III.E. Homomorphisms of rings

Let R and S be rings.
III.E.1. Definition. (i) A ring homomorphism $\varphi: R \rightarrow S$ is a map which is both a homomorphism of additive groups and multiplicative monoids: $\varphi\left(r_{1}+r_{2}\right)=\varphi\left(r_{1}\right)+\varphi\left(r_{2}\right), \varphi\left(r_{1} r_{2}\right)=\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)$, and $\varphi\left(1_{R}\right)=1_{S}$.
(ii) A ring isomorphism is a homomorphism of rings which is injective and surjective. (Equivalently: there exists a homomorphism $\eta: S \rightarrow R$ such that $\eta \circ \varphi=\operatorname{id}_{R}$ and $\varphi \circ \eta=\mathrm{id}_{S}$.)
III.E.2. WARNING. In contrast to the case of groups, it is essential to include " $\varphi\left(1_{R}\right)=1_{S}$ " in III.E.1(i). This not only prohibits (say) multiplication-by-2 from giving a ring homomorphism from \mathbb{Z} to \mathbb{Z}; it means that there is no such thing as a trivial (zero) ring homomorphism. Both $\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}$ and $\mathbb{Z} \xrightarrow{0} \mathbb{Z}$ are "rng homomorphisms".
III.E.3. Proposition. (i) $\varphi(R)$ is a subring of S, and (ii) $\operatorname{ker}(\varphi)\left(:=\varphi^{-1}(\{0\})\right)$ is a proper ideal in R.

PROOF. (i) $\varphi(R)$ contains 1, and given $\alpha=\varphi\left(r_{1}\right), \beta=\varphi\left(r_{2}\right) \in$ $\varphi(R)$, we have $\alpha+\beta=\varphi\left(r_{1}+r_{2}\right) \in \varphi(R)$ and $\alpha \beta=\varphi\left(r_{1} r_{2}\right) \in \varphi(R)$.
(ii) Given $r \in R$ and $\kappa_{1}, \kappa_{2} \in \operatorname{ker}(\varphi)$, we have $\varphi\left(\kappa_{1}+\kappa_{2}\right)=$ $\varphi\left(\kappa_{1}\right)+\varphi\left(\kappa_{2}\right)=0+0=0 \Longrightarrow \kappa_{1}+\kappa_{2} \in \operatorname{ker}(\varphi)$, and $\varphi\left(r \kappa_{1}\right)=$ $\varphi(r) \varphi\left(\kappa_{1}\right)=\varphi(r) \cdot 0=0$ etc. $\Longrightarrow r \kappa_{1}, \kappa_{1} r \in \operatorname{ker}(\varphi)$. In particular, $-\kappa_{1}$ and $0 \kappa_{1}=0$ are in $\operatorname{ker}(\varphi)$. Finally, $\operatorname{ker}(\varphi)$ is proper because it doesn't contain 1 .
III.E.4. EXAMPLES. (i) "Evaluation" maps $\mathrm{ev}_{r}: R[x] \rightarrow R$ sending $P(x) \mapsto P(r)$ (or their products, as in III.A.3(iv)) are homomorphisms.
(ii) An injective homomorphism (or embedding) $\varphi: \mathbb{H} \hookrightarrow M_{2}(\mathbb{C})$ is obtained by sending $1 \mapsto\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \mathbf{i} \mapsto\left(\begin{array}{cc}\mathbf{i} & 0 \\ 0 & -\mathbf{i}\end{array}\right), \mathbf{j} \mapsto\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, and $\mathbf{k} \mapsto$ $\left(\begin{array}{cc}0 & \mathbf{i} \\ \mathbf{i} & 0\end{array}\right)$. This gives an isomorphism of \mathbb{H} with a subring of $M_{2}(\mathbb{C})$ (specifically, the one from III.C.25). The only thing to check is that the matrices behave "the same" as $\mathbf{i}, \mathbf{j}, \mathbf{k}$ under multiplication.
(iii) The natural map $v: R \rightarrow R / I$ sending $r \mapsto r+I$ (or " \bar{r} "), where $I \subset R$ is a proper ideal, is clearly consistent with III.E.3.
(iv) det: $M_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ is not a ring homomorphism. (Why?)
III.E.5. Fundamental Theorem of Ring Homomorphisms. Given $\varphi: R \rightarrow S$, with $K:=\operatorname{ker}(\varphi)$, there exists a unique ring homomorphism $\bar{\varphi}: R / K \hookrightarrow S$ making the diagram

commute. In particular, the image $\varphi(R) \cong R / K$.
Proof. By III.E.3(ii), R / K is well-defined as a ring; and by II.I.20, there exists a unique additive group homomorphism $\bar{\varphi}$ such that $\bar{\varphi} \circ v=\varphi$. It is only left to check that $\bar{\varphi}$ is a ring homomorphism: $\bar{\varphi}\left(\bar{r}_{1} \bar{r}_{2}\right)=\bar{\varphi}\left(v\left(r_{1}\right) v\left(r_{2}\right)\right)=\bar{\varphi}\left(v\left(r_{1} r_{2}\right)\right)=\varphi\left(r_{1} r_{2}\right)=\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)=$ $\bar{\varphi}\left(v\left(r_{1}\right)\right) \bar{\varphi}\left(v\left(r_{2}\right)=\bar{\varphi}\left(\bar{r}_{1}\right) \bar{\varphi}\left(\bar{r}_{2}\right)\right.$.
III.E.6. EXAMPLES. (continuing III.D.21)
(i) Consider the evaluation map

$$
\begin{aligned}
\mathrm{ev}_{\sqrt{10}}: \mathbb{Z}[x] & \longrightarrow \mathbb{Z}[\sqrt{10}] \\
\text { sending } \quad P(x) & \longmapsto P(\sqrt{10}) \\
\text { and } \quad x^{2}-10 & \longmapsto 0 .
\end{aligned}
$$

Clearly $x^{2}-10 \in K$ and thus $\left(x^{2}-10\right) \subset K:=\operatorname{ker}\left(\mathrm{ev}_{\sqrt{10}}\right)$.
Conversely, if $P(\sqrt{10})=0$ and P is even, then $P(x)=Q\left(x^{2}\right)$ for some polynomial $Q(y)$, hence $Q(10)=0 \Longrightarrow y-10 \mid Q(y)$ $\Longrightarrow x^{2}-10 \mid P(x)$ in $\mathbb{Z}[x]$. If P isn't even, then $P=P_{1}+x P_{2}$ where $P_{i}(x)=Q_{i}\left(x^{2}\right)$ and $0=Q_{1}(10)+\sqrt{10} Q_{2}(10) \Longrightarrow$ again $x^{2}-10 \mid P(x)$. Invoking III.D. 16 ("Caesar"), we get $\left(x^{2}-10\right) \supset K$. Conclude that

$$
\frac{\mathbb{Z}[x]}{\left(x^{2}-10\right)} \cong \mathbb{Z}[\sqrt{10}]
$$

(ii) If \mathcal{M} is a manifold with submanifold ${ }^{16} \mathcal{S}$, then the restriction map

$$
\begin{aligned}
C^{0}(\mathcal{M}) & \longrightarrow C^{0}(\mathcal{S}) \\
f & \left.\longmapsto f\right|_{\mathcal{S}}
\end{aligned}
$$

is a surjective homomorphism, with kernel $K=I_{\mathcal{S}}$. So

$$
C^{0}(\mathcal{S}) \cong \frac{C^{0}(\mathcal{M})}{I_{\mathcal{S}}}
$$

Similar isomorphisms show up in mathematics everywhere from coordinate rings (in algebraic geometry) to multiplier algebras (in operator theory).
(iii) Let's look at the map

$$
\begin{aligned}
\alpha: \mathbb{Z}[\sqrt{10}] & \longrightarrow \mathbb{Z}_{9} \\
\text { defined by } \quad a+b \sqrt{10} & \longmapsto \overline{a-b} \\
\text { (which sends } \quad 1+\sqrt{10} & \longmapsto \overline{0} \text {). }
\end{aligned}
$$

Is this a homomorphism? It sends $1 \mapsto \overline{1}$, respects " + ", and satisfies

$$
\begin{aligned}
\alpha((a+b \sqrt{10})(c+d \sqrt{10})) & =\alpha((a c+10 b d)+(a d+b c) \sqrt{10}) \\
& =\overline{a c+10 b d-(a d+b c)} \\
& =\overline{a c+b d-a d-b c} \\
& =(\overline{a-b})(\overline{c-d}) \\
& =\alpha(a+b \sqrt{10}) \cdot \alpha(c+d \sqrt{10})
\end{aligned}
$$

so yes. Clearly $(1+\sqrt{10}) \subset \operatorname{ker}(\alpha)$. Conversely,

$$
\begin{aligned}
a+b \sqrt{10} \in \operatorname{ker}(\alpha) \Longrightarrow a=b+9 n & (n \in \mathbb{Z}) \\
\Longrightarrow a+b \sqrt{10} & =b(1+\sqrt{10})+9 n \\
& =(b+n(-1+\sqrt{10}))(1+\sqrt{10})
\end{aligned}
$$

[^0]shows that $\operatorname{ker}(\alpha) \subset(1+\sqrt{10})$. Conclude that
$$
\frac{\mathbb{Z}[\sqrt{10}]}{(1+\sqrt{10})} \cong \mathbb{Z}_{9}
$$
by a similar argument, we can replace $(1+\sqrt{10})$ by $(-1+\sqrt{10})$.
(iii') What about
\[

$$
\begin{aligned}
\beta: \mathbb{Z}[\sqrt{10}] & \longrightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{3} \\
a+b \sqrt{10} & \longmapsto(\overline{a+b}, \overline{a-b}) \\
3 & \longmapsto(\overline{0}, \overline{0}) ?
\end{aligned}
$$
\]

This sends $1 \mapsto(\overline{1}, \overline{1})$ and $(\overline{a+b}, \overline{a-b}) \cdot(\overline{c+d}, \overline{c-d})=$ $(\overline{a c+b d+a d+b c}, \overline{a c+b d-(a d+b c)})=\beta((a+b \sqrt{10})(c+d \sqrt{10}))$.

So β is a homomorphism with $\operatorname{ker}(\beta) \supset(3)$. Moreover, $a \underset{(3)}{\equiv} b$ and $a \underset{(3)}{\equiv}-b \Longrightarrow a \underset{(3)}{\equiv} 0 \underset{(3)}{\equiv} b \Longrightarrow a+b \sqrt{10} \in(3)$. So

$$
\frac{\mathbb{Z}[\sqrt{10}]}{(3)} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}
$$

(iii") Finally, for

$$
\begin{aligned}
\gamma: \mathbb{Z}[\sqrt{10}] & \longrightarrow \mathbb{Z}_{3} \\
a+b \sqrt{10} & \longmapsto \overline{a-b} \\
3 & \longmapsto \overline{0} \\
1+\sqrt{10} & \longmapsto \overline{0}
\end{aligned}
$$

the general element of $\operatorname{ker}(\gamma)$ is $3 n+b(1+\sqrt{10})$

$$
\Longrightarrow \operatorname{ker}(\gamma)=(3,1+\sqrt{10}) \quad \Longrightarrow \quad \frac{\mathbb{Z}[\sqrt{10}]}{(3,1+\sqrt{10})} \cong \mathbb{Z}_{3} .
$$

(iv) For an example of a more general sort, consider (for any ring R)

$$
\begin{aligned}
\eta: \mathbb{Z} & \longrightarrow R \\
0 & \longmapsto 0_{R} \\
1 & \longmapsto 1_{R} \\
\mathbb{Z}_{>0} \ni n & \longmapsto 1_{R}+\cdots+1_{R} \quad(n \text { times }) \\
-n & \longmapsto-\left(1_{R}+\cdots+1_{R}\right) .
\end{aligned}
$$

Clearly $\eta(n+m)=\eta(n)+\eta(m)$, and $\eta(n m)=\eta(n) \eta(m)$ (using distributivity). The image $\eta(\mathbb{Z})$ is called the prime ring, and is the smallest subring of R. Any ideal of \mathbb{Z} is of the form (n), since these are (as we checked before) the additive subgroups. Conclude that $\eta(\mathbb{Z}) \cong \mathbb{Z}$ if $\operatorname{char}(R)=0$, and $\eta(\mathbb{Z}) \cong \mathbb{Z}_{m}$ if $\operatorname{char}(R)=m$ is finite.
III.E.7. REMARK. Given a homomorphism $\varphi: R \rightarrow S$, we have

with $\bar{n} \stackrel{\varphi}{\mapsto} \bar{n}$. On the one hand, this implies char $(S) \mid \operatorname{char}(R)$, which could rule out some homomorphisms. If $\operatorname{char}(R)=0$ it won't rule out anything, but here is something which could: if $\alpha \in R$ satisfies a polynomial equation $0=\sum_{k} a_{k} \alpha^{k}$, $a_{k} \in \mathbb{Z}$ (i.e. $\eta_{R}(\mathbb{Z})$), we must have (writing $\beta:=\varphi(\alpha))$ that $0=\sum_{k} \bar{a}_{k} \beta^{k}$. One could then try to show that S doesn't contain such a β.

With essentially no work, the two isomorphism theorems from §II.I lift to the ring setting:
III.E.8. First IsOmorphism Theorem. Let $\varphi: R \rightarrow S$ be a surjective ring homomorphism with kernel K. Then φ induces a 1-to-1 correspondence

$$
\begin{aligned}
\left.\begin{array}{c}
\text { ideals } I \subset R \\
\text { containing } K
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{l}
\text { ideals } \\
J \subset S
\end{array}\right\} \\
\text { via } I & \longmapsto \varphi(I),
\end{aligned}
$$

and isomorphisms $R / I \xrightarrow{\cong} S / \varphi(I)$.

Proof. We only need to check that $\varphi(I)$ and $\varphi^{-1}(J)$ are closed under multiplication by R; the rest follows from II.I. 25 and III.E.5.

Given $I \subset R, S \varphi(I)=\varphi(R) \varphi(I)=\varphi(R I)=\varphi(I) \Longrightarrow \varphi(I)$ is an ideal.

Given $J \subset S, \alpha \in \varphi^{-1}(J)$, and $r \in R$, we have $\varphi(r \alpha)=\varphi(r) \varphi(\alpha) \in$ $S J=J \Longrightarrow r \alpha \in \varphi^{-1}(J) \Longrightarrow \varphi^{-1}(J)$ is an ideal.
III.E.9. SECOND IsOmORPHISM THEOREM. Given $I \subset R$ an ideal and $S \subset R$ a subring. Then:
(i) $S+I \subset R$ is a subring having I as an ideal;
(ii) $S \cap I$ is an ideal in S; and
(iii) $s+(S \cap I) \mapsto s+I$ induces an isomorphism $S /(S \cap I) \xrightarrow{\cong}(S+I) / I$.

Proof. Left to you.
III.E.10. Example. (i) Referring to Example III.E.6(iii), we can apply III.E. 8 to $\alpha: \mathbb{Z}[\sqrt{10}] \rightarrow \mathbb{Z}_{9}$ to determine ideals in $R:=\mathbb{Z}[\sqrt{10}]$. Since $S:=\mathbb{Z}_{9}$ contains one nontrivial proper ideal (namely $(\overline{3})$), R contains one proper ideal containing (but $\neq)(1+\sqrt{10})$. Clearly, this is $(3,1+\sqrt{10})$, and so we get for free

$$
\frac{\mathbb{Z}[\sqrt{10}]}{(3,1+\sqrt{10})} \cong \frac{\mathbb{Z}_{9}}{\mathbb{Z}_{3}} \cong \mathbb{Z}_{3} .
$$

(ii) With the same R, take $S:=\mathbb{Z} \subset R$ and $I=(1+\sqrt{10}) \subset R$. Clearly $S+I=R$, and applying III.E. 9 gives

$$
\frac{\mathbb{Z}}{\mathbb{Z} \cap(1+\sqrt{10})} \cong \frac{\mathbb{Z}[\sqrt{10}]}{(1+\sqrt{10})}
$$

which we know is $\cong \mathbb{Z}_{9}$. Conclude that $\mathbb{Z} \cap(1+\sqrt{10})=(9)$.
Here is a more interesting application of the Fundamental Theorem III.E.5.
III.E.11. Definition. We say that two ideals $I, J \subset R$ are relatively prime (or coprime) if $I+J=R$, or equivalently that there exist elements $\imath \in I$ and $\jmath \in J$ such that $\imath+\jmath=1$. (You should check that in $\mathbb{Z},(m)$ and (n) are relatively prime iff m and n are, i.e. $\operatorname{gcd}(m, n)=1$.)
III.E.12. Chinese Remainder Theorem. Let I_{1}, \ldots, I_{m} be pairwise relatively prime ideals in a ring R; that is, for each $i \neq j, I_{i}+I_{j}=R$. Then

$$
R /\left(\cap_{j=1}^{m} I_{j}\right) \cong R / I_{1} \times \cdots \times R / I_{m}
$$

Proof. Clearly

$$
\begin{aligned}
\varphi: R & \longrightarrow R / I_{1} \times \cdots \times R / I_{m} \\
r & \longmapsto\left(r+I_{1}, \ldots, r+I_{m}\right)
\end{aligned}
$$

is a homomorphism. We must show that it is surjective with kernel $\cap_{j=1}^{m} I_{j}=: I$, and then the Fundamental Theorem does the rest of the work.

Suppose the result is known for less than m ideals (with $m \geq 3$). Then setting $I^{\prime}:=\cap_{j=2}^{m} I_{j}$, we have $R / I^{\prime} \cong \times_{j=2}^{m} R / I_{j}$. By assumption, for each pair I_{1} and I_{j} we have elements $\alpha_{j} \in I_{1}$ and $\beta_{j} \in I_{j}$ such that $\alpha_{j}+\beta_{j}=1$. Hence, ${ }^{17}$

$$
1=\prod_{j=2}^{m}\left(\alpha_{j}+\beta_{j}\right) \in \prod_{j=2}^{m}\left(I_{1}+I_{j}\right) \subset I_{1}+I_{2} \cdots I_{m} \subset I_{1}+I^{\prime}
$$

[^1]$\Longrightarrow I_{1}+I^{\prime}=R$. Hence $R / I \cong R / I^{\prime} \times R / I_{1}$ as desired.
What remains is to check the $m=2$ case. First, $\operatorname{ker}(\varphi)$ consists of those $r \in R$ with $\varphi(r)=\left(0+I_{1}, 0+I_{2}\right)$, or equivalently, $r \in I_{1} \cap I_{2}$.

For surjectivity of φ : given $\mathfrak{a}:=\left(a+I_{1}, b+I_{2}\right) \in R / I_{1} \times R / I_{2}$, $I_{1}+I_{2}=R \Longrightarrow$ there exist $\imath_{1} \in I_{1}, \imath_{2} \in I_{2}$ such that $a-b=-\iota_{1}+\imath_{2}$ $\Longrightarrow a+\imath_{1}=b+\imath_{2}=: r$, with $\varphi(r)=\mathfrak{a}$.
III.E.13. REmARK. (i) More explicitly, the Theorem is saying that if r_{1}, \ldots, r_{m} are elements of R, and I_{1}, \ldots, I_{m} pairwise coprime, then:

- there exists an $r \in R$ such that $r \equiv r_{i} \bmod I_{i}$ for every i; and
- this r is unique up to the addition of elements in $I_{1} \cap \cdots \cap I_{m}$.
(ii) If R is commutative and I_{1} and I_{2} are relatively prime, with $\alpha \in I_{1}$ and $\beta \in I_{2}$ such that $\alpha+\beta=1$, then $a \in I_{1} \cap I_{2} \Longrightarrow a=a(\alpha+\beta)=$ $\alpha a+b \beta \in I_{1} I_{2}$. Conversely, it is immediate that $I_{1} I_{2} \subset I_{1} \cap I_{2}$; and so $I_{1} I_{2}=I_{1} \cap I_{2}$. From here, its obviously true for $m>2$ as well: if R is commutative and the I_{j} are pairwise coprime, then

$$
I_{1} \cap \cdots \cap I_{m}=I_{1} \cdots I_{m}
$$

The original form of III.E. 12 is a result about congruences in number theory, a version of which of which was discovered by Sun Tzu in the 3rd Century.
III.E.14. Corollary. Let k_{1}, \ldots, k_{m} be pairwise coprime integers; that is, $\left(k_{i}, k_{j}\right)=1(\forall i \neq j)$. Then ${ }^{18}$

$$
\mathbb{Z} / k_{1} \cdots k_{m} \mathbb{Z} \xrightarrow{\cong} \mathbb{Z} / k_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / k_{m} \mathbb{Z}
$$

Taking units on both sides recovers the results on units in $\mathbb{Z} / m \mathbb{Z}$ from II.E.13-II.E.14.

But one needn't apply the Chinese Remainder Theorem only to integers:

[^2]III.E.15. EXAMPLE. In $R=\mathbb{Z}[\sqrt{10}]$, the ideals $I_{1}=(1+\sqrt{10})$ and $I_{2}=(-1+\sqrt{10})$ are coprime, in view of
$$
(1+\sqrt{10})(-1+\sqrt{10})-4(1+\sqrt{10})+4(-1+\sqrt{10})=1 .
$$

Moreover, $I_{1} I_{2}=(9)$. So

$$
\frac{\mathbb{Z}[\sqrt{10}]}{(9)} \cong \frac{\mathbb{Z}[\sqrt{10}]}{(1+\sqrt{10})} \times \frac{\mathbb{Z}[\sqrt{10}]}{(-1+\sqrt{10})} \cong \mathbb{Z}_{9} \times \mathbb{Z}_{9}
$$

[^0]: ${ }^{16}$ We will not get surjectivity if \mathcal{S} is an arbitrary subset.

[^1]: ${ }^{17}$ Note that all terms of the product $\prod_{j=2}^{m}\left(I_{1}+I_{j}\right)$ are contained in I_{1} except for the term $I_{2} \cdots I_{m}$.

[^2]: ${ }^{18}$ or if you prefer, $\mathbb{Z}_{k_{1} \cdots k_{m}} \cong \mathbb{Z}_{k_{1}} \times \cdots \times \mathbb{Z}_{k_{m}}$.

