III.E. Homomorphisms of rings

Let *R* and *S* be rings.

III.E.1. DEFINITION. (i) A **ring homomorphism** $\varphi \colon R \to S$ is a map which is both a homomorphism of additive groups and multiplicative monoids: $\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$, $\varphi(r_1r_2) = \varphi(r_1)\varphi(r_2)$, and $\varphi(1_R) = 1_S$.

(ii) A **ring isomorphism** is a homomorphism of rings which is injective and surjective. (Equivalently: there exists a homomorphism $\eta: S \to R$ such that $\eta \circ \varphi = id_R$ and $\varphi \circ \eta = id_S$.)

III.E.2. WARNING. In contrast to the case of groups, it is essential to include " $\varphi(1_R) = 1_S$ " in III.E.1(i). This not only prohibits (say) multiplication-by-2 from giving a ring homomorphism from \mathbb{Z} to \mathbb{Z} ; it means that there is no such thing as a trivial (zero) ring homomorphism. Both $\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}$ and $\mathbb{Z} \xrightarrow{0} \mathbb{Z}$ are "rng homomorphisms".

III.E.3. PROPOSITION. (i) $\varphi(R)$ is a subring of *S*, and (ii) ker (φ) (:= $\varphi^{-1}(\{0\})$) is a proper ideal in *R*.

PROOF. (i) $\varphi(R)$ contains 1, and given $\alpha = \varphi(r_1)$, $\beta = \varphi(r_2) \in \varphi(R)$, we have $\alpha + \beta = \varphi(r_1 + r_2) \in \varphi(R)$ and $\alpha\beta = \varphi(r_1r_2) \in \varphi(R)$.

(ii) Given $r \in R$ and $\kappa_1, \kappa_2 \in \ker(\varphi)$, we have $\varphi(\kappa_1 + \kappa_2) = \varphi(\kappa_1) + \varphi(\kappa_2) = 0 + 0 = 0 \implies \kappa_1 + \kappa_2 \in \ker(\varphi)$, and $\varphi(r\kappa_1) = \varphi(r)\varphi(\kappa_1) = \varphi(r) \cdot 0 = 0$ etc. $\implies r\kappa_1, \kappa_1 r \in \ker(\varphi)$. In particular, $-\kappa_1$ and $0\kappa_1 = 0$ are in $\ker(\varphi)$. Finally, $\ker(\varphi)$ is proper because it doesn't contain 1.

III.E.4. EXAMPLES. (i) "Evaluation" maps $ev_r \colon R[x] \to R$ sending $P(x) \mapsto P(r)$ (or their products, as in III.A.3(iv)) are homomorphisms.

(ii) An injective homomorphism (or *embedding*) $\varphi \colon \mathbb{H} \hookrightarrow M_2(\mathbb{C})$ is obtained by sending $1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\mathbf{i} \mapsto \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix}$, $\mathbf{j} \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, and $\mathbf{k} \mapsto \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}$. This gives an isomorphism of \mathbb{H} with a subring of $M_2(\mathbb{C})$ (specifically, the one from III.C.25). The only thing to check is that the matrices behave "the same" as $\mathbf{i}, \mathbf{j}, \mathbf{k}$ under multiplication.

(iii) The natural map $\nu \colon R \to R/I$ sending $r \mapsto r + I$ (or " \overline{r} "), where $I \subset R$ is a proper ideal, is clearly consistent with III.E.3.

(iv) det: $M_n(\mathbb{C}) \to \mathbb{C}$ is *not* a ring homomorphism. (Why?)

III.E.5. FUNDAMENTAL THEOREM OF RING HOMOMORPHISMS. Given $\varphi \colon R \to S$, with $K := \ker(\varphi)$, there exists a unique ring homomorphism $\overline{\varphi} \colon R/K \hookrightarrow S$ making the diagram

commute. In particular, the image $\varphi(R) \cong R/K$.

PROOF. By III.E.3(ii), R/K is well-defined as a ring; and by II.I.20, there exists a unique additive group homomorphism $\bar{\varphi}$ such that $\bar{\varphi} \circ \nu = \varphi$. It is only left to check that $\bar{\varphi}$ is a ring homomorphism: $\bar{\varphi}(\bar{r}_1\bar{r}_2) = \bar{\varphi}(\nu(r_1)\nu(r_2)) = \bar{\varphi}(\nu(r_1r_2)) = \varphi(r_1r_2) = \varphi(r_1)\varphi(r_2) = \bar{\varphi}(\nu(r_1))\bar{\varphi}(\nu(r_2)) = \bar{\varphi}(\bar{r}_1)\bar{\varphi}(\bar{r}_2).$

III.E.6. EXAMPLES. (continuing III.D.21)(i) Consider the evaluation map

$$ev_{\sqrt{10}} \colon \mathbb{Z}[x] \longrightarrow \mathbb{Z}[\sqrt{10}]$$

sending $P(x) \longmapsto P(\sqrt{10})$
and $x^2 - 10 \longmapsto 0.$

Clearly $x^2 - 10 \in K$ and thus $(x^2 - 10) \subset K := \ker(\operatorname{ev}_{\sqrt{10}})$.

Conversely, if $P(\sqrt{10}) = 0$ and P is even, then $P(x) = Q(x^2)$ for some polynomial Q(y), hence $Q(10) = 0 \implies y - 10 \mid Q(y)$ $\implies x^2 - 10 \mid P(x)$ in $\mathbb{Z}[x]$. If P isn't even, then $P = P_1 + xP_2$ where $P_i(x) = Q_i(x^2)$ and $0 = Q_1(10) + \sqrt{10}Q_2(10) \implies$ again $x^2 - 10 \mid P(x)$. Invoking III.D.16 ("Caesar"), we get $(x^2 - 10) \supset K$. Conclude that

$$\frac{\mathbb{Z}[x]}{(x^2 - 10)} \cong \mathbb{Z}[\sqrt{10}].$$

(ii) If \mathcal{M} is a manifold with submanifold ¹⁶ \mathcal{S} , then the restriction map

$$C^{0}(\mathcal{M}) \longrightarrow C^{0}(\mathcal{S})$$
$$f \longmapsto f|_{\mathcal{S}}$$

is a surjective homomorphism, with kernel $K = I_S$. So

$$C^0(\mathcal{S}) \cong \frac{C^0(\mathcal{M})}{I_{\mathcal{S}}}.$$

Similar isomorphisms show up in mathematics everywhere from coordinate rings (in algebraic geometry) to multiplier algebras (in operator theory).

(iii) Let's look at the map

$$\alpha \colon \mathbb{Z}[\sqrt{10}] \longrightarrow \mathbb{Z}_9$$

defined by $a + b\sqrt{10} \longmapsto \overline{a-b}$
(which sends $1 + \sqrt{10} \longmapsto \overline{0}$).

Is this a homomorphism? It sends $1 \mapsto \overline{1}$, respects "+", and satisfies

$$\alpha \left((a+b\sqrt{10})(c+d\sqrt{10}) \right) = \alpha \left((ac+10bd) + (ad+bc)\sqrt{10} \right)$$
$$= \overline{ac+10bd - (ad+bc)}$$
$$= \overline{ac+bd - ad - bc}$$
$$= (\overline{a-b})(\overline{c-d})$$
$$= \alpha (a+b\sqrt{10}) \cdot \alpha (c+d\sqrt{10}),$$

so yes. Clearly $(1 + \sqrt{10}) \subset \ker(\alpha)$. Conversely,

$$a + b\sqrt{10} \in \ker(\alpha) \implies a = b + 9n \quad (n \in \mathbb{Z})$$
$$\implies a + b\sqrt{10} = b(1 + \sqrt{10}) + 9n$$
$$= \left(b + n(-1 + \sqrt{10})\right)(1 + \sqrt{10})$$

 $^{^{16}\}text{We}$ will not get surjectivity if $\mathcal S$ is an arbitrary subset.

III. RINGS

shows that $\ker(\alpha) \subset (1 + \sqrt{10})$. Conclude that

$$rac{\mathbb{Z}[\sqrt{10}]}{(1+\sqrt{10})}\cong\mathbb{Z}_9$$
;

by a similar argument, we can replace $(1 + \sqrt{10})$ by $(-1 + \sqrt{10})$. (iii') What about

$$\beta \colon \mathbb{Z}[\sqrt{10}] \longrightarrow \mathbb{Z}_3 \times \mathbb{Z}_3$$
$$a + b\sqrt{10} \longmapsto (\overline{a+b}, \overline{a-b})$$
$$3 \longmapsto (\overline{0}, \overline{0}) ?$$

This sends $1 \mapsto (\overline{1}, \overline{1})$ and $(\overline{a+b}, \overline{a-b}) \cdot (\overline{c+d}, \overline{c-d}) =$ $(\overline{ac+bd+ad+bc}, \overline{ac+bd-(ad+bc)}) = \beta((a+b\sqrt{10})(c+d\sqrt{10})).$ So β is a homomorphism with ker $(\beta) \supset (3)$. Moreover, $a \equiv b$ and $a \equiv -b \implies a \equiv 0 \equiv b \implies a+b\sqrt{10} \in (3).$ So $\frac{\mathbb{Z}[\sqrt{10}]}{(3)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3.$

(iii") Finally, for

$$\gamma \colon \mathbb{Z}[\sqrt{10}] \longrightarrow \mathbb{Z}_3$$
$$a + b\sqrt{10} \longmapsto \overline{a - b}$$
$$3 \longmapsto \overline{0}$$
$$1 + \sqrt{10} \longmapsto \overline{0}$$

the general element of ker(γ) is $3n + b(1 + \sqrt{10})$

$$\implies \ker(\gamma) = (3, 1 + \sqrt{10}) \implies \frac{\mathbb{Z}[\sqrt{10}]}{(3, 1 + \sqrt{10})} \cong \mathbb{Z}_3.$$

130

(iv) For an example of a more general sort, consider (for any ring *R*)

$$\eta \colon \mathbb{Z} \longrightarrow R$$

$$0 \longmapsto 0_R$$

$$1 \longmapsto 1_R$$

$$\mathbb{Z}_{>0} \ni n \longmapsto 1_R + \dots + 1_R \text{ (n times)}$$

$$-n \longmapsto -(1_R + \dots + 1_R).$$

Clearly $\eta(n + m) = \eta(n) + \eta(m)$, and $\eta(nm) = \eta(n)\eta(m)$ (using distributivity). The image $\eta(\mathbb{Z})$ is called the **prime ring**, and is the smallest subring of *R*. Any ideal of \mathbb{Z} is of the form (n), since these are (as we checked before) the additive subgroups. Conclude that $\eta(\mathbb{Z}) \cong \mathbb{Z}$ if char(R) = 0, and $\eta(\mathbb{Z}) \cong \mathbb{Z}_m$ if char(R) = m is finite.

III.E.7. REMARK. Given a homomorphism $\varphi \colon R \to S$, we have

with $\bar{n} \stackrel{\varphi}{\mapsto} \bar{n}$. On the one hand, this implies $\operatorname{char}(S) | \operatorname{char}(R)$, which could rule out some homomorphisms. If $\operatorname{char}(R) = 0$ it won't rule out anything, but here is something which could: if $\alpha \in R$ satisfies a polynomial equation $0 = \sum_k a_k \alpha^k$, $a_k \in \mathbb{Z}$ (i.e. $\eta_R(\mathbb{Z})$), we must have (writing $\beta := \varphi(\alpha)$) that $0 = \sum_k \bar{a}_k \beta^k$. One could then try to show that *S* doesn't contain such a β .

With essentially no work, the two isomorphism theorems from §II.I lift to the ring setting:

III.E.8. FIRST ISOMORPHISM THEOREM. Let φ : $R \rightarrow S$ be a surjective ring homomorphism with kernel K. Then φ induces a 1-to-1 correspondence

$$\begin{cases} \text{ideals } I \subset R \\ \text{containing } K \end{cases} \longleftrightarrow \begin{cases} \text{ideals} \\ J \subset S \end{cases} \\ \text{via} \quad I \quad \longmapsto \quad \varphi(I) , \end{cases}$$

and isomorphisms $R/I \xrightarrow{\cong} S/\varphi(I)$.

PROOF. We only need to check that $\varphi(I)$ and $\varphi^{-1}(J)$ are closed under multiplication by *R*; the rest follows from II.I.25 and III.E.5.

Given $I \subset R$, $S\varphi(I) = \varphi(R)\varphi(I) = \varphi(RI) = \varphi(I) \implies \varphi(I)$ is an ideal.

Given $J \subset S$, $\alpha \in \varphi^{-1}(J)$, and $r \in R$, we have $\varphi(r\alpha) = \varphi(r)\varphi(\alpha) \in SJ = J \implies r\alpha \in \varphi^{-1}(J) \implies \varphi^{-1}(J)$ is an ideal. \Box

III.E.9. SECOND ISOMORPHISM THEOREM. Given $I \subset R$ an ideal and $S \subset R$ a subring. Then: (i) $S + I \subset R$ is a subring having I as an ideal; (ii) $S \cap I$ is an ideal in S; and (iii) $s + (S \cap I) \mapsto s + I$ induces an isomorphism $S/(S \cap I) \xrightarrow{\cong} (S + I)/I$.

PROOF. Left to you.

III.E.10. EXAMPLE. (i) Referring to Example III.E.6(iii), we can apply III.E.8 to α : $\mathbb{Z}[\sqrt{10}] \twoheadrightarrow \mathbb{Z}_9$ to determine ideals in $R := \mathbb{Z}[\sqrt{10}]$. Since $S := \mathbb{Z}_9$ contains one nontrivial proper ideal (namely ($\overline{3}$)), R contains one proper ideal containing (but \neq) $(1 + \sqrt{10})$. Clearly, this is $(3, 1 + \sqrt{10})$, and so we get for free

$$\frac{\mathbb{Z}[\sqrt{10}]}{(3,1+\sqrt{10})} \cong \frac{\mathbb{Z}_9}{\mathbb{Z}_3} \cong \mathbb{Z}_3.$$

(ii) With the same *R*, take $S := \mathbb{Z} \subset R$ and $I = (1 + \sqrt{10}) \subset R$. Clearly S + I = R, and applying III.E.9 gives

$$\frac{\mathbb{Z}}{\mathbb{Z} \cap (1+\sqrt{10})} \cong \frac{\mathbb{Z}[\sqrt{10}]}{(1+\sqrt{10})},$$

which we know is $\cong \mathbb{Z}_9$. Conclude that $\mathbb{Z} \cap (1 + \sqrt{10}) = (9)$.

Here is a more interesting application of the Fundamental Theorem III.E.5.

III.E.11. DEFINITION. We say that two ideals $I, J \subset R$ are **relatively prime** (or **coprime**) if I + J = R, or equivalently that there exist elements $\iota \in I$ and $\jmath \in J$ such that $\iota + \jmath = 1$. (You should check that in \mathbb{Z} , (m) and (n) are relatively prime iff m and n are, i.e. gcd(m, n) = 1.)

III.E.12. CHINESE REMAINDER THEOREM. Let I_1, \ldots, I_m be pairwise relatively prime ideals in a ring R; that is, for each $i \neq j$, $I_i + I_j = R$. Then

$$R/(\cap_{i=1}^m I_i) \cong R/I_1 \times \cdots \times R/I_m.$$

PROOF. Clearly

$$\varphi \colon R \longrightarrow R/I_1 \times \cdots \times R/I_m$$
$$r \longmapsto (r + I_1, \dots, r + I_m)$$

is a homomorphism. We must show that it is surjective with kernel $\bigcap_{j=1}^{m} I_j =: I$, and then the Fundamental Theorem does the rest of the work.

Suppose the result is known for less than *m* ideals (with $m \ge 3$). Then setting $I' := \bigcap_{j=2}^{m} I_j$, we have $R/I' \cong \times_{j=2}^{m} R/I_j$. By assumption, for each pair I_1 and I_j we have elements $\alpha_j \in I_1$ and $\beta_j \in I_j$ such that $\alpha_j + \beta_j = 1$. Hence,¹⁷

$$1 = \prod_{j=2}^{m} (\alpha_j + \beta_j) \in \prod_{j=2}^{m} (I_1 + I_j) \subset I_1 + I_2 \cdots I_m \subset I_1 + I'$$

¹⁷Note that all terms of the product $\prod_{j=2}^{m} (I_1 + I_j)$ are contained in I_1 except for the term $I_2 \cdots I_m$.

 \implies $I_1 + I' = R$. Hence $R/I \cong R/I' \times R/I_1$ as desired.

What remains is to check the m = 2 case. First, ker(φ) consists of those $r \in R$ with $\varphi(r) = (0 + I_1, 0 + I_2)$, or equivalently, $r \in I_1 \cap I_2$.

For surjectivity of φ : given $\mathfrak{a} := (a + I_1, b + I_2) \in R/I_1 \times R/I_2$, $I_1 + I_2 = R \implies$ there exist $\iota_1 \in I_1, \iota_2 \in I_2$ such that $a - b = -\iota_1 + \iota_2$ $\implies a + \iota_1 = b + \iota_2 =: r$, with $\varphi(r) = \mathfrak{a}$.

III.E.13. REMARK. (i) More explicitly, the Theorem is saying that if r_1, \ldots, r_m are elements of R, and I_1, \ldots, I_m pairwise coprime, then:

- there exists an $r \in R$ such that $r \equiv r_i \mod I_i$ for every *i*; and
- this *r* is unique up to the addition of elements in $I_1 \cap \cdots \cap I_m$.

(ii) If *R* is commutative and I_1 and I_2 are relatively prime, with $\alpha \in I_1$ and $\beta \in I_2$ such that $\alpha + \beta = 1$, then $a \in I_1 \cap I_2 \implies a = a(\alpha + \beta) = \alpha a + b\beta \in I_1I_2$. Conversely, it is immediate that $I_1I_2 \subset I_1 \cap I_2$; and so $I_1I_2 = I_1 \cap I_2$. From here, its obviously true for m > 2 as well: if *R* is commutative and the I_i are pairwise coprime, then

$$I_1 \cap \cdots \cap I_m = I_1 \cdots I_m.$$

The original form of III.E.12 is a result about congruences in number theory, a version of which of which was discovered by Sun Tzu in the 3rd Century.

III.E.14. COROLLARY. Let k_1, \ldots, k_m be pairwise coprime integers; that is, $(k_i, k_j) = 1 \ (\forall i \neq j)$. Then¹⁸

$$\mathbb{Z}/k_1\cdots k_m\mathbb{Z} \xrightarrow{\cong} \mathbb{Z}/k_1\mathbb{Z} \times \cdots \times \mathbb{Z}/k_m\mathbb{Z}.$$

Taking units on both sides recovers the results on units in $\mathbb{Z}/m\mathbb{Z}$ from II.E.13-II.E.14.

But one needn't apply the Chinese Remainder Theorem only to integers:

¹⁸or if you prefer, $\mathbb{Z}_{k_1 \cdots k_m} \cong \mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_m}$.

134

III.E.15. EXAMPLE. In $R = \mathbb{Z}[\sqrt{10}]$, the ideals $I_1 = (1 + \sqrt{10})$ and $I_2 = (-1 + \sqrt{10})$ are coprime, in view of

$$(1 + \sqrt{10})(-1 + \sqrt{10}) - 4(1 + \sqrt{10}) + 4(-1 + \sqrt{10}) = 1.$$

Moreover, $I_1 I_2 = (9)$. So

$$\frac{\mathbb{Z}[\sqrt{10}]}{(9)} \cong \frac{\mathbb{Z}[\sqrt{10}]}{(1+\sqrt{10})} \times \frac{\mathbb{Z}[\sqrt{10}]}{(-1+\sqrt{10})} \cong \mathbb{Z}_9 \times \mathbb{Z}_9.$$