III.B. Ring zoology

(III.B.1)

We will define integrally closed domains, UFDs (also called "Factorial" domains) and PIDs later.

III.B.2. DEFINITION. A **Euclidean domain** is a commutative domain which has a function

$$\delta \colon R \setminus \{0\} \to \mathbb{N}$$

with the following property: for all $a \in R$ and $b \in R \setminus \{0\}$, there exist $q, r \in R$ satisfying a = bq + r and either $\delta(r) < \delta(b)$ or r = 0. (This δ is called a *Euclidean function* and is not unique.)

Clearly, these are just the domains to which we can generalize the (Euclidean) division algorithm I.B.3.

III.B.3. REMARK. The best choice for δ , when possible, is to have $\delta(1) = 1$ and $\delta^{-1}(1) = R^*$. This will be the case in all examples below.

In the remainder of the section I simply comment on some of the inclusions in (III.B.1) and give a few examples.

III.B.4. EXAMPLE. Given $\alpha = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbb{H} \setminus \{0\}$, set $\bar{\alpha} := a - b\mathbf{i} - c\mathbf{j} - d\mathbf{k}$. We have $\alpha \bar{\alpha} = a^2 + b^2 + c^2 + d^2 + ab(-\mathbf{i} + \mathbf{i}) + ac(-\mathbf{j} + \mathbf{j}) + ad(-\mathbf{k} + \mathbf{k})$ $+ bc(-\mathbf{i}\mathbf{j} - \mathbf{j}\mathbf{i}) + bd(-\mathbf{i}\mathbf{k} - \mathbf{k}\mathbf{i}) + cd(-\mathbf{j}\mathbf{k} - \mathbf{k}\mathbf{j})$ $\implies \frac{\bar{\alpha}}{a^2 + b^2 + c^2 + d^2} = \alpha^{-1}$. This proves that

noncommutative division rings exist.

III.B.5. EXAMPLE. \mathbb{Z}_6 firmishes an example of a commutative ring which is not a domain, due to the (obviously non-invertible) zerodivisors $\overline{2}$, $\overline{3}$, and $\overline{4}$.

III.B.6. PROPOSITION. Given a field \mathbb{F} , (a) \mathbb{F} and (b) $\mathbb{F}[x]$ are Euclidean domains.⁶

108

⁶As will be seen very easily later, $\mathbb{F}[x, y]$ is non-Euclidean.

III.B. RING ZOOLOGY

PROOF. (a) Put $\delta(r) := 1 \forall r \in \mathbb{F} \setminus \{0\}$. Set $q = b^{-1}a$, r = 0. (b) Put $\delta(P(x)) := 2^{\deg(P(x))}$. Use polynomial long division to construct q, r.

III.B.7. EXAMPLE. $\mathbb{Q}[\mathbf{i}]$ is a field. (Here, and elsewhere, $\mathbf{i} := \sqrt{-1}$.) To see this, simply write

$$\frac{1}{a+b\mathbf{i}} = \frac{a-b\mathbf{i}}{(a+b\mathbf{i})(a-b\mathbf{i})} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}\mathbf{i}$$

Similarly, we can show $\mathbb{Q}[\sqrt{d}]$ is a field for any $d \in \mathbb{Z}$.

III.B.8. PROPOSITION. (a) \mathbb{Z} and (b) $\mathbb{Z}[\mathbf{i}]$ are Euclidean domains.

PROOF. (a) Put $\delta(m) := |m|$ and use the division algorithm. (b) Writing $\alpha = a + b\mathbf{i}$, put $\delta(\alpha) := \alpha \bar{\alpha} = |\alpha|^2 = a^2 + b^2$. Let $\alpha \in \mathbb{Z}[\mathbf{i}]$ and $\beta \in \mathbb{Z}[\mathbf{i}] \setminus \{0\}$. We will find μ and ρ in $\mathbb{Z}[\mathbf{i}]$ such that $\alpha = \beta \mu + \rho$ and $\delta(\beta) > \delta(\rho)$.

Working in $\mathbb{Q}[\mathbf{i}]$, we have $\alpha\beta^{-1} = x + y\mathbf{i}$; pick $m, n \in \mathbb{Z}$ such that $\epsilon := x - m$ and $\eta := y - n$ have $|\epsilon|, |\eta| \le \frac{1}{2}$. Then

$$\alpha = \beta\{(m+\epsilon) + (n+\eta)\mathbf{i}\} = \beta\{\underbrace{m+n\mathbf{i}}_{=:\mu}\} + \underbrace{\beta\{\epsilon+\eta\mathbf{i}\}}_{=:\rho}.$$

Clearly $\mu \in \mathbb{Z}[\mathbf{i}]$, and so $\rho = \alpha - \beta \mu \in \mathbb{Z}[\mathbf{i}]$ also. Now

$$\begin{split} \delta(\rho) &= |\rho|^2 = |\beta|^2 |\epsilon + \eta \mathbf{i}|^2 = \delta(\beta) \{\epsilon^2 + \eta^2\} \\ &\leq \delta(\beta) \cdot \{\frac{1}{4} + \frac{1}{4}\} < \delta(\beta), \end{split}$$

and we are done.

III.B.9. REMARK. The δ in the proof of (b) is an example of a *Galois norm*. This is easy to generalize to quadratic number rings $R = \mathbb{Z}[\sqrt{D}]$ and (if $D \equiv \underset{(4)}{\equiv} 1$) $\mathbb{Z}[\frac{1+\sqrt{D}}{2}]$. Given $\alpha = a + b\sqrt{D}$, write $\tilde{\alpha} := a - b\sqrt{D}$ (which is the complex conjugate $\bar{\alpha}$ if D < 0); then we define the norm by $\mathcal{N}(\alpha) := \alpha \tilde{\alpha}$. When this gives a Euclidean function, a number ring is called *norm-Euclidean*. For imaginary quadratic (D < 0), in which case Euclidean and norm-Euclidean are

equivalent, the complete list is

$$\mathbb{Z}[\sqrt{-1}], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\frac{1+\sqrt{-3}}{2}], \mathbb{Z}[\frac{1+\sqrt{-7}}{2}], \text{ and } \underbrace{\mathbb{Z}[\frac{1+\sqrt{-11}}{2}]}_{(HW)}.$$

In the real quadratic case, the list of norm-Euclidean cases is much longer (but finite) and strictly smaller than the list of Euclidean cases (which is conjectured to be infinite).

We should also mention that for a ring R,

(III.B.10) *R* is a domain
$$\iff \left(\begin{cases} ab = ac \text{ or } ba = ca \\ AND \\ a \neq 0 \end{cases} \right) \implies b = c \right).$$

PROOF. If *R* is a domain, suppose a(b - c) = 0 with $a \neq 0$; then as there are no zero-divisors, b - c = 0.

Conversely, assume the condition on RHS(III.B.10), and suppose ab = 0 with $a \neq 0$. Then $ab = a0 \implies b = 0$, and no left zerodivisors exist. (Now reverse *a* and *b*.)

Finally, note that

(III.B.11) R is a domain \implies char(R) is prime or 0.