III.F. Fields

Given a field \mathbb{F} , the intersection of all its subfields is called the **prime subfield**. Clearly, this contains the prime ring $\eta(\mathbb{Z})$, which is isomorphic to \mathbb{Z}_p (p prime) or to \mathbb{Z} . In the first case, \mathbb{Z}_p *is* the prime subfield; in the latter, we may extend $\eta: \mathbb{Z} \hookrightarrow \mathbb{F}$ to \mathbb{Q} by $\eta(\frac{r}{s}) := \eta(r)\eta(s)^{-1}$.

This extension is well-defined since given $\frac{r'}{s'} = \frac{r}{s}$, we have $r's = rs' \implies \eta(r')\eta(s) = \eta(r)\eta(s') \implies \eta(r')\eta(s')^{-1} = \eta(r)\eta(s)^{-1}$. To see that it is injective, recall from III.D.23 that a field has no nontrivial proper ideals. Hence

We conclude

III.F.2. PROPOSITION. *The prime subfield of a field* \mathbb{F} *is isomorphic to* \mathbb{Q} *or* \mathbb{Z}_p .

Also note the following about ring homomorphisms $\varphi \colon \mathbb{F} \to R$ (in addition to (III.F.1)): given $f \in \mathbb{F}$ (with inverse f^{-1}), we have $\varphi(f)\varphi(f^{-1}) = \varphi(ff^{-1}) = \varphi(1) = 1 \implies \varphi(f^{-1}) = \varphi(f)^{-1}$.

One way to construct fields (beyond the usual suspects) is via quotient rings. For the remainder of this section, let *R* denote a *commutative* ring.

III.F.3. THEOREM. If $I \subsetneq R$ denotes a proper ideal, then

$$R/I$$
 is a field \iff I is maximal.

PROOF. (\Leftarrow): Given a proper ideal $J \subsetneq R/I$, its preimage under ν : $R \twoheadrightarrow R/I$ is a proper ideal containing I (and equal to I iff $J = \{0\}$) by III.E.8. Hence if I is maximal, the only possibility for J is $\{0\}$. By III.D.23, R/I is a field.

 (\implies) : Assume R/I is a field, and let $J \subset R$ be an ideal with $I \subsetneq J$. We will show that J = R so that I is maximal.

Given any $r \in J \setminus I$, the ideal (I, r) generated by I and r is contained in J. Since $r \notin I$, we have $v(r) \neq 0$. As v is onto, there exists

136

III.F. FIELDS

 $r' \in R$ with $\nu(r') = \nu(r)^{-1}$; and then $\nu(1 - rr') = \nu(1) - \nu(r)\nu(r') = 1 - 1 = 0 \implies a := 1 - rr' \in I.$

This means $1 = a + rr' \in (I, r)$ hence (I, r) = J = R.

III.F.4. EXAMPLES. (i) Similarly to III.E.6(i), we have (by the Fundamental Theorem III.E.5) $\frac{Q[x]}{(x^2-10)} \xrightarrow{\cong} Q[\sqrt{10}]$, which we know is a field. Hence $(x^2 - 10)$ is maximal.

(ii) Given a submanifold $S \subset M$, when is $C^0(S)$ a field? It can only consist of one point — otherwise there are obvious zero-divisors. So \mathcal{I}_S is maximal $\iff S$ is a point.

(iii) Since $\frac{\mathbb{Z}[\sqrt{10}]}{(3,1+\sqrt{10})} \cong \mathbb{Z}_3$, the ideal $(3, 1+\sqrt{10})$ is maximal. None of the principal ideals $(1+\sqrt{10})$, $(-1+\sqrt{10})$, (3) are.

Briefly veering off topic, there is an important variant of III.F.3.

III.F.5. DEFINITION. An ideal $I \subsetneq R$ is **prime** if

 $ab \in I \implies a \in I \text{ or } b \in I.$

III.F.6. THEOREM. R/I is a domain $\iff I$ is prime.

PROOF. *I* is not prime $\iff \exists a, b \in R \setminus I$ such that $ab \in I$. Equivalently, taking $\bar{a} = a + I$ etc., $\exists \bar{a}, \bar{b} \in (R/I) \setminus \{0\}$ such that $\bar{a}\bar{b} = \bar{0}$; that is to say, R/I is not a domain.

Since fields are domains . . .

III.F.7. COROLLARY. Maximal ideals are prime.

Turning back to the beginning of this section, note that in a sense \mathbb{Q} was the subfield of \mathbb{F} generated by \mathbb{Z} (in the characteristic zero case). We want to generalize this.

III.F.8. PROPOSITION. Let \mathcal{R} be a subring of a field \mathbb{F} . Then the intersection of all subfields containing \mathcal{R} (the "subfield generated by \mathcal{R} ") is

(III.F.9)
$$\{ \alpha \beta^{-1} \mid \alpha \in \mathcal{R}, \ \beta \in \mathcal{R} \setminus \{0\} \} \cong \frac{\mathcal{R} \times \mathcal{R} \setminus \{0\}}{\equiv},$$

where $(\alpha, \beta) \equiv (\gamma, \delta) \iff \alpha \beta^{-1} = \gamma \delta^{-1}$ in $\mathbb{F} \iff \alpha \delta = \beta \gamma$ in \mathcal{R} .

III. RINGS

PROOF. We only need to check that III.F.9 is a subfield, since any field containing \mathcal{R} clearly contains it. The only remotely nontrivial check is closure under addition: $\alpha\beta^{-1} + \gamma\delta^{-1} = \alpha\delta\beta^{-1}\delta^{-1} + \beta\delta\beta^{-1}\delta^{-1}$ $\beta \gamma \beta^{-1} \delta^{-1} = (\alpha \delta + \beta \gamma) (\beta \delta)^{-1}.$

Going further, we can perform this construction without a "reference field" F.

III.F.10. THEOREM. Any commutative domain R can be embedded in a field.

PROOF. Again we define an equivalence relation

(III.F.11)
$$(a,b) \sim (c,d) \quad \stackrel{\text{def.}}{\longleftrightarrow} \quad ad = bc$$

on $R \times R \setminus \{0\}$. This is

- reflexive: ab = ba
- symmetric: $ad = bc \iff cb = da$
- transitive: ad = bc and $cf = de \implies adf = bcf = bde \implies$ d(af - be) = 0 (and $d \neq 0$) $\implies af = be$ (since *R* is a domain).

Define (as a set)

$$\mathfrak{F}\{R\}:=\frac{R\times R\backslash\{0\}}{\sim},$$

with $1_{\mathfrak{F}\{R\}} := \overline{(1,1)}, 0_{\mathfrak{F}\{R\}} := \overline{(0,1)},$

$$\overline{(a,b)} \cdot \overline{(c,d)} := \overline{(ac,bd)}$$
, and $\overline{(a,b)} + \overline{(c,d)} := \overline{(ad+bc,ad)}$.

These operations are well-defined: for instance, if $(a, b) \sim (a', b')$, i.e. ab' = ba', then (a'd + b'c)bd = b'd(ad + bc) hence

$$\overline{(a',b')} + \overline{(c,d)} = \overline{(a'd+b'c,b'd)} = \overline{(ad+bc,bd)}.$$

(The other checks in this vein are left to you.)

Next, we check the properties of a ring: we have

- $\overline{(0,1)} + \overline{(a,b)} = \overline{(0b+1a,1b)} = \overline{(a,b)}$
- $(1,1) \cdot (a,b) = (a,b)$
- $\frac{\overline{(-a,b)}}{(a,b)} + \overline{(a,b)} = \overline{(-ab+ba,b^2)} = \overline{(0,b^2)} = \overline{(0,1)}$ $\overline{(a,b)} \cdot (\overline{(c,d)} + \overline{(e,f)}) = \overline{(a(cf+de),b(df))} = \overline{(acbf+abde,b^2df)}$ $=\overline{(ac,bd)}+\overline{(ae,bf)}$

138

III.F. FIELDS

and the other distributive and associative laws can also be checked. Moreover, if $\overline{(a,b)} \neq 0_{\mathfrak{F}}$ (i.e. $a \neq 0$), then

$$\overline{(b,a)} \cdot \overline{(a,b)} = \overline{(ba,ab)} = \overline{(1,1)} = 1_{\mathfrak{F}\{R\}}$$

and so $\mathfrak{F}{R}$ is a field.

Finally, we need to show that

$$\phi \colon R \to \mathfrak{F}\{R\}$$
$$r \mapsto \overline{(r,1)}$$

is an injective homomorphism, embedding *R* as a subring. We have $\phi(1) = 1_{\mathbb{F}\{R\}}, \phi(r_1 + r_2) = \overline{(r_1 + r_2, 1)} = \overline{(r_1, 1)} + \overline{(r_2, 1)} = \phi(r_1) + \phi(r_2)$, etc.; and if $\phi(r) = 0_{\mathfrak{F}\{R\}}$ then $\overline{(r, 1)} = \overline{(0, 1)} \implies r \cdot 1 = 1 \cdot 0 \implies r = 0$, done.

III.F.12. DEFINITION. \mathfrak{F} {*R*} is called the **field of fractions** of *R*.

We can put together III.F.8 and III.F.10 as follows:

III.F.13. PROPOSITION. *Given a commutative domain* R*, any injective ring homomorphism* $\varphi \colon R \hookrightarrow \mathbb{F}$ *factors through* R's *field of fractions*

and if the only subfield of \mathbb{F} containing $\varphi(R)$ is \mathbb{F} itself, then $\mathbb{F} \cong \mathfrak{F}\{R\}$.

PROOF. The second statement is obvious (since $\mathfrak{F}{R} \cong \tilde{\varphi}(\mathfrak{F}{R})$ is a subfield containing $\varphi(R)$), so what we need to do is check that

$$\tilde{\varphi}(\overline{(a,b)}) := \varphi(a)\varphi(b)^{-1}$$

is well-defined and a homomorphism (easy and left to you), as well as injective: if $\varphi(a)\varphi(b)^{-1} = 0$ then $\varphi(a) = 0 \implies a = 0 \implies \overline{(a,b)} = \overline{(0,1)}$.

III. RINGS

III.F.14. EXAMPLES. (i) Consider $\varphi \colon \mathbb{Z}[\sqrt{d}] \hookrightarrow \mathbb{Q}[\sqrt{d}]$. Any subfield containing its image contains $(\forall a, b, c \in \mathbb{Z}, c \neq 0) c^{-1}$ and $(a + b\sqrt{d})c^{-1}$ hence $\mathbb{Q}[\sqrt{d}]$. So $\mathbb{Q}[\sqrt{d}] \cong \mathfrak{F}\{\mathbb{Z}[\sqrt{d}]\}$.

(ii) Let \mathbb{F} be a field, $R = \mathbb{F}[x]$. Then $\mathbb{F}(x) := \mathfrak{F}{F[x]}$ consists of "rational functions" in *x*.

Associated to the field of fractions is a different notion of ideal. (We continue to take *R* a commutative domain.)

III.F.15. DEFINITION. (i) A **fractional ideal** of *R* is a subset $J \subset \mathfrak{F}{R}$ of the form $fI := f \cdot I = \{fa \mid a \in I\}$ for some $f \in \mathfrak{F}{R}$ and ideal $I \subset R$.

(ii) *J* is **principal** if *I* is.

(iii) *J* is **invertible** if there exists a fractional ideal J' with JJ' = R.

Principal fractional ideals are invertible since they are of the form $fR \subset \mathfrak{F}{R}$ and we have $fR \cdot f^{-1}R = R^2 = R$. Denote by

- $\mathcal{J}(R) :=$ the set of fractional ideals
- $\mathcal{J}(R)^* :=$ the set of invertible fractional ideals
- $\mathcal{PJ}(R)$:= the set of principal fractional ideals.

Under the obvious multiplication $fI \cdot f'I' = ff'II'$, $\mathcal{J}(R)^*$ forms an abelian group with identity element *R*, and (normal) subgroup $\mathcal{PJ}(R)$.

III.F.16. DEFINITION. $\mathscr{C}\ell(R) := \mathcal{J}(R)^* / \mathcal{P}\mathcal{J}(R)$ is the **ideal class** group.

We shall discuss its relation to uniqueness of factorization later.

III.F.17. EXAMPLE. Assume $d \in \mathbb{Z} \setminus \{0\}$ squarefree, with $d \not\equiv 1$, and consider an ideal of the form $I = (\alpha, \beta)$ inside $R = \mathbb{Z}[\sqrt{d}]$. Writing $\widetilde{m+n\sqrt{d}} := m - n\sqrt{d}$, and $\tilde{I} = (\tilde{\alpha}, \tilde{\beta})$, we will compute $I\tilde{I}$.

But first, we need a little "lemma". Suppose that $a + b\sqrt{d}$ ($a, b \in \mathbb{Q}$) solves an integer equation of the form $x^2 + Bx + C = 0$. Then

$$a + b\sqrt{d} = \frac{-B \pm \sqrt{B^2 - 4C}}{2} \implies B^2 - 4C = A^2 d$$
 for some $A \in \mathbb{Z}$.

III.F. FIELDS

Since $d \not\equiv 1$, we get $B^2 - 4C \not\equiv 1$, which forces *B* (and thus *A*) to be even, whence $a, b \in \mathbb{Z}$. What this shows is that an element of $\mathbb{Q}[\sqrt{d}]$ belongs to *R* if it solves a monic integral quadratic equation.

Returning to the computation: as the norm map sends $R \to \mathbb{Z}$, and $\alpha, \beta \in R$, we have

$$I\tilde{I} = (\alpha \tilde{\alpha}, \beta \tilde{\beta}, \alpha \tilde{\beta}, \beta \tilde{\alpha}) = (\underbrace{\alpha \tilde{\alpha}, \beta \tilde{\beta}, \alpha \tilde{\beta} + \beta \tilde{\alpha}}_{\text{in } \mathbb{Z}, \text{ with } \gcd =: g}, \beta \tilde{\alpha}) = (g, \beta \tilde{\alpha}).$$

Since $\frac{\beta\tilde{\alpha}}{g}$ is a root of

$$(x - \frac{\beta \tilde{\alpha}}{g})(x - \frac{\alpha \tilde{\beta}}{g}) = x^2 - (\underbrace{\frac{\beta \tilde{\alpha} + \alpha \tilde{\beta}}{g}}_{\in \mathbb{Z}})x + \underbrace{\frac{\alpha \tilde{\alpha}}{g} \cdot \frac{\beta \tilde{\beta}}{g}}_{\in \mathbb{Z}}$$

our "lemma" tells us that $\frac{\beta \tilde{\alpha}}{g} \in R$ hence $g \mid \beta \tilde{\alpha}$ in R. So we conclude that

$$I\tilde{I}=(g)\,,$$

a very useful result called **Hurwitz's Theorem** (which also works for $d \equiv 1$ and $R = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$). I say it is useful because it comes with the presciption for how to calculate *g*, as the gcd of three integers.

What this all means for fractional ideals is that

$$\frac{1}{g}\tilde{I}$$
 furnishes an inverse to I .

This gives examples of non-principal ideals that have an (explicit!) inverse. Later we will see that all nontrivial ideals in *R* are invertible.

Our discussion of fraction fields is not complete without mentioning one case where there is nothing to do, a result sometimes called "Wedderburn's little theorem":

III.F.18. THEOREM (Wedderburn). Let *R* be a commutative domain, with $|R| < \infty$. Then *R* is a field.

PROOF. Let $r \in R \setminus \{0\}$. Since *R* is finite, there exists a power $n \in \mathbb{Z}_{>0}$ such that $r^n \in \{1, r, ..., r^{n-1}\}$, say $r^n = r^k$. Then $r^k(r^{n-k} - 1) = 0$, and since *R* is a domain, we have $r^{n-k} = 1$ and *r* is a unit. So $R \setminus \{0\} = R^*$ and *R* is a field.