III.D. Ideals

Let R be a commutative domain. We say, given $s, r \in R$, that

$$
\begin{equation*}
s \mid r(\text { " } s \text { divides } r \text { ") } \stackrel{\text { defn. }}{\Longleftrightarrow} r=s t \text { for some } t \in R, \tag{III.D.1}
\end{equation*}
$$ and (for $r \notin R^{*} \cup\{0\}$)

(III.D.2) $\quad r$ is irreducible $\stackrel{\text { defn. }}{\Longleftrightarrow}\binom{r=a b(a, b \in R)}{\Longrightarrow a$ or $b \in R^{*}}$.

If $u \in R^{*}$ and $r=s u$, one writes $r \sim s$ and says that r and s are associate $;{ }^{9}$ since $s=r u^{-1}$, this is an equivalence relation. The irreducibles of \mathbb{Z} are clearly the (\pm) primes.

Consider $R=\mathbb{Z}[\sqrt{d}]$, equipped with the "norm map"

$$
\begin{align*}
\mathcal{N}: & R \rightarrow \mathbb{Z} \tag{III.D.3}\\
r & \mapsto r \tilde{r},
\end{align*}
$$

where is $r=m+n \sqrt{d}, \tilde{r}=m-n \sqrt{d}$.
III.D.4. LEMMA. $R^{*}=\mathcal{N}^{-1}(\{ \pm 1\})$.

Proof. Since $\widetilde{r s}=\tilde{r} \tilde{s}, \mathcal{N}$ is a homomorphism of multiplicative monoids; and so $\mathcal{N}\left(R^{*}\right) \subset \mathbb{Z}^{*}=\{ \pm 1\}\left(\Longrightarrow R^{*} \subset \mathcal{N}^{-1}(\{ \pm 1\})\right)$. If $\mathcal{N}(r)= \pm 1$, then $\tilde{r}= \pm r^{-1} \Longrightarrow r \in R^{*}$.
III.D.5. Proposition. Let $r \in \mathbb{Z}[\sqrt{d}] \backslash\left(\mathbb{Z}[\sqrt{d}]^{*} \cup\{0\}\right)$, and suppose $\mathcal{N}(r) \in \mathbb{Z}$ has no nontrivial $(\neq \pm 1)$ proper $(\neq \pm \mathcal{N}(r))$ factors of the form $m^{2}-n^{2} d$. Then r is irreducible.

PROOF. If $r=a b$, then $\mathcal{N}(r)=\mathcal{N}(a) \mathcal{N}(b)$. By hypothesis, $\mathcal{N}(a)$ or $\mathcal{N}(b)= \pm 1$. Hence a or b is a unit, by III.D.4.
III.D.6. EXAMPLE. In $\mathbb{Z}[\sqrt{10}]$,

$$
\mathcal{N}(\pm 1+\sqrt{10})=-9 \text { and } \mathcal{N}(3)=9 ;
$$

[^0]± 3 are not of the form $m^{2}-10 n^{2}$ (HW). Hence, $\pm 1+\sqrt{10}$ and 3 are irreducible. But
\[

$$
\begin{equation*}
(1+\sqrt{10})(-1+\sqrt{10})=9=3 \cdot 3 \tag{III.D.7}
\end{equation*}
$$

\]

and so the analogue of the Fundamental Theorem of Arithmetic I.B. 1 fails.

This sort of ambiguity was a big problem for attempts to prove Fermat's Last Theorem in the mid-19th Century, or for solving Diophantine equations more generally. A way out was proposed by Kummer, who postulated "ideal elements" into which numbers in the ring augmented by their inclusion would then decompose. For instance, in the case of $\mathbb{Z}[\sqrt{10}]$, these "ideal elements" π_{1}, π_{2} would satisfy ${ }^{10}$

$$
\left\{\begin{array}{l}
3=\pi_{1} \pi_{2} \tag{III.D.8}\\
1+\sqrt{10}=\pi_{1}^{2} \\
-1+\sqrt{10}=\pi_{2}^{2}
\end{array}\right.
$$

Then (III.D.7) becomes $\pi_{1}^{2} \pi_{2}^{2}=\left(\pi_{1} \pi_{2}\right)^{2}$. Kummer showed that one could construct a theory in which such elements would formally respect divisibility and distributive properties. (Later it was realized that they could be represented by actual elements in the "Hilbert class field of $\mathbb{Q}(\sqrt{10})^{\prime \prime}$.) But Dedekind had the even nicer idea of characterizing an "ideal number" π by its "shadow" in $\mathbb{Z}[\sqrt{10}]$, consisting of everything (formally) divisible by π. This is essentially our modern notion of an ideal (in a number ring - the notion in general is due to E. Noether). Indeed, the "shadows" of π_{1} and π_{2} in the above example will be (in the notation about to be defined) the ideals

$$
\begin{equation*}
(3,1+\sqrt{10}) \text { and }(3,-1+\sqrt{10}) . \tag{III.D.9}
\end{equation*}
$$

We will return to this example below.
Turning to some generalities, we have the

[^1]III.D.10. Definition. A right (resp. left) ideal I in a ring R is an additive subgroup which is closed under right (resp. left) multiplication by all elements of R :

- $\left\{\begin{array}{l}a, b \in I \Longrightarrow a+b \in I \\ a \in I \quad \Longrightarrow \quad-a \in I \\ 0 \in I\end{array}\right.$
- $a \in I, r \in R \Longrightarrow a r \in I$ (resp. $r a \in I$).

An ideal $I \subset R$ is a left and right ideal. ${ }^{11}$
Given ideals $I, J \subset R, I \cap J$ is clearly an ideal. If $\mathcal{S} \subset R$ is a subset, we define the ideal generated by \mathcal{S} by

$$
\begin{equation*}
(\mathcal{S}):=\bigcap_{\substack{I \subset R \text { ideal } \\ I \supset \mathcal{S}}} I \tag{III.D.11}
\end{equation*}
$$

III.D.12. Proposition. The ideal (\mathcal{S}) consists of all finite sums

$$
r_{1} s_{1} r_{1}^{\prime}+r_{2} s_{2} r_{2}^{\prime}+\cdots+r_{k} s_{k} r_{k}^{\prime}
$$

where $r_{i}, r_{i}^{\prime} \in R, s_{i} \in \mathcal{S}$, and $k \in \mathbb{N}$.
Proof. By the closure properties of III.D.10, all such finite sums must belong to (\mathcal{S}). By associativity and distributivity, the set of such sums is itself closed under addition and multiplication by R, hence is one of the ideals being intersected in RHS(III.D.11), and as such contains (\mathcal{S}).
III.D.13. Definition. Given $I \subset R$ an ideal, I is

- finitely generated $\Longleftrightarrow I=(\mathcal{S})$ for some finite subset $\mathcal{S} \subset R$.
- principal $\Longleftrightarrow I=(a)$ for some element $a \in R$.

Note that if R is commutative, then $(a)=\{r a \mid r \in R\}$, and

$$
\left(a_{1}, \ldots, a_{m}\right)=\left\{r_{1} a_{1}+\cdots r_{m} a_{m} \mid r_{1}, \ldots, r_{m} \in R\right\}
$$

[^2]We can also consider "sums" and "products" of ideals: define

$$
\left\{\begin{array}{l}
I+J:=(I \cup J)=\{a+b \mid a \in I, b \in J\} \tag{III.D.14}\\
I J:=(I \odot J)=\left\{\sum_{i=1}^{k} a_{i} b_{i} \mid a_{i} \in I, b_{i} \in J, k \in \mathbb{N}\right\}
\end{array}\right.
$$

where $I \odot J$ is the set of products $\{a b \mid a \in I, b \in J\}$. To state the obvious:
III.D.15. Proposition. Suppose $I=(\mathcal{S})$ and $J=(\mathcal{T})$.
(i) $I+J=(\mathcal{S} \cup \mathcal{T})$.
(ii) If R is commutative, then $I J=(\{s t \mid s \in \mathcal{S}, t \in \mathcal{T}\})=(\mathcal{S} \odot \mathcal{T})$.
(iii) In particular, if $I=(a)$ and $J=(b)$, then $I+J=(a, b)$ and (for R commutative) $I J=(a b)$.

Furthermore, if R is commutative and $a, b \in R$, we have
III.D.16. Proposition ("Caesar's lemma"). To divide is to contain: ${ }^{12}$

$$
a \mid b \Longleftrightarrow(a) \supseteq(b) .
$$

Proof. If $r a=b$, then

$$
(b)=(r a)=\left\{r^{\prime} r a \mid r^{\prime} \in R\right\} \subset\left\{r^{\prime \prime} a \mid r^{\prime \prime} \in R\right\}=(a) .
$$

Conversely, $(a) \supset(b) \Longrightarrow b \in(a) \Longrightarrow b=r a$ for some $r \in R$.
III.D.17. EXAMPLE. Returning to III.D. 6 ff and $R=\mathbb{Z}[\sqrt{10}]$, we compute

$$
\begin{aligned}
(3,1+\sqrt{10})^{2} & =(9,3+3 \sqrt{10}, 11+2 \sqrt{10}) \\
& =((1+\sqrt{10})(-1+\sqrt{10}),(1+\sqrt{10}) 3,(1+\sqrt{10})(1+\sqrt{10})) \\
& \subset(1+\sqrt{10}),
\end{aligned}
$$

[^3]making use of III.D.15(ii) to square the ideal. ${ }^{13}$ Similarly one shows that $(3,-1+\sqrt{10})^{2} \subset(-1+\sqrt{10})$ and
\[

$$
\begin{aligned}
(3,1+\sqrt{10})(3,-1+\sqrt{10}) & =(9,3+3 \sqrt{10}-3+3 \sqrt{10}) \\
& \subset(3) .
\end{aligned}
$$
\]

For the reverse inclusions, ${ }^{14}$

$$
\begin{aligned}
1+\sqrt{10} & =-(11+2 \sqrt{10})+9+(3+3 \sqrt{10}) \in(3,1+\sqrt{10})^{2} \\
& \Longrightarrow(1+\sqrt{10}) \subset(3,1+\sqrt{10})^{2},
\end{aligned}
$$

and similarly $(-1+\sqrt{10}) \subset(3,-1+\sqrt{10})^{2}$; while

$$
\begin{aligned}
3 & =9-(3+3 \sqrt{10})+(-3+3 \sqrt{10}) \in(3,1+\sqrt{10})(3,-1+\sqrt{10}) \\
& \Longrightarrow(3) \subset(3,1+\sqrt{10})(3,-1+\sqrt{10}) .
\end{aligned}
$$

So if we set $I_{1}=(3,1+\sqrt{10})$ and $I_{2}=(3,-1+\sqrt{10})$, we indeed have

$$
I_{1} I_{2}=(3), \quad I_{1}^{2}=(1+\sqrt{10}), \text { and } I_{2}^{2}=(-1+\sqrt{10})
$$

and the ideals serve their intended function, recovering an analogue of (III.D.8).

Returning to the setting of a general ring R, let $I \subsetneq R$ be a proper ideal. Clearly, this is a normal subgroup of the additive (abelian) group, and so we can construct the (additive) quotient group R / I. Its elements are the equivalence classes defined by the equivalence relation

$$
a \equiv b \quad \Longleftrightarrow \quad a-b \in I
$$

That is, they are the cosets $a+I$, with the addition rule

$$
\begin{equation*}
(a+I)+(b+I)=(a+b)+I \tag{III.D.18}
\end{equation*}
$$

[^4]We now define a multiplicative structure on R / I by the rule

$$
\begin{equation*}
(a+I)(b+I):=a b+I \tag{III.D.19}
\end{equation*}
$$

with identity coset $1+I$. The main check required is that (III.D.19) is well-defined: given $a^{\prime}=a+\alpha \in a+I$ and $b^{\prime}=b+\beta \in b+I$,

$$
\begin{aligned}
\left(a^{\prime}+I\right)\left(b^{\prime}+I\right)=a^{\prime} b^{\prime}+I & =(a+\alpha)(b+\beta)+I \\
& =a b+\underbrace{\alpha b+a \beta+\alpha \beta}_{\in I}+I \\
& =a b+I .
\end{aligned}
$$

Distributivity is clear from (III.D.18)-(III.D.19) and distributivity in R. Hence, R / I has the structure of a ring.
III.D.20. REMARK. In our study of groups, we had two "stupid quotients", $G /\langle 1\rangle(\cong G)$ and $G / G(\cong\{1\})$. Here, the only stupid quotient ring is $R /(0)=R$; because $\{0\}$ is not a ring, we cannot consider R / R, and accordingly the definition of quotient ring requires a proper ideal.
III.D.21. EXAMPLES. (i) $(n)=n \mathbb{Z} \subset \mathbb{Z}$ is a proper ideal $(n>1)$, and $\mathbb{Z} /(n)$ (or $\mathbb{Z} / n \mathbb{Z}$) is just \mathbb{Z}_{n} (viewed as a ring).
(ii) In $\mathbb{Z}[x] /\left(x^{2}-10\right)$, any element is of the form $P(x)+\left(x^{2}-10\right)$ (where $\left(x^{2}-10\right)$ is the principal ideal). Applying polynomial division, this equals $\left\{x^{2}-10\right\} \cdot Q(x)+R(x)+\left(x^{2}-10\right)=R(x)+\left(x^{2}-\right.$ 10), where $R(x)=a x+b$.
(iii) In the ring $C^{0}(\mathcal{M})$ of continuous functions on a manifold \mathcal{M}, the subset $I_{\mathcal{S}}$ of functions identically zero on a subset $\mathcal{S} \subset \mathcal{M}$ is an ideal. In $C^{0}(\mathcal{M}) / I_{\mathcal{S}}$, cosets $f+I_{\mathcal{S}}$ and $g+I_{\mathcal{S}}$ are the same $\Longleftrightarrow f-g \in I_{\mathcal{S}}$ $\Longleftrightarrow f$ and g have the same restriction to \mathcal{S}. So the quotient can be thought of as a ring of functions on \mathcal{S} of some sort.
(iv) We can consider $\mathbb{Z}[\sqrt{10}]$ modulo the ideals (3), $(\pm 1+\sqrt{10})$, and $(3, \pm 1+\sqrt{10})$.
(v) Let R be commutative. While there are left [resp. right] ideals in $M_{n}(R)$ (e.g. matrices with last column [resp. row] zero) that "take
advantage of the matrix structure", there are no (2-sided) ideals that do this:
III.D.22. PROPOSITION. If $I \subset R$ is an ideal, then $M_{n}(I) \subset M_{n}(R)$ is an ideal. ${ }^{15}$ In fact, all ideals of $M_{n}(R)$ arise in this way.

Proof. If $A \in M_{n}(I), B \in M_{n}(R)$, then entries $\sum_{k} a_{i k} b_{k j}$ of $A B$ are obviously in I, hence $A B \in M_{n}(I)$.

Let $J \subset M_{n}(R)$ be an ideal, and let

$$
I:=\{a \in R \mid a \text { is an entry in some matrix belonging to } J\}
$$

Then $J \subset M_{n}(I)$.
To show I is an ideal: given $A \in J, J$ contains

$$
\mathbf{e}_{k i} A \mathbf{e}_{j \ell}=\mathbf{e}_{k i}\left(\sum_{m, n} a_{m n} \mathbf{e}_{m n}\right) \mathbf{e}_{j \ell}=\sum_{m, n} a_{m n} \delta_{i m} \delta_{n j} \mathbf{e}_{k \ell}=a_{i j} e_{k \ell} .
$$

Hence for all $a \in I$ for all k, ℓ, we have $a \mathbf{e}_{k \ell} \in J$. Now for $\alpha, \beta \in I$, $r \in R$,

$$
\alpha \mathbf{e}_{11}, \beta \mathbf{e}_{11} \in J \Longrightarrow\left\{\begin{array}{l}
(\alpha+\beta) \mathbf{e}_{11}=\alpha \mathbf{e}_{11}+\beta \mathbf{e}_{11} \in J \Longrightarrow \alpha+\beta \in I \\
\alpha r \mathbf{e}_{11}=\alpha \mathbf{e}_{11} \cdot r \mathbf{e}_{11} \in J \Longrightarrow \alpha r \in I
\end{array}\right.
$$

(and similarly for $r \alpha,-\alpha$).
To show $J \supset M_{n}(I)$: given elements $\alpha_{i j} \in I$, each $\alpha_{i j} \mathbf{e}_{i j} \in J$ (by the last paragraph). Thus, a general element $\sum_{i, j} \alpha_{i j} \mathbf{e}_{i j}$ of $M_{n}(I)$ belongs to J.

What about ideals in $\mathbb{Q}, \mathbb{Q}[\mathbf{i}], \mathbb{R}, \mathbb{C}$?
III.D.23. THEOREM. Let R be a commutative ring. Then
R is a field $\Longleftrightarrow R$ has no nontrivial proper ideals.
Proof. (\Longrightarrow) : Let $I \subset R$ be a nontrivial ideal, $a \in I \backslash\{0\}$. Given any $b \in R, b=a\left(a^{-1} b\right) \in I$, so $I=R$.
$(\Longleftarrow):$ Let $a \in R \backslash\{0\}$; then $(a)=\{a r \mid r \in R\}$ contains $\{a\}$ hence is nontrivial. By hypothesis, it must be R. Hence for any $b \in R$, there is an $r \in R$ such that $a r=b$; take $b=1$.

$$
\overline{{ }^{15} \text { e.g., } M_{n}(p \mathbb{Z})} \subset M_{n}(\mathbb{Z})
$$

Notice where the proof of "($\Longleftarrow)$ " breaks down for something like $R=M_{n}(\mathbb{C})$ (which satisfies the hypothesis on ideals by III.D.22): we get that $\left\{\sum_{i} r_{i} a r_{i}^{\prime} \mid r_{i}, r_{i}^{\prime} \in R\right\}=R$, which doesn't imply that a is invertible.

At this point, we should mention the key example:
III.D.24. PROPOSITION. \mathbb{Z}_{m} is a field $\Longleftrightarrow m$ is prime.

PROOF. (\Longrightarrow) : obvious, since m composite $\Longrightarrow \mathbb{Z}_{m}$ not a domain.
(\Longleftarrow) : Given $a+(m)$ (or " $\bar{a}^{\prime \prime}$) in $\mathbb{Z}_{m} \backslash\{0\}$, with $a \in\{1, \ldots, m-$ $1\}$, we know that the gcd of m and a is 1 (as m is prime). So there exist $k, \ell \in \mathbb{Z}$ such that $k a+\ell m=1 \Longrightarrow(k+(m))(a+(m)=$ $1-\ell m+(m)=1+(m)$.

Before turning to homomorphisms, here is one more
III.D.25. Definition. An ascending chain of ideals is a nested sequence

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots \subseteq R
$$

of ideals. Note that this is a chain in the set-theoretic sense (totally ordered), while the set of all ideals is partially ordered by inclusion.
III.D.26. Lemma. The union $\cup_{j \geq 1} I_{j} \subset R$ is an ideal. More generally, for any chain \mathcal{C} in the set of ideals of $R, \cup_{J \in \mathcal{C}} J$ is an ideal of R.

Proof. Any element (or pair of elements) of the union is contained in some member $J_{0} \in \mathcal{C}$, because of the total ordering. By the closure properties III.D. 10 of J_{0}, the sum of these elements and their products by elements of R are contained in J_{0} hence in $\cup_{J \in \mathcal{C}} J$. So this union satisfies the closure properties too.
III.D.27. TheOrem. Let $I \subsetneq R$ be a proper ideal. Then there exists a maximal proper ideal I_{0} which contains I. (Here "maximal" means merely that there is no ideal J with $I_{0} \subsetneq J \subsetneq R$.)

Proof. Let \mathcal{P} denote the set of proper ideals of R containing I, partially ordered by \subseteq, and let \mathcal{C} be a chain in \mathcal{P}. Consider the set
$\mathcal{I}_{\mathcal{C}}:=\cup_{J \in \mathcal{C}} J$, which by the Lemma is an ideal. Clearly, since every J contains I and doesn't contain $1, \mathcal{I}_{\mathcal{C}} \supset I$ and $1 \notin \mathcal{I}_{\mathcal{C}}$, which implies $\mathcal{I}_{\mathcal{C}} \in \mathcal{P}$.

We have shown that every chain in \mathcal{P} has an upper bound (in \mathcal{P}). So Zorn produces a maximal element in \mathcal{P}, which must be a maximal proper ideal containing I.

[^0]: ${ }^{9}$ Alternatively, define r and s to be associate $\Longleftrightarrow r \mid s$ and $s \mid r$; this is equivalent (why?). If $s \mid r$ and $r \nmid s$, then s is a proper factor of r.

[^1]: ${ }^{10}$ To be clear, no actual elements in the ring satisfy these equations.

[^2]: ${ }^{11}$ Note that this is a stronger notion than being a "subrng" because of the closure under multiplication by elements of R. And yes, I mean "subrng" not "subring": except for R itself, ideals in R do not contain 1 .

[^3]: ${ }^{12}$ A rough translation into algebra-ese of J. Caesar's famous maxim "divide et impera". I jest, but this is useful as a mnemonic device for remembering the rule.

[^4]: ${ }^{13}$ This is an important point: the product $(a, b)(c, d)$ is the ideal generated by the set of products $\{a, b\} \odot\{c, d\}:=\{a c, a d, b c, b d\}$.
 ${ }^{14}$ The basic principle being applied here (in the case of 1-element sets) is that if a set \mathcal{S} is contained in an ideal I, then $(\mathcal{S}) \subset I$.

