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III.LE. Homomorphisms of rings
Let R and S be rings.

III.LE.1. DEFINITION. (i) A ring homomorphism ¢: R — Sis a
map which is both a homomorphism of additive groups and multi-
plicative monoids: ¢(r1 +12) = ¢(r1) + @(r2), ¢(r112) = @(r1)@(r2),
and ¢(1g) = 1s.

(ii) A ring isomorphism is a homomorphism of rings which is
injective and surjective. (Equivalently: there exists a homomorphism
n:S — Rsuchthaty o @ =idg and ¢ oy = ids.)

III.E.2. WARNING. In contrast to the case of groups, it is essential
to include “¢(1g) = 1g” in IILE.1(i). This not only prohibits (say)
multiplication-by-2 from giving a ring homomorphism from Z to Z;
it means that there is no such thing as a trivial (zero) ring homomor-

phism. Both Z 3ZandZ % Z are “rng homomorphisms”.

II1.E.3. PROPOSITION. (i) ¢(R) is a subring of S, and
(i) ker(@) (:= ¢~ 1({0})) is a proper ideal in R.

PROOF. (i) ¢(R) contains 1, and given « = ¢(r1), B = @(r2) €
®(R),wehavea + B = ¢(r1 +12) € ¢(R) and aff = ¢(r112) € ¢(R).

(ii) Given r € R and «1,x, € ker(¢), we have ¢(x1 + kp) =
p(k1) +@(x2) =0+0 =0 = K1+ Kk € ker(¢), and ¢(rx1) =
p(r)p(k1) = @(r)-0 = 0etc. = rxy, k17 € ker(¢). In particular,
—x1 and Ox; = 0 are in ker(¢). Finally, ker(¢) is proper because it
doesn’t contain 1. O

III.E.4. EXAMPLES. (i) “Evaluation” maps ev,: R[x] — R send-
ing P(x) — P(r) (or their products, as in III.A.3(iv)) are homomor-
phisms.

(ii) An injective homomorphism (or embedding) ¢: H — M;(C) is
obtained by sending 1 — (}9),i— (§9%),j— (%}) andk —
(95). This gives an isomorphism of H with a subring of M,(C)
(specifically, the one from III.C.25). The only thing to check is that
the matrices behave “the same” as i, j, k under multiplication.
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(iii) The natural map v: R — R/I sending r — r + I (or “7”), where

I C Ris a proper ideal, is clearly consistent with IIL.E.3.
(iv) det: M,(C) — C is not a ring homomorphism. (Why?)

IILLE.5. FUNDAMENTAL THEOREM OF RING HOMOMORPHISMS.
Given ¢: R — S, with K := ker(¢), there exists a unique ring homomor-
phism ¢: R/K — S making the diagram

Rx (P/(Ps

R/K

commute. In particular, the image ¢(R) = R/K.

PROOF. By IILE.3(ii), R/ K is well-defined as a ring; and by I1.1.20,
there exists a unique additive group homomorphism ¢ such that
pov = @. Itis only left to check that ¢ is a ring homomorphism:
¢(nia) = ¢v(n)v(n)) = ¢v(nr)) = ¢(nr) = e(r)e(r2) =
Pv(r))p(v(r2) = ¢(71)¢(72)- B

III.E.6. EXAMPLES. (continuing II1.D.21)

(i) Consider the evaluation map

ev gt Zlx] —» Z[V10]
sending P(x) —s P(v/10)
and x*—10+— 0.

Clearly x> — 10 € K and thus (x*> — 10) C K := ker(ev ).

Conversely, if P(v/10) = 0 and P is even, then P(x) = Q(x?)
for some polynomial Q(y), hence Q(10) = 0 = y —10 | Q(y)
= x?>—10 | P(x) in Z[x]. If P isn’t even, then P = P; + xP,
where P;(x) = Q;(x?) and 0 = Q1(10) + v/10Q>(10) = again
x?> —10 | P(x). Invoking IIL.D.16 (“Caesar”), we get (x> — 10) D K.
Conclude that

% ~ 7[v/10].
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(ii) If M is a manifold with submanifold'® S, then the restriction map
CO(M) — CO(S)
fr—="Tls
is a surjective homomorphism, with kernel K = Is. So
~ COM)
=
Similar isomorphisms show up in mathematics everywhere from co-

c’(S)

ordinate rings (in algebraic geometry) to multiplier algebras (in op-
erator theory).

(iii) Let’s look at the map
a: Z[V10] — Zg
definedby a+bvV10—a—b
(which sends 1+ v/10 — 0).
Is this a homomorphism? It sends 1 +— 1, respects “+”, and satisfies
® ((a +bv10)(c + d\/ﬁ)) = ((ac +10bd) + (ad + bc)@)
= ac + 10bd — (ad + bc)
=ac+bd —ad — bc
— (a=B)(c=d)
= a(a+ bv/10) - a(c + d/10),
so yes. Clearly (14 +/10) C ker(a). Conversely,

a+bV10 € ker(o) = a=b+9n (n € Z)
— a+bv10 = b(1+V10) +9n
= (b+n(~1++10)) (1+ V10)

16We will not get surjectivity if S is an arbitrary subset.
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shows that ker(a) C (1 4+ +/10). Conclude that
Z[\/ﬁ] ~ 7

(1+vio)
by a similar argument, we can replace (1 + +/10) by (—1 + /10).
(iii") What about
B: Z[V10] — Z3 x Z3
a+bvV10+— (a+b,a—0D)

3+ (0,0)?

Thissends 1 — (1,1)and (a +b,a—b)-(c+d,c—d) =
(ac + bd + ad + bc, ac + bd — (ad + be)) = B((a+bVv/10)(c 4 dV/10)).

So B is a homomorphism with ker(B) D (3). Moreover, a S b and

i=-b = a=0=b = a+by/10€ (3).So
®3) B

223 X Z3.

(iii”) Finally, for
v: Z[V10] — Zs
a+bV10—sa—b
3—0

1—{—\/1_0|—>(_)

the general element of ker(-y) is 31 + b(1 + 1/10)

—  ker(y) = (3,1+V10) — Mg.&.

(3,14 +/10)
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(iv) For an example of a more general sort, consider (for any ring R)

n:Z — R

0+— Ogr

1+— 13

Z~odn+——1g+---+1g (n times)
—n— —(Ig + - +1g).

Clearly (1 +m) = (1) +n(m), and y(nm) = y(n)y(m) (using
distributivity). The image 77(Z) is called the prime ring, and is the
smallest subring of R. Any ideal of Z is of the form (n), since these

are (as we checked before) the additive subgroups. Conclude that
n(Z) = Z if char(R) = 0, and 17(Z) = Z,, if char(R) = m is finite.

[II.LE.7. REMARK. Given a homomorphism ¢: R — S, we have
Z
v\
¢

with 71 % 1. On the one hand, this implies char(S) | char(R), which
could rule out some homomorphisms. If char(R) = 0 it won't rule

R

S,

out anything, but here is something which could: if « € R satisfies a
polynomial equation 0 = Y axaX, a € Z (i.e. nr(Z)), we must have
(writing B := ¢(a)) that 0 = ¥ @8*. One could then try to show
that S doesn’t contain such a B.

With essentially no work, the two isomorphism theorems from
§ILI lift to the ring setting:
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[IE.8. FIRST ISOMORPHISM THEOREM. Let ¢: R — S be a surjec-
tive ring homomorphism with kernel K. Then ¢ induces a 1-to-1 correspon-

ideals I C R ideals
<
containing K JCS

via I +— (),

dence

and isomorphisms R/ I = S/e(I).

PROOF. We only need to check that ¢(I) and ¢~ !(]) are closed
under multiplication by R; the rest follows from II.1.25 and IILE.5.

GivenI C R, S¢(I) = ¢(R)¢(I) = ¢(RI) = ¢(I) = ¢(I)isan
ideal.

Given] C S,a € ¢ 1(J),and r € R, wehave ¢(ra) = ¢(r)p(a) €
S]=] = ra € 9" (]) = ¢ 1(J)is anideal. O

IIL.LE.9. SECOND ISOMORPHISM THEOREM. Given I C R an ideal
and S C R a subring. Then:
(i) S+ 1 C Ris a subring having I as an ideal;
(i)) SN I is an ideal in S; and
(iii) s+ (SN I) — s+ I induces an isomorphism S/ (SN 1) 5 (S+1)/1L

PROOF. Left to you. O

IIILE.10. EXAMPLE. (i) Referring to Example IIL.E.6(iii), we can ap-
ply IILE.8 to a: Z[v/10] — Zg to determine ideals in R := Z[/10].
Since S := Zy contains one nontrivial proper ideal (namely (3)), R
contains one proper ideal containing (but #) (1 + /10). Clearly, this
is (3,1 ++/10), and so we get for free

Z[\/10] gégZB

(3,1++10) Zs
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(ii) With the same R, take S := Z C Rand I = (1++/10) C R.
Clearly S + I = R, and applying IIL.E.9 gives

z . 2Z|VIO

ZN(1++v10) (1++10)
which we know is & Zg. Conclude that Z N (1 + 1/10) = (9).

Here is a more interesting application of the Fundamental Theo-
rem IILE.5.

[II.LE.11. DEFINITION. We say that two ideals I,] C R are rela-
tively prime (or coprime) if I + | = R, or equivalently that there
exist elements 1 € I and j € ] such that 74+ = 1. (You should
check that in Z, (m) and (n) are relatively prime iff m and n are, i.e.
ged(m,n) =1.)

II.LE.12. CHINESE REMAINDER THEOREM. Let Iy, ..., 1, be pair-
wise relatively prime ideals in a ring R; that is, for each i # j, I; + I; = R.
Then

R/( ;-":1[) = R/L x -+ xR/ L.

PROOF. Clearly
¢:R— R/} X --- X R/Iy
r— (r+1I,...,r+ Iy)

is a homomorphism. We must show that it is surjective with kernel
ﬂ;-”zll i = I, and then the Fundamental Theorem does the rest of the
work.

Suppose the result is known for less than m ideals (with m > 3).
Then setting I' := N7’ I;, we have R/I' = xJ.,R/I;. By assumption,
for each pair I; and I; we have elements «; € I and §; € I; such that
aj+pj =1 Hence,!”

m m

1=JJj+g)e][(h+])Ch+L--InChL+T
j=2 j=2

17Note that all terms of the product H}"ZZ (I1 + I;) are contained in I; except for the
term I - - - Iy,
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= [; +1' = R.Hence R/I = R/I' x R/I; as desired.
What remains is to check the m = 2 case. First, ker(¢) consists of
those r € Rwith ¢(r) = (0+ 1,0+ L), or equivalently, r € I N L.
For surjectivity of ¢: given a := (a+ I;,b+ L) € R/} x R/,
I +I) = R = thereexisti; € 1,1 € hsuchthata—b = —11 + 1
= a+1=b+1n =1, withe(r) =a. O

III.LE.13. REMARK. (i) More explicitly, the Theorem is saying that
ifry,...,ry are elements of R, and Iy, ... ., I, pairwise coprime, then:

e there exists an v € R such that r = r; mod I; for every i; and
e this r is unique up to the addition of elements in Iy N - - - N L.

(ii) If R is commutative and 1, and I are relatively prime, with & € I
and f € Lsuchthata +B=1,thenac [N = a=a(a+p) =
xa +bp € I1I,. Conversely, it is immediate that I; I, C I; N I; and so
I1I = I} N . From here, its obviously true for m > 2 as well: if R is
commutative and the I; are pairwise coprime, then

Lho---Nly=1---Iy.
The original form of II.E.12 is a result about congruences in num-

ber theory, a version of which of which was discovered by Sun Tzu
in the 3rd Century.

IIILE.14. COROLLARY. Let ky,..., ks, be pairwise coprime integers;
that is, (ki k;) = 1 (Vi # j). Then'®

Z/ki- kmZ —5 Z)KZ % - - X Z)knZ.

Taking units on both sides recovers the results on units in Z/mZ. from
II.LE.13-11.E.14.

But one needn’t apply the Chinese Remainder Theorem only to
integers:

185r if you prefet, Zy, ..k, = Ly, X -+ X Ly,
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IIL.E.15. EXAMPLE. In R = Z[/10], the ideals I; = (1++/10) and
I, = (=14 +/10) are coprime, in view of

(1+v10)(—1 4 V10) — 4(1 + v10) + 4(—1 +V/10) = 1.
Moreover, 1 I = (9). So
ZVio) _ ZVID)  ZIVI

= X = Zg X Zg.

9) (14++10)  (—=1++/10)




