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III.C. Matrix rings

Let R be a commutative ring; then a matrix A = ∑n
i,j=1 aijeij ∈

Mn(R) has a determinant:

III.C.1. DEFINITION. det(A) := ∑σ∈Sn sgn(σ)∏n
i=1 ai,σ(i) ∈ R.

As immediate consequences of this definition,

det is alternating and multilinear

in the columns {aj} of A, viewed as elements of Rn:
(III.C.2)

(i) det(a1, . . . , rak + r′a′k, . . . , an) = r det(a1, . . . , ak, . . . , an)

+r′ det(a1, . . . , a′k, . . . , an)

(ii) det(a1, . . . , ak, . . . , a`, . . . , an) = −det(a1, . . . , a`, . . . , ak, . . . , an)

(iii) = 0 if ak = a`.

(Note that if 2|char(R), then (iii) does not follow from (ii), but it fol-
lows directly from III.C.1.) Moreover, since sgn(σ−1) = sgn(σ),

det(t A) = det(A) =⇒ (III.C.2) holds for rows.

This means that the elementary row operations (EROs)

(III.C.3)


(I) adding r times the jth row (r ∈ R) to the ith row
(II) swapping ith and jth rows
(III) multiplying the ith row by r (r ∈ R∗),

which are invertible, have the following effects on det(A): none;
multiply by −1; multiply by r (respectively). EROs correspond to
multiplying A on the left by the elementary matrices

(III.C.4)


elementary matrix det

(I) 1 + reij 1
(II) 1 + eij + eji − eii − ejj −1
(III) 1 + (r− 1)eii r.
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When R is a field, such as R (as in the standard linear algebra
course), EROs can be used to put A into a unique reduced row ech-
elon form:

(III.C.5)



• each row has a “leading 1” as its first nonzero entry
• in row j, this occurs in the µ(j)th entry, where µ is

a strictly increasing Z>0-valued function
• for each j, all entries in the µ(j)th column are zero,

except for the leading 1.

(If µ(j) > n, the jth row is zero.) The resulting matrix

(III.C.6) rref(A) = EN · · · E1︸ ︷︷ ︸
as in (III.C.4)

A

is either 1 or has last row 0. Moreover, by (III.C.3)-(III.C.4) it is clear
that

(III.C.7) det(rref(A)) =
(

∏N
i=1 det(Ei)

)
det(A).

Since the det(Ei) 6= 0 and the Ei are invertible, this yields the

III.C.8. PROPOSITION. When R is a field,

det(A) 6= 0 ⇐⇒ rref(A) = 1 ⇐⇒ A is invertible.

It also gives a way to compute the inverse: assuming rref(A) = 1,

(III.C.9) EN · · · E1(A | 1︸ ︷︷ ︸
n×2n

) = (EN · · · E1A︸ ︷︷ ︸
1

| EN · · · E1︸ ︷︷ ︸
A−1

) ,

i.e. computing rref(A | 1) gives (1 | A−1). Moreover, (III.C.9) shows
that any matrix B with nonzero determinant is a product of elemen-
tary matrices ∏M

i=1 Ei, and so by (III.C.3)-(III.C.4) we get that first
det(B) = ∏M

i=1 det(Ei) then

(III.C.10) det(BC) = det(B)det(C) ,

arguing by induction on M.
Turning to the next level of generality, suppose that R is a Eu-

clidean domain. To produce an analogue of the rref, find the nonzero
entry b in the first (nonzero) column with the lowest δ(b), then apply
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a = bq + r to the other entries in that column and use a type (I) ERO
to kill the bq’s. Repeat this step on the column until all but one en-
try is zero; swap it to the top position. Restricting to the (n− 1)× n
submatrix below the first row, we repeat the algorithm to arrive at

0 · · · 0 r1 ∗ · · · ∗ s
0 · · · · · · · · · · · · 0 r2

0

∣∣∣∣∣∣∣∣∣∣
?


where by a type (I) ERO together with the Euclidean algorithm we
can assume δ(s) < δ(r2). Using type (I) and (II) EROs, we eventually
produce a matrix in Hermite normal form
(III.C.11)

Herm(A) = (αij) =


0 · · · 0 α1,µ(1) ∗ · · · ∗ α1,µ(2) ∗ · · · ∗ α1,µ(3)

0 · · · · · · · · · · · · · · · 0 α2,µ(2) ∗ · · · ∗ α2,µ(3)

0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 α3,µ(3)
...

etc.



where δ(αi,µ(j)) < δ(αj,µ(j)) for all i < j, and all entries below the
diagonal are 0. Clearly we still have (by (III.C.3)-(III.C.4)) that

(III.C.12)

{
Herm(A) = EN · · · E1A
det(Herm(A)) = (∏i det(Ei))det(A)

where ∏i det(Ei) ∈ R∗, and so
(III.C.13)

det(A) 6= 0 ⇐⇒ det(Herm(A))︸ ︷︷ ︸
=∏n

i=1 αii

6= 0 ⇐⇒ µ(j) = j (∀j).

Assume the αii 6= 0 (∀i). We need the following

III.C.14. LEMMA. ∏n
i=1 αii ∈ R∗ ⇐⇒ αii ∈ R∗ (∀i).

PROOF. If n = 2, then this says that rs ∈ R∗ ⇐⇒ r, s ∈ R∗.
Suppose rs = u ∈ R∗; then u−1 exists, and r(su−1) = 1 =⇒ r ∈ R∗.
Now induce on n. �
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Putting this all together,

det(A) ∈ R∗ ⇐⇒
(III.C.12)

det(Herm(A)) ∈ R∗

⇐⇒
(III.C.13)

∏ αii ∈ R∗ ⇐⇒
(III.C.14)

αii ∈ R∗ (∀i).

But if the αii ∈ R∗, we may (if necessary) kill all the off-diagonal
entries (by type (I) EROs) and scale the diagonal ones to 1 (by type
(III) EROs). Since elementary matrices are invertible, we arrive at the

III.C.15. THEOREM. For R Euclidean, the following are equivalent:
(i) Herm(A) has diagonal entries in R∗;
(ii) det(A) ∈ R∗; and
(iii) A is invertible.
In this case, (III.C.9) still gives a way to compute A−1.

Now here’s a problem: we can’t prove det(AB) = det(A)det(B)
as we did above if neither A nor B satisfies these equivalent condi-
tions – let alone if R isn’t a Euclidean domain (or a domain!).

Fortunately, the solution is straightforward (if a bit ugly). Sup-
pose, once again, that R is a general commutative ring.

III.C.16. PROPOSITION. det(AB) = det(A)det(B).

PROOF. Write C = AB, so that cj` = ∑n
k=1 ajkbk`. We compute

det(A)det(B) = ∑
σ∈Sn

sgn(σ)
n

∏
j=1

aj,σ(j) × ∑
η∈Sn

sgn(η)
n

∏
k=1

bk,η(k)

[taking ρ = η ◦ σ] = ∑
ρ∈Sn

sgn(ρ) ∑
σ∈Sn

n

∏
j=1

aj,σ(j)

n

∏
k=1

bk,ρ(σ−1(k))

[identify k = σ(j)] = ∑
ρ∈Sn

sgn(ρ) ∑
σ∈Sn

n

∏
j=1

aj,σ(j)bσ(j),ρ(j)

[see below] = ∑
ρ∈Sn

sgn(ρ)
n

∏
j=1

n

∑
`=1

aj`b`,ρ(j)

= ∑
ρ∈Sn

sgn(ρ)
n

∏
j=1

cj,ρ(j) = det(C).
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As for the boxed equality, first observe7 that

(III.C.17)
n

∏
j=1

(
n

∑
`=1

aj`b`,ρ(j)

)
= ∑

µ∈Tn

n

∏
j=1

aj,µ(j)bµ(j),ρ(j)

where Tn denotes all maps from {1, . . . , n} to itself (not just permu-
tations). For each µ ∈ Tn, let B(µ) denote the n× n matrix whose ith

row is the µ(i)th row of B for each i. Applying a variant of the first 3
steps above in reverse gives

∑
ρ∈Sn

sgn(ρ) ∑
µ∈Tn\Sn

n

∏
j=1

aj,µ(j)bµ(j),ρ(j) = ∑
ρ∈Sn

∑
µ∈Tn\Sn

n

∏
j=1

aj,µ(j)

n

∏
k=1

bµ(ρ−1(k)),k

= ∑
µ∈Tn\Sn

(
n

∏
j=1

aj,µ(j) ∑
ρ∈Sn

sgn(ρ)
n

∏
k=1

bµ(ρ−1(k)),k

)

= ∑
µ∈Tn\Sn

(
n

∏
j=1

aj,µ(j) ∑
ρ∈Sn

sgn(ρ)
n

∏
k=1

b(µ)
ρ−1(k),k

)

= ∑
µ∈Tn\Sn

(
n

∏
j=1

aj,µ(j) det B(µ)

)
= 0

since B(µ) has repeated rows for µ ∈ Tn\Sn. This shows that after
multiplying (III.C.17) by sgn(ρ) and summing over ρ ∈ Sn we can
omit terms with µ /∈ Sn, proving the boxed equality. �

What about invertibility? Well, you may recall that adjugate ma-
trices and Cramer’s rule were always the most horrible approach to
computing inverses and solving systems of equations in linear alge-
bra, unless the matrix entries were (say) transcendentals, polynomi-
als, etc. Since our entries are now in a general commutative ring,
let’s try this approach. Defining the cofactor

(III.C.18) Aij := (−1)i+j det
((n−1)×(n−1)︷ ︸︸ ︷
(ak`)k 6= i

` 6= j

)
,

7When expanding the LHS, the µth term on the RHS is obtained by choosing the
µ(j)th term (of the sum in parentheses) from the jth factor, as j runs from 1 to n.
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as an immediate (computational) consequence of III.C.1 we have the
Laplace expansions

(III.C.19) det(A) =
n

∑
`=1

ai`Ai` =
n

∑
k=1

aki Aki.

Now let A′ (resp. A′′) be the matrices obtained by deleting the ith

row (resp. column) and replacing it by the jth row (resp. column).
The repeated row (resp. column) makes the determinant zero:

(III.C.20)
0 = det A′ = ∑n

`=1 aj`Ai`

0 = det A′′ = ∑n
k=1 akj Aki

}
(j 6= i).

Overall, (III.C.19)-(III.C.20) =⇒

(III.C.21)
n

∑
`=1

aj`Ai` = (det A)δij =
n

∑
k=1

akj Aki.

Defining the adjugate matrix (or “classical adjoint”) by

(III.C.22) adj(A) := n× n matrix with (i, j)th entry Aji ,

we have the

III.C.23. PROPOSITION. (adjA)A = det(A)1 = A(adjA).

PROOF. The (i, j)th entry of (adjA)A is
n

∑
k=1

[adjA]ikakj =
n

∑
k=1

akj Aki = (det A)δij. �

This leads to the

III.C.24. THEOREM. A ∈ Mn(R) belongs to Mn(R)∗ (=: GLn(R))
if and only if det(A) ∈ R∗.

PROOF. ( =⇒ ): by III.C.23, ( adjA
det A )A = 1 = A(

adjA
det A ).

(⇐= ): by III.C.16, AB = 1 =⇒ det(A)det(B) = 1. �

Even for R a field, for n > 1 Mn(R) is not a division ring; even the
subring of diagonal matrices isn’t! On the other hand, the diagonal
matrices with all entries equal yield a subring which is isomorphic
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to R. Are there other sorts of “in-between” subrings that are still
division rings,8 i.e. have all nonzero elements invertible?

III.C.25. EXAMPLE. Consider the subset of M2(C) comprising ma-
trices of the form

M =

(
α γ

−γ̄ ᾱ

)
=

(
a + bi c + di
−c + di a− bi

)
.

Since (
α γ

−γ̄ ᾱ

)(
α′ γ′

−γ̄′ ᾱ′

)
=

(
αα′ − γγ̄′ αγ′ + γᾱ′

−γ̄α′ − ᾱγ̄′ −γ̄γ′ + ᾱᾱ′

)
is still such a matrix, and closure is obvious for addition, this is a
subring. Moreover,

0 = det(M) = |α|2 + |γ|2 ⇐⇒ α = γ = 0 ⇐⇒ M = 0.

Hence, all nonzero entries of this type are invertible, and this subset
is a division ring, which we will later identify with H.

8Keep in mind here that GLn(R) is not a subring, since it’s not closed under addi-
tion. It’s just a group under multiplication.


