᾱ = |α|2 = a2 + b2. Let α ∈ Z[i]
and β ∈ Z[i]\{0}. We will find µ and ρ in Z[i] such that α = βµ + ρ

and δ(β) > δ(ρ).
Working in Q[i], we have αβ−1 = x + yi; pick m, n ∈ Z such that

ε := x−m and η := y− n have |ε|, |η| ≤ 1
2 . Then

α = β{(m + ε) + (n + η)i} = β{m + ni︸ ︷︷ ︸
=:µ

}+ β{ε + ηi}︸ ︷︷ ︸
=:ρ

.

Clearly µ ∈ Z[i], and so ρ = α− βµ ∈ Z[i] also. Now

δ(ρ) = |ρ|2 = |β|2|ε + ηi|2 = δ(β){ε2 + η2}

≤ δ(β) · { 1
4 +

1
4} < δ(β),

and we are done. �

III.B.9. REMARK. The δ in the proof of (b) is an example of a
Galois norm. This is easy to generalize to quadratic number rings
R = Z[

√
D] and (if D ≡

(4)
1) Z[1+

√
D

2 ]. Given α = a + b
√

D, write

α̃ := a − b
√

D (which is the complex conjugate ᾱ if D < 0); then
we define the norm by N (α) := αα̃. When this gives a Euclidean
function, a number ring is called norm-Euclidean. For imaginary qua-
dratic (D < 0), in which case Euclidean and norm-Euclidean are
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equivalent, the complete list is

Z[
√
−1], Z[

√
−2], Z[1+

√
−3

2 ], Z[1+
√
−7

2 ], and Z[1+
√
−11

2 ]︸ ︷︷ ︸
(HW)

.

In the real quadratic case, the list of norm-Euclidean cases is much
longer (but finite) and strictly smaller than the list of Euclidean cases
(which is conjectured to be infinite).

We should also mention that for a ring R,

(III.B.10) R is a domain ⇐⇒
({

ab = ac or ba = ca
AND

a 6= 0

}
=⇒ b = c

)
.

PROOF. If R is a domain, suppose a(b− c) = 0 with a 6= 0; then
as there are no zero-divisors, b− c = 0.

Conversely, assume the condition on RHS(III.B.10), and suppose
ab = 0 with a 6= 0. Then ab = a0 =⇒ b = 0, and no left zero-
divisors exist. (Now reverse a and b.) �

Finally, note that

(III.B.11) R is a domain =⇒ char(R) is prime or 0.


