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III.F. Fields

Given a field F, the intersection of all its subfields is called the
prime subfield. Clearly, this contains the prime ring η(Z), which is
isomorphic to Zp (p prime) or to Z. In the first case, Zp is the prime
subfield; in the latter, we may extend η : Z ↪→ F to Q by η( r

s ) :=
η(r)η(s)−1.

This extension is well-defined since given r′
s′ =

r
s , we have r′s =

rs′ =⇒ η(r′)η(s) = η(r)η(s′) =⇒ η(r′)η(s′)−1 = η(r)η(s)−1. To
see that it is injective, recall from III.D.23 that a field has no nontrivial
proper ideals. Hence

(III.F.1)
all (ring) homomorphisms from a field to a ring

are injective.

We conclude

III.F.2. PROPOSITION. The prime subfield of a field F is isomorphic to
Q or Zp.

Also note the following about ring homomorphisms ϕ : F → R
(in addition to (III.F.1)): given f ∈ F (with inverse f−1), we have
ϕ( f )ϕ( f−1) = ϕ( f f−1) = ϕ(1) = 1 =⇒ ϕ( f−1) = ϕ( f )−1.

One way to construct fields (beyond the usual suspects) is via
quotient rings. For the remainder of this section, let R denote a com-
mutative ring.

III.F.3. THEOREM. If I ( R denotes a proper ideal, then

R/I is a field ⇐⇒ I is maximal.

PROOF. (⇐= ): Given a proper ideal J ( R/I, its preimage un-
der ν : R � R/I is a proper ideal containing I (and equal to I iff
J = {0}) by III.E.8. Hence if I is maximal, the only possibility for J is
{0}. By III.D.23, R/I is a field.

( =⇒ ): Assume R/I is a field, and let J ⊂ R be an ideal with
I ( J. We will show that J = R so that I is maximal.

Given any r ∈ J\I, the ideal (I, r) generated by I and r is con-
tained in J. Since r /∈ I, we have ν(r) 6= 0. As ν is onto, there exists
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r′ ∈ R with ν(r′) = ν(r)−1; and then

ν(1− rr′) = ν(1)− ν(r)ν(r′) = 1− 1 = 0 =⇒ a := 1− rr′ ∈ I.

This means 1 = a + rr′ ∈ (I, r) hence (I, r) = J = R. �

III.F.4. EXAMPLES. (i) Similarly to III.E.6(i), we have (by the Fun-

damental Theorem III.E.5) Q[x]
(x2−10)

∼=→ Q[
√

10], which we know is a

field. Hence (x2 − 10) is maximal.

(ii) Given a submanifold S ⊂ M, when is C0(S) a field? It can only
consist of one point — otherwise there are obvious zero-divisors. So
IS is maximal ⇐⇒ S is a point.

(iii) Since Z[
√

10]
(3,1+

√
10)
∼= Z3, the ideal (3, 1 +

√
10) is maximal. None of

the principal ideals (1 +
√

10), (−1 +
√

10), (3) are.

Briefly veering off topic, there is an important variant of III.F.3.

III.F.5. DEFINITION. An ideal I ( R is prime if

ab ∈ I =⇒ a ∈ I or b ∈ I.

III.F.6. THEOREM. R/I is a domain ⇐⇒ I is prime.

PROOF. I is not prime ⇐⇒ ∃a, b ∈ R\I such that ab ∈ I. Equiv-
alently, taking ā = a + I etc., ∃ā, b̄ ∈ (R/I)\{0} such that āb̄ = 0̄;
that is to say, R/I is not a domain. �

Since fields are domains . . .

III.F.7. COROLLARY. Maximal ideals are prime.

Turning back to the beginning of this section, note that in a sense
Q was the subfield of F generated by Z (in the characteristic zero
case). We want to generalize this.

III.F.8. PROPOSITION. LetR be a subring of a field F. Then the inter-
section of all subfields containingR (the “subfield generated byR”) is

(III.F.9) {αβ−1 | α ∈ R, β ∈ R\{0}} ∼=
R×R\{0}

≡ ,

where (α, β) ≡ (γ, δ) ⇐⇒ αβ−1 = γδ−1 in F ⇐⇒ αδ = βγ inR.
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PROOF. We only need to check that III.F.9 is a subfield, since any
field containing R clearly contains it. The only remotely nontriv-
ial check is closure under addition: αβ−1 + γδ−1 = αδβ−1δ−1 +

βγβ−1δ−1 = (αδ + βγ)(βδ)−1. �

Going further, we can perform this construction without a “ref-
erence field” F.

III.F.10. THEOREM. Any commutative domain R can be embedded in
a field.

PROOF. Again we define an equivalence relation

(III.F.11) (a, b) ∼ (c, d) def.⇐⇒ ad = bc

on R× R\{0}. This is

• reflexive: ab = ba
• symmetric: ad = bc ⇐⇒ cb = da
• transitive: ad = bc and c f = de =⇒ ad f = bc f = bde =⇒

d(a f − be) = 0 (and d 6= 0) =⇒ a f = be (since R is a domain).

Define (as a set)

F{R} :=
R× R\{0}
∼ ,

with 1F{R} := (1, 1), 0F{R} := (0, 1),

(a, b) · (c, d) := (ac, bd) , and (a, b) + (c, d) := (ad + bc, ad).

These operations are well-defined: for instance, if (a, b) ∼ (a′, b′), i.e.
ab′ = ba′, then (a′d + b′c)bd = b′d(ad + bc) hence

(a′, b′) + (c, d) = (a′d + b′c, b′d) = (ad + bc, bd).

(The other checks in this vein are left to you.)
Next, we check the properties of a ring: we have

• (0, 1) + (a, b) = (0b + 1a, 1b) = (a, b)
• (1, 1) · (a, b) = (a, b)
• (−a, b) + (a, b) = (−ab + ba, b2) = (0, b2) = (0, 1)
• (a, b) · ((c, d) + (e, f )) = (a(c f + de), b(d f )) = (acb f + abde, b2d f )
= (ac, bd) + (ae, b f )
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and the other distributive and associative laws can also be checked.
Moreover, if (a, b) 6= 0F{R} (i.e. a 6= 0), then

(b, a) · (a, b) = (ba, ab) = (1, 1) = 1F{R}

and so F{R} is a field.
Finally, we need to show that

φ : R→ F{R}

r 7→ (r, 1)

is an injective homomorphism, embedding R as a subring. We have
φ(1) = 1F{R}, φ(r1 + r2) = (r1 + r2, 1) = (r1, 1) + (r2, 1) = φ(r1) +

φ(r2), etc.; and if φ(r) = 0F{R} then (r, 1) = (0, 1) =⇒ r · 1 = 1 · 0
=⇒ r = 0, done. �

III.F.12. DEFINITION. F{R} is called the field of fractions of R.

We can put together III.F.8 and III.F.10 as follows:

III.F.13. PROPOSITION. Given a commutative domain R, any injective
ring homomorphism ϕ : R ↪→ F factors through R’s field of fractions

R �
� ϕ

//
� p

φ !!

F ;

F{R}
- 
 ϕ̃

<<

and if the only subfield of F containing ϕ(R) is F itself, then F ∼= F{R}.

PROOF. The second statement is obvious (since F{R} ∼= ϕ̃(F{R})
is a subfield containing ϕ(R)), so what we need to do is check that

ϕ̃((a, b)) := ϕ(a)ϕ(b)−1

is well-defined and a homomorphism (easy and left to you), as well
as injective: if ϕ(a)ϕ(b)−1 = 0 then ϕ(a) = 0 =⇒ a = 0 =⇒
(a, b) = (0, 1). �
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III.F.14. EXAMPLES. (i) Consider ϕ : Z[
√

d] ↪→ Q[
√

d]. Any sub-
field containing its image contains (∀a, b, c ∈ Z, c 6= 0) c−1 and
(a + b

√
d)c−1 hence Q[

√
d]. So Q[

√
d] ∼= F{Z[

√
d]}.

(ii) Let F be a field, R = F[x]. Then F(x) := F{F[x]} consists of
“rational functions” in x.

Associated to the field of fractions is a different notion of ideal.
(We continue to take R a commutative domain.)

III.F.15. DEFINITION. (i) A fractional ideal of R is a subset J ⊂
F{R} of the form f I := f · I = { f a | a ∈ I} for some f ∈ F{R} and
ideal I ⊂ R.

(ii) J is principal if I is.
(iii) J is invertible if there exists a fractional ideal J′ with J J′ = R.

Principal fractional ideals are invertible since they are of the form
f R ⊂ F{R} and we have f R · f−1R = R2 = R. Denote by

• J (R) := the set of fractional ideals
• J (R)∗ := the set of invertible fractional ideals
• PJ (R) := the set of principal fractional ideals.

Under the obvious multiplication f I · f ′ I′ = f f ′ I I′, J (R)∗ forms
an abelian group with identity element R, and (normal) subgroup
PJ (R).

III.F.16. DEFINITION. C `(R) := J (R)∗/PJ (R) is the ideal class
group.

We shall discuss its relation to uniqueness of factorization later.

III.F.17. EXAMPLE. Assume d ∈ Z\{0} squarefree, with d 6≡
(4)

1,

and consider an ideal of the form I = (α, β) inside R = Z[
√

d].

Writing m̃+n
√

d := m− n
√

d, and Ĩ = (α̃, β̃), we will compute I Ĩ.
But first, we need a little “lemma”. Suppose that a + b

√
d (a, b ∈

Q) solves an integer equation of the form x2 + Bx + C = 0. Then

a + b
√

d = −B±
√

B2−4C
2 =⇒ B2 − 4C = A2d for some A ∈ Z.
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Since d 6≡
(4)

1, we get B2 − 4C 6≡
(4)

1, which forces B (and thus A) to be

even, whence a, b ∈ Z. What this shows is that an element of Q[
√

d]
belongs to R if it solves a monic integral quadratic equation.

Returning to the computation: as the norm map sends R → Z,
and α, β ∈ R, we have

I Ĩ = (αα̃, ββ̃, αβ̃, βα̃) = (αα̃, ββ̃, αβ̃ + βα̃︸ ︷︷ ︸
in Z, with gcd =: g

, βα̃) = (g, βα̃).

Since βα̃
g is a root of

(x− βα̃
g )(x− αβ̃

g ) = x2 − ( βα̃+αβ̃
g︸ ︷︷ ︸
∈Z

)x + αα̃
g ·

ββ̃
g︸ ︷︷ ︸

∈Z

,

our “lemma” tells us that βα̃
g ∈ R hence g | βα̃ in R. So we conclude

that
I Ĩ = (g) ,

a very useful result called Hurwitz’s Theorem (which also works for
d ≡

(4)
1 and R = Z[1+

√
d

2 ]). I say it is useful because it comes with the

presciption for how to calculate g, as the gcd of three integers.
What this all means for fractional ideals is that

1
g Ĩ furnishes an inverse to I.

This gives examples of non-principal ideals that have an (explicit!)
inverse. Later we will see that all nontrivial ideals in R are invertible.

Our discussion of fraction fields is not complete without men-
tioning one case where there is nothing to do, a result sometimes
called “Wedderburn’s little theorem”:

III.F.18. THEOREM (Wedderburn). Let R be a commutative domain,
with |R| < ∞. Then R is a field.

PROOF. Let r ∈ R\{0}. Since R is finite, there exists a power
n ∈ Z>0 such that rn ∈ {1, r, . . . , rn−1}, say rn = rk. Then rk(rn−k −
1) = 0, and since R is a domain, we have rn−k = 1 and r is a unit. So
R\{0} = R∗ and R is a field. �


