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III.D. Ideals

Let R be a commutative domain. We say, given s, r ∈ R, that

(III.D.1) s|r (“s divides r”) defn.⇐⇒ r = st for some t ∈ R,

and (for r /∈ R∗ ∪ {0})

(III.D.2) r is irreducible defn.⇐⇒
(

r = ab (a, b ∈ R)
=⇒ a or b ∈ R∗

)
.

If u ∈ R∗ and r = su, one writes r ∼ s and says that r and s are
associate;9 since s = ru−1, this is an equivalence relation. The irre-
ducibles of Z are clearly the (±)primes.

Consider R = Z[
√

d], equipped with the “norm map”

(III.D.3)
N : R→ Z

r 7→ rr̃,

where is r = m + n
√

d, r̃ = m− n
√

d.

III.D.4. LEMMA. R∗ = N−1({±1}).

PROOF. Since r̃s = r̃s̃, N is a homomorphism of multiplicative
monoids; and so N (R∗) ⊂ Z∗ = {±1} ( =⇒ R∗ ⊂ N−1({±1})). If
N (r) = ±1, then r̃ = ±r−1 =⇒ r ∈ R∗. �

III.D.5. PROPOSITION. Let r ∈ Z[
√

d]\(Z[
√

d]∗ ∪ {0}), and sup-
pose N (r) ∈ Z has no nontrivial ( 6= ±1) proper ( 6= ±N (r)) factors of
the form m2 − n2d. Then r is irreducible.

PROOF. If r = ab, then N (r) = N (a)N (b). By hypothesis, N (a)
or N (b) = ±1. Hence a or b is a unit, by III.D.4. �

III.D.6. EXAMPLE. In Z[
√

10],

N (±1 +
√

10) = −9 and N (3) = 9 ;

9Alternatively, define r and s to be associate ⇐⇒ r|s and s|r; this is equivalent
(why?). If s|r and r - s, then s is a proper factor of r.
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±3 are not of the form m2 − 10n2 (HW). Hence, ±1 +
√

10 and 3 are
irreducible. But

(III.D.7) (1 +
√

10)(−1 +
√

10) = 9 = 3 · 3 ,

and so the analogue of the Fundamental Theorem of Arithmetic I.B.1
fails.

This sort of ambiguity was a big problem for attempts to prove
Fermat’s Last Theorem in the mid-19th Century, or for solving Dio-
phantine equations more generally. A way out was proposed by
Kummer, who postulated “ideal elements” into which numbers in
the ring augmented by their inclusion would then decompose. For
instance, in the case of Z[

√
10], these “ideal elements” π1, π2 would

satisfy10

(III.D.8)


3 = π1π2

1 +
√

10 = π2
1

−1 +
√

10 = π2
2.

Then (III.D.7) becomes π2
1π2

2 = (π1π2)
2. Kummer showed that one

could construct a theory in which such elements would formally re-
spect divisibility and distributive properties. (Later it was realized
that they could be represented by actual elements in the “Hilbert
class field of Q(

√
10)”.) But Dedekind had the even nicer idea of

characterizing an “ideal number” π by its “shadow” in Z[
√

10], con-
sisting of everything (formally) divisible by π. This is essentially our
modern notion of an ideal (in a number ring — the notion in gen-
eral is due to E. Noether). Indeed, the “shadows” of π1 and π2 in
the above example will be (in the notation about to be defined) the
ideals

(III.D.9) (3, 1 +
√

10) and (3,−1 +
√

10).

We will return to this example below.
Turning to some generalities, we have the

10To be clear, no actual elements in the ring satisfy these equations.
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III.D.10. DEFINITION. A right (resp. left) ideal I in a ring R is an
additive subgroup which is closed under right (resp. left) multipli-
cation by all elements of R:

•


a, b ∈ I =⇒ a + b ∈ I
a ∈ I =⇒ −a ∈ I
0 ∈ I

• a ∈ I, r ∈ R =⇒ ar ∈ I (resp. ra ∈ I).

An ideal I ⊂ R is a left and right ideal.11

Given ideals I, J ⊂ R, I ∩ J is clearly an ideal. If S ⊂ R is a subset,
we define the ideal generated by S by

(III.D.11) (S) :=
⋂

I ⊂ R ideal

I ⊃ S

I.

III.D.12. PROPOSITION. The ideal (S) consists of all finite sums

r1s1r′1 + r2s2r′2 + · · ·+ rkskr′k

where ri, r′i ∈ R, si ∈ S , and k ∈N.

PROOF. By the closure properties of III.D.10, all such finite sums
must belong to (S). By associativity and distributivity, the set of
such sums is itself closed under addition and multiplication by R,
hence is one of the ideals being intersected in RHS(III.D.11), and as
such contains (S). �

III.D.13. DEFINITION. Given I ⊂ R an ideal, I is

• finitely generated ⇐⇒ I = (S) for some finite subset S ⊂ R.
• principal ⇐⇒ I = (a) for some element a ∈ R.

Note that if R is commutative, then (a) = {ra | r ∈ R}, and

(a1, . . . , am) = {r1a1 + · · · rmam | r1, . . . , rm ∈ R}.

11Note that this is a stronger notion than being a “subrng” because of the closure
under multiplication by elements of R. And yes, I mean “subrng” not “subring”:
except for R itself, ideals in R do not contain 1.
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We can also consider “sums” and “products” of ideals: define

(III.D.14)

{
I + J := (I ∪ J) = {a + b | a ∈ I, b ∈ J}
I J := (I � J) = {∑k

i=1aibi | ai ∈ I, bi ∈ J, k ∈N},

where I � J is the set of products {ab | a ∈ I, b ∈ J}. To state the
obvious:

III.D.15. PROPOSITION. Suppose I = (S) and J = (T ).
(i) I + J = (S ∪ T ).
(ii) If R is commutative, then I J = ({st | s ∈ S , t ∈ T }) = (S � T ).
(iii) In particular, if I = (a) and J = (b), then I + J = (a, b) and (for R
commutative) I J = (ab).

Furthermore, if R is commutative and a, b ∈ R, we have

III.D.16. PROPOSITION (“Caesar’s lemma”). To divide is to con-
tain:12

a|b ⇐⇒ (a) ⊇ (b).

PROOF. If ra = b, then

(b) = (ra) = {r′ra | r′ ∈ R} ⊂ {r′′a | r′′ ∈ R} = (a).

Conversely, (a) ⊃ (b) =⇒ b ∈ (a) =⇒ b = ra for some r ∈ R. �

III.D.17. EXAMPLE. Returning to III.D.6 ff and R = Z[
√

10], we
compute

(3, 1 +
√

10)2 =
(

9, 3 + 3
√

10, 11 + 2
√

10
)

=
(
(1 +

√
10)(−1 +

√
10), (1 +

√
10)3, (1 +

√
10)(1 +

√
10)
)

⊂ (1 +
√

10),

12A rough translation into algebra-ese of J. Caesar’s famous maxim “divide et
impera”. I jest, but this is useful as a mnemonic device for remembering the rule.
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making use of III.D.15(ii) to square the ideal.13 Similarly one shows
that (3,−1 +

√
10)2 ⊂ (−1 +

√
10) and

(3, 1 +
√

10)(3,−1 +
√

10) =
(

9, 3 + 3
√

10 − 3 + 3
√

10
)

⊂ (3).

For the reverse inclusions,14

1 +
√

10 = −(11 + 2
√

10) + 9 + (3 + 3
√

10) ∈ (3, 1 +
√

10)2

=⇒ (1 +
√

10) ⊂ (3, 1 +
√

10)2,

and similarly (−1 +
√

10) ⊂ (3,−1 +
√

10)2; while

3 = 9− (3 + 3
√

10) + (−3 + 3
√

10) ∈ (3, 1 +
√

10)(3,−1 +
√

10)

=⇒ (3) ⊂ (3, 1 +
√

10)(3,−1 +
√

10).

So if we set I1 = (3, 1 +
√

10) and I2 = (3,−1 +
√

10), we indeed
have

I1 I2 = (3) , I2
1 = (1 +

√
10) , and I2

2 = (−1 +
√

10)

and the ideals serve their intended function, recovering an analogue
of (III.D.8).

Returning to the setting of a general ring R, let I ( R be a proper
ideal. Clearly, this is a normal subgroup of the additive (abelian)
group, and so we can construct the (additive) quotient group R/I.
Its elements are the equivalence classes defined by the equivalence
relation

a ≡ b ⇐⇒ a− b ∈ I.

That is, they are the cosets a + I, with the addition rule

(III.D.18) (a + I) + (b + I) = (a + b) + I.

13This is an important point: the product (a, b)(c, d) is the ideal generated by the
set of products {a, b} � {c, d} := {ac, ad, bc, bd}.
14The basic principle being applied here (in the case of 1-element sets) is that if a
set S is contained in an ideal I, then (S) ⊂ I.



III.D. IDEALS 123

We now define a multiplicative structure on R/I by the rule

(III.D.19) (a + I)(b + I) := ab + I,

with identity coset 1+ I. The main check required is that (III.D.19) is
well-defined: given a′ = a + α ∈ a + I and b′ = b + β ∈ b + I,

(a′ + I)(b′ + I) = a′b′ + I = (a + α)(b + β) + I

= ab + αb + aβ + αβ︸ ︷︷ ︸
∈I

+ I

= ab + I.

Distributivity is clear from (III.D.18)-(III.D.19) and distributivity in
R. Hence, R/I has the structure of a ring.

III.D.20. REMARK. In our study of groups, we had two “stupid
quotients”, G/〈1〉(∼= G) and G/G(∼= {1}). Here, the only stupid
quotient ring is R/(0) = R; because {0} is not a ring, we cannot con-
sider R/R, and accordingly the definition of quotient ring requires a
proper ideal.

III.D.21. EXAMPLES. (i) (n) = nZ ⊂ Z is a proper ideal (n > 1),
and Z/(n) (or Z/nZ) is just Zn (viewed as a ring).

(ii) In Z[x]/(x2 − 10), any element is of the form P(x) + (x2 − 10)
(where (x2 − 10) is the principal ideal). Applying polynomial divi-
sion, this equals {x2− 10} ·Q(x) + R(x) + (x2− 10) = R(x) + (x2−
10), where R(x) = ax + b.

(iii) In the ring C0(M) of continuous functions on a manifoldM, the
subset IS of functions identically zero on a subset S ⊂ M is an ideal.
In C0(M)/IS , cosets f + IS and g+ IS are the same ⇐⇒ f − g ∈ IS
⇐⇒ f and g have the same restriction to S . So the quotient can be
thought of as a ring of functions on S of some sort.

(iv) We can consider Z[
√

10] modulo the ideals (3), (±1+
√

10), and
(3,±1 +

√
10).

(v) Let R be commutative. While there are left [resp. right] ideals in
Mn(R) (e.g. matrices with last column [resp. row] zero) that “take
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advantage of the matrix structure”, there are no (2-sided) ideals that
do this:

III.D.22. PROPOSITION. If I ⊂ R is an ideal, then Mn(I) ⊂ Mn(R)
is an ideal.15 In fact, all ideals of Mn(R) arise in this way.

PROOF. If A ∈ Mn(I), B ∈ Mn(R), then entries ∑k aikbkj of AB
are obviously in I, hence AB ∈ Mn(I).

Let J ⊂ Mn(R) be an ideal, and let

I := {a ∈ R | a is an entry in some matrix belonging to J}.

Then J ⊂ Mn(I).
To show I is an ideal: given A ∈ J, J contains

eki Aej` = eki(∑m,namnemn)ej` = ∑m,namnδimδnjek` = aijek`.

Hence for all a ∈ I for all k, `, we have aek` ∈ J. Now for α, β ∈ I,
r ∈ R,

αe11, βe11 ∈ J =⇒
{
(α + β)e11 = αe11 + βe11 ∈ J =⇒ α + β ∈ I
αre11 = αe11 · re11 ∈ J =⇒ αr ∈ I

(and similarly for rα, −α).
To show J ⊃ Mn(I): given elements αij ∈ I, each αijeij ∈ J (by the

last paragraph). Thus, a general element ∑i,j αijeij of Mn(I) belongs
to J. �

What about ideals in Q, Q[i], R, C?

III.D.23. THEOREM. Let R be a commutative ring. Then

R is a field ⇐⇒ R has no nontrivial proper ideals.

PROOF. ( =⇒ ): Let I ⊂ R be a nontrivial ideal, a ∈ I\{0}. Given
any b ∈ R, b = a(a−1b) ∈ I, so I = R.

( ⇐= ): Let a ∈ R\{0}; then (a) = {ar | r ∈ R} contains {a}
hence is nontrivial. By hypothesis, it must be R. Hence for any b ∈ R,
there is an r ∈ R such that ar = b; take b = 1. �

15e.g., Mn(pZ) ⊂ Mn(Z)
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Notice where the proof of “( ⇐= )” breaks down for something
like R = Mn(C) (which satisfies the hypothesis on ideals by III.D.22):
we get that {∑i riar′i | ri, r′i ∈ R} = R, which doesn’t imply that a is
invertible.

At this point, we should mention the key example:

III.D.24. PROPOSITION. Zm is a field ⇐⇒ m is prime.

PROOF. ( =⇒ ): obvious, since m composite =⇒ Zm not a
domain.

( ⇐= ): Given a + (m) (or “ā”) in Zm\{0}, with a ∈ {1, . . . , m−
1}, we know that the gcd of m and a is 1 (as m is prime). So there
exist k, ` ∈ Z such that ka + `m = 1 =⇒ (k + (m))(a + (m) =

1− `m + (m) = 1 + (m). �

Before turning to homomorphisms, here is one more

III.D.25. DEFINITION. An ascending chain of ideals is a nested
sequence

I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ R

of ideals. Note that this is a chain in the set-theoretic sense (totally
ordered), while the set of all ideals is partially ordered by inclusion.

III.D.26. LEMMA. The union ∪j≥1 Ij ⊂ R is an ideal. More generally,
for any chain C in the set of ideals of R, ∪J∈C J is an ideal of R.

PROOF. Any element (or pair of elements) of the union is con-
tained in some member J0 ∈ C, because of the total ordering. By the
closure properties III.D.10 of J0, the sum of these elements and their
products by elements of R are contained in J0 hence in ∪J∈C J. So this
union satisfies the closure properties too. �

III.D.27. THEOREM. Let I ( R be a proper ideal. Then there exists a
maximal proper ideal I0 which contains I. (Here “maximal” means merely
that there is no ideal J with I0 ( J ( R. )

PROOF. Let P denote the set of proper ideals of R containing I,
partially ordered by ⊆, and let C be a chain in P . Consider the set
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IC := ∪J∈C J, which by the Lemma is an ideal. Clearly, since every J
contains I and doesn’t contain 1, IC ⊃ I and 1 /∈ IC , which implies
IC ∈ P .

We have shown that every chain in P has an upper bound (in P).
So Zorn produces a maximal element inP , which must be a maximal
proper ideal containing I. �


