III.F. Fields

Given a field \mathbb{F}, the intersection of all its subfields is called the prime subfield. Clearly, this contains the prime ring $\eta(\mathbb{Z})$, which is isomorphic to \mathbb{Z}_{p} (p prime) or to \mathbb{Z}. In the first case, \mathbb{Z}_{p} is the prime subfield; in the latter, we may extend $\eta: \mathbb{Z} \hookrightarrow \mathbb{F}$ to \mathbb{Q} by $\eta\left(\frac{r}{s}\right):=$ $\eta(r) \eta(s)^{-1}$.

This extension is well-defined since given $\frac{r^{\prime}}{s^{\prime}}=\frac{r}{s}$, we have $r^{\prime} s=$ $r s^{\prime} \Longrightarrow \eta\left(r^{\prime}\right) \eta(s)=\eta(r) \eta\left(s^{\prime}\right) \Longrightarrow \eta\left(r^{\prime}\right) \eta\left(s^{\prime}\right)^{-1}=\eta(r) \eta(s)^{-1}$. To see that it is injective, recall from III.D. 23 that a field has no nontrivial proper ideals. Hence

> all (ring) homomorphisms from a field to a ring are injective.

We conclude
III.F.2. PROPOSITION. The prime subfield of a field \mathbb{F} is isomorphic to \mathbb{Q} or \mathbb{Z}_{p}.

Also note the following about ring homomorphisms $\varphi: \mathbb{F} \rightarrow R$ (in addition to (III.F.1)): given $f \in \mathbb{F}$ (with inverse f^{-1}), we have $\varphi(f) \varphi\left(f^{-1}\right)=\varphi\left(f f^{-1}\right)=\varphi(1)=1 \Longrightarrow \varphi\left(f^{-1}\right)=\varphi(f)^{-1}$.

One way to construct fields (beyond the usual suspects) is via quotient rings. For the remainder of this section, let R denote a commutative ring.
III.F.3. THEOREM. If $I \subsetneq R$ denotes a proper ideal, then

$$
R / I \text { is a field } \Longleftrightarrow I \text { is maximal. }
$$

Proof. (\Longleftarrow) : Given a proper ideal $J \subsetneq R / I$, its preimage under $v: R \rightarrow R / I$ is a proper ideal containing I (and equal to I iff $J=\{0\})$ by III.E.8. Hence if I is maximal, the only possibility for J is $\{0\}$. By III.D.23, R / I is a field.
(\Longrightarrow) : Assume R / I is a field, and let $J \subset R$ be an ideal with $I \subsetneq J$. We will show that $J=R$ so that I is maximal.

Given any $r \in J \backslash I$, the ideal (I, r) generated by I and r is contained in J. Since $r \notin I$, we have $v(r) \neq 0$. As v is onto, there exists
$r^{\prime} \in R$ with $v\left(r^{\prime}\right)=v(r)^{-1}$; and then

$$
v\left(1-r r^{\prime}\right)=v(1)-v(r) v\left(r^{\prime}\right)=1-1=0 \quad \Longrightarrow \quad a:=1-r r^{\prime} \in I
$$

This means $1=a+r r^{\prime} \in(I, r)$ hence $(I, r)=J=R$.
III.F.4. EXAMPLES. (i) Similarly to III.E.6(i), we have (by the Fundamental Theorem III.E.5) $\frac{\mathrm{Q}[x]}{\left(x^{2}-10\right)} \xlongequal{\cong} \mathrm{Q}[\sqrt{10}]$, which we know is a field. Hence $\left(x^{2}-10\right)$ is maximal.
(ii) Given a submanifold $\mathcal{S} \subset \mathcal{M}$, when is $C^{0}(\mathcal{S})$ a field? It can only consist of one point - otherwise there are obvious zero-divisors. So $\mathcal{I}_{\mathcal{S}}$ is maximal $\Longleftrightarrow \mathcal{S}$ is a point.
(iii) Since $\frac{\mathbb{Z}[\sqrt{10}]}{(3,1+\sqrt{10})} \cong \mathbb{Z}_{3}$, the ideal $(3,1+\sqrt{10})$ is maximal. None of the principal ideals $(1+\sqrt{10}),(-1+\sqrt{10}),(3)$ are.

Briefly veering off topic, there is an important variant of III.F.3.
III.F.5. Definition. An ideal $I \subsetneq R$ is prime if

$$
a b \in I \quad \Longrightarrow \quad a \in I \text { or } b \in I
$$

III.F.6. THEOREM. R / I is a domain $\Longleftrightarrow I$ is prime.

Proof. I is not prime $\Longleftrightarrow \exists a, b \in R \backslash I$ such that $a b \in I$. Equivalently, taking $\bar{a}=a+I$ etc., $\exists \bar{a}, \bar{b} \in(R / I) \backslash\{0\}$ such that $\bar{a} \bar{b}=\overline{0}$; that is to say, R / I is not a domain.

Since fields are domains . . .
III.F.7. Corollary. Maximal ideals are prime.

Turning back to the beginning of this section, note that in a sense \mathbb{Q} was the subfield of \mathbb{F} generated by \mathbb{Z} (in the characteristic zero case). We want to generalize this.
III.F.8. Proposition. Let \mathcal{R} be a subring of a field \mathbb{F}. Then the intersection of all subfields containing \mathcal{R} (the "subfield generated by \mathcal{R} ") is

$$
\begin{equation*}
\left\{\alpha \beta^{-1} \mid \alpha \in \mathcal{R}, \beta \in \mathcal{R} \backslash\{0\}\right\} \cong \frac{\mathcal{R} \times \mathcal{R} \backslash\{0\}}{\equiv} \tag{III.F.9}
\end{equation*}
$$

$$
\text { where }(\alpha, \beta) \equiv(\gamma, \delta) \Longleftrightarrow \alpha \beta^{-1}=\gamma \delta^{-1} \text { in } \mathbb{F} \Longleftrightarrow \alpha \delta=\beta \gamma \text { in } \mathcal{R} .
$$

Proof. We only need to check that III.F. 9 is a subfield, since any field containing \mathcal{R} clearly contains it. The only remotely nontrivial check is closure under addition: $\alpha \beta^{-1}+\gamma \delta^{-1}=\alpha \delta \beta^{-1} \delta^{-1}+$ $\beta \gamma \beta^{-1} \delta^{-1}=(\alpha \delta+\beta \gamma)(\beta \delta)^{-1}$.

Going further, we can perform this construction without a "reference field" \mathbb{F}.
III.F.10. Theorem. Any commutative domain R can be embedded in a field.

Proof. Again we define an equivalence relation

$$
\begin{equation*}
(a, b) \sim(c, d) \quad \stackrel{\text { def. }}{\Longleftrightarrow} \quad a d=b c \tag{III.F.11}
\end{equation*}
$$

on $R \times R \backslash\{0\}$. This is

- reflexive: $a b=b a$
- symmetric: $a d=b c \Longleftrightarrow c b=d a$
- transitive: $a d=b c$ and $c f=d e \Longrightarrow a d f=b c f=b d e \Rightarrow$ $d(a f-b e)=0$ (and $d \neq 0) \Longrightarrow a f=b e$ (since R is a domain).
Define (as a set)

$$
\mathfrak{F}\{R\}:=\frac{R \times R \backslash\{0\}}{\sim},
$$

with $1_{\mathfrak{F}\{R\}}:=\overline{(1,1)}, 0_{\mathfrak{F}\{R\}}:=\overline{(0,1)}$,

$$
\overline{(a, b)} \cdot \overline{(c, d)}:=\overline{(a c, b d)}, \text { and } \overline{(a, b)}+\overline{(c, d)}:=\overline{(a d+b c, a d)} .
$$

These operations are well-defined: for instance, if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$, i.e. $a b^{\prime}=b a^{\prime}$, then $\left(a^{\prime} d+b^{\prime} c\right) b d=b^{\prime} d(a d+b c)$ hence

$$
\overline{\left(a^{\prime}, b^{\prime}\right)}+\overline{(c, d)}=\overline{\left(a^{\prime} d+b^{\prime} c, b^{\prime} d\right)}=\overline{(a d+b c, b d)}
$$

(The other checks in this vein are left to you.)
Next, we check the properties of a ring: we have

- $\overline{(0,1)}+\overline{(a, b)}=\overline{(0 b+1 a, 1 b)}=\overline{(a, b)}$
- $\overline{(1,1)} \cdot \overline{(a, b)}=\overline{(a, b)}$
- $\overline{(-a, b)}+\overline{(a, b)}=\overline{\left(-a b+b a, b^{2}\right)}=\overline{\left(0, b^{2}\right)}=\overline{(0,1)}$
- $\overline{(a, b)} \cdot(\overline{(c, d)}+\overline{(e, f)})=\overline{(a(c f+d e), b(d f))}=\overline{\left(a c b f+a b d e, b^{2} d f\right)}$ $=\overline{(a c, b d)}+\overline{(a e, b f)}$
and the other distributive and associative laws can also be checked. Moreover, if $\overline{(a, b)} \neq 0_{\mathfrak{F}\{R\}}$ (i.e. $a \neq 0$), then

$$
\overline{(b, a)} \cdot \overline{(a, b)}=\overline{(b a, a b)}=\overline{(1,1)}=1_{\mathfrak{F}\{R\}}
$$

and so $\mathfrak{F}\{R\}$ is a field.
Finally, we need to show that

$$
\begin{aligned}
\phi: R & \rightarrow \mathfrak{F}\{R\} \\
r & \mapsto \overline{(r, 1)}
\end{aligned}
$$

is an injective homomorphism, embedding R as a subring. We have $\phi(1)=1_{\mathbb{F}\{R\}}, \phi\left(r_{1}+r_{2}\right)=\overline{\left(r_{1}+r_{2}, 1\right)}=\overline{\left(r_{1}, 1\right)}+\overline{\left(r_{2}, 1\right)}=\phi\left(r_{1}\right)+$ $\phi\left(r_{2}\right)$, etc.; and if $\phi(r)=0_{\tilde{F}\{R\}}$ then $\overline{(r, 1)}=\overline{(0,1)} \Longrightarrow r \cdot 1=1 \cdot 0$ $\Longrightarrow r=0$, done.
III.F.12. DEfinition. $\mathfrak{F}\{R\}$ is called the field of fractions of R.

We can put together III.F. 8 and III.F. 10 as follows:
III.F.13. Proposition. Given a commutative domain R, any injective ring homomorphism $\varphi: R \hookrightarrow \mathbb{F}$ factors through R 's field of fractions

and if the only subfield of \mathbb{F} containing $\varphi(R)$ is \mathbb{F} itself, then $\mathbb{F} \cong \mathfrak{F}\{R\}$.
Proof. The second statement is obvious (since $\mathfrak{F}\{R\} \cong \tilde{\varphi}(\mathfrak{F}\{R\})$ is a subfield containing $\varphi(R)$), so what we need to do is check that

$$
\tilde{\varphi}(\overline{(a, b)}):=\varphi(a) \varphi(b)^{-1}
$$

is well-defined and a homomorphism (easy and left to you), as well as injective: if $\varphi(a) \varphi(b)^{-1}=0$ then $\varphi(a)=0 \Longrightarrow a=0 \Longrightarrow$ $\overline{(a, b)}=\overline{(0,1)}$.
III.F.14. EXAMPLES. (i) Consider $\varphi: \mathbb{Z}[\sqrt{d}] \hookrightarrow \mathbb{Q}[\sqrt{d}]$. Any subfield containing its image contains $(\forall a, b, c \in \mathbb{Z}, c \neq 0) c^{-1}$ and $(a+b \sqrt{d}) c^{-1}$ hence $\mathbb{Q}[\sqrt{d}]$. So $\mathbb{Q}[\sqrt{d}] \cong \mathfrak{F}\{\mathbb{Z}[\sqrt{d}]\}$.
(ii) Let \mathbb{F} be a field, $R=\mathbb{F}[x]$. Then $\mathbb{F}(x):=\mathfrak{F}\{\mathbb{F}[x]\}$ consists of "rational functions" in x.

Associated to the field of fractions is a different notion of ideal. (We continue to take R a commutative domain.)
III.F.15. Definition. (i) A fractional ideal of R is a subset $J \subset$ $\mathfrak{F}\{R\}$ of the form $f I:=f \cdot I=\{f a \mid a \in I\}$ for some $f \in \mathfrak{F}\{R\}$ and ideal $I \subset R$.
(ii) J is principal if I is.
(iii) J is invertible if there exists a fractional ideal J^{\prime} with $J J^{\prime}=R$.

Principal fractional ideals are invertible since they are of the form $f R \subset \mathfrak{F}\{R\}$ and we have $f R \cdot f^{-1} R=R^{2}=R$. Denote by

- $\mathcal{J}(R):=$ the set of fractional ideals
- $\mathcal{J}(R)^{*}:=$ the set of invertible fractional ideals
- $\mathcal{P} \mathcal{J}(R):=$ the set of principal fractional ideals.

Under the obvious multiplication $f I \cdot f^{\prime} I^{\prime}=f f^{\prime} I I^{\prime}, \mathcal{J}(R)^{*}$ forms an abelian group with identity element R, and (normal) subgroup $\mathcal{P} \mathcal{J}(R)$.
III.F.16. DEFINITION. $\mathscr{C} \ell(R):=\mathcal{J}(R)^{*} / \mathcal{P} \mathcal{J}(R)$ is the ideal class group.

We shall discuss its relation to uniqueness of factorization later.
III.F.17. EXAMPLE. Assume $d \in \mathbb{Z} \backslash\{0\}$ squarefree, with $d \underset{(4)}{\neq 1} 1$, and consider an ideal of the form $I=(\alpha, \beta)$ inside $R=\mathbb{Z}[\sqrt{d}]$. Writing $m+n \sqrt{d}:=m-n \sqrt{d}$, and $\tilde{I}=(\tilde{\alpha}, \tilde{\beta})$, we will compute $I \tilde{I}$.

But first, we need a little "lemma". Suppose that $a+b \sqrt{d}(a, b \in$ $Q)$ solves an integer equation of the form $x^{2}+B x+C=0$. Then

$$
a+b \sqrt{d}=\frac{-B \pm \sqrt{B^{2}-4 C}}{2} \Longrightarrow B^{2}-4 C=A^{2} d \text { for some } A \in \mathbb{Z}
$$

Since $d \neq 1$ (1 , we get $B^{2}-4 C \neq\left.\right|_{4)} 1$, which forces B (and thus A) to be even, whence $a, b \in \mathbb{Z}$. What this shows is that an element of $\mathbb{Q}[\sqrt{d}]$ belongs to R if it solves a monic integral quadratic equation.

Returning to the computation: as the norm map sends $R \rightarrow \mathbb{Z}$, and $\alpha, \beta \in R$, we have

$$
I \tilde{I}=(\alpha \tilde{\alpha}, \beta \tilde{\beta}, \alpha \tilde{\beta}, \beta \tilde{\alpha})=(\underbrace{\alpha \tilde{\alpha}, \beta \tilde{\beta}, \alpha \tilde{\beta}+\beta \tilde{\alpha}}_{\text {in } \mathbb{Z}, \text { with gcd }=: g}, \beta \tilde{\alpha})=(g, \beta \tilde{\alpha})
$$

Since $\frac{\beta \tilde{\alpha}}{g}$ is a root of

$$
\left(x-\frac{\beta \tilde{\alpha}}{g}\right)\left(x-\frac{\alpha \tilde{\beta}}{g}\right)=x^{2}-(\underbrace{\frac{\beta \tilde{\alpha}+\alpha \tilde{\beta}}{g}}_{\in \mathbb{Z}}) x+\underbrace{\frac{\alpha \tilde{\alpha}}{g} \cdot \frac{\beta \tilde{\beta}}{g}}_{\in \mathbb{Z}},
$$

our "lemma" tells us that $\frac{\beta \tilde{\alpha}}{g} \in R$ hence $g \mid \beta \tilde{\alpha}$ in R. So we conclude that

$$
I \tilde{I}=(g)
$$

a very useful result called Hurwitz's Theorem (which also works for $d \underset{(4)}{\equiv} 1$ and $\left.R=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]\right)$. I say it is useful because it comes with the presciption for how to calculate g, as the gcd of three integers.

What this all means for fractional ideals is that

$$
\frac{1}{g} \tilde{I} \text { furnishes an inverse to } I \text {. }
$$

This gives examples of non-principal ideals that have an (explicit!) inverse. Later we will see that all nontrivial ideals in R are invertible.

Our discussion of fraction fields is not complete without mentioning one case where there is nothing to do, a result sometimes called "Wedderburn's little theorem":
III.F.18. THEOREM (Wedderburn). Let R be a commutative domain, with $|R|<\infty$. Then R is a field.

Proof. Let $r \in R \backslash\{0\}$. Since R is finite, there exists a power $n \in \mathbb{Z}_{>0}$ such that $r^{n} \in\left\{1, r, \ldots, r^{n-1}\right\}$, say $r^{n}=r^{k}$. Then $r^{k}\left(r^{n-k}-\right.$ $1)=0$, and since R is a domain, we have $r^{n-k}=1$ and r is a unit. So $R \backslash\{0\}=R^{*}$ and R is a field.

