142 III. RINGS
III.G. Polynomial rings

Throughout we shall assume that R, S denote commutative rings.
We defined polynomial rings over R in an indeterminate x (and in in-
dependent indeterminates xy, ..., x;) in IILA.3(iv). From the induc-
tive construction there it is clear that (writing I = (iy,...,i,) € N”"
and x' := x? e xi”)

(IL.G.1) 0= Zalgl € R[x1,...,xy] <= alla;=0.
I

Write 1: R < R[x] (or R[xq, ..., X4]).

III.G.2. THEOREM. Given ¢: R — Sand u € S, there exists a unique
homomorphism ¢: R[x] — S such that $(x) = uand ¢ o1 = ¢. (More
generally, given uq, ..., u, € S, there exists a unique ¢, R[x1,...,xn| —
S such that @, (x;) = u; (Vi) and $, 01 = ¢.)

PROOF. Uniqueness follows from the fact that ¢ [resp. @] is
specified on generators of R[x|, namely R and x [resp. x1, ..., x,].
For existence of ¢, define ¢ (Y axx¥) := ¥t ¢(ax)u*. We have

P aex®) (L0 bex’) = Y (Tiromn@(ar) p(by)) u"

n

= Z (ki v—naxby)u™ [since ¢ homom.]
n

= ¢ (Ln(Ckpr=naxbe)x")
= ¢ ((Semex®) (Lobex"))

so ¢ is a homomorphism (the other checks being trivial).

For existence of ¢,, apply induction: at each stage, we extend
Pn-1: R[x1,...,x5-1] = Sto @n: R[x1,...,xy_1][xn] — S restricting
to ¢,,—1 and sending x,, — u,. O

III.G.3. DEFINITION. If S D R and ¢ is the inclusion, ¢ [resp §]
is denoted ev, [resp. ev,], and the image by

evy(R[x]) =: R[u]

[resp. evy(R[x1,...,x4]) =: Rluy, ..., uy))]. Note that this image con-
sists of polynomials in u [resp. the {u;}].
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II1.G.4. COROLLARY. Writing I,, := ker(ev,), we have
R[u] = R[x]/ I,
and I, N R = {0} (and the obvious analogues for u).

PROOF. Use the Fundamental Theorem together with injectivity
of evy|r (= ¢). O

III.G.5. COROLLARY. Given o € &y, there exists a unique automor-
phism { (o) of R[x1, ..., xn] sending x; = Xq(j).

PROOF. Put S := R[xy,...,xx], 4j := Xs(;), and {(0) = ¢u. An
inverse is provided by {(c1). O

III.G.6. DEFINITION. Asin III.G.3, let u or uq, ..., u; be elements
of aring S containing R.
(i) u is transcendental over R <= ev,, is injective.
(ii) Otherwise, u is algebraic over R. In this case there exists f(x) €
I,\{0}, so that f(u) = 0in S. (That is, u satisfies a polynomial equa-
tion with coefficients in R.)
(iii) uq,...,u, are algebraically independent over R <= ev, is
injective; otherwise, they are algebraically dependent.

As a consequence of (II.G.1), uy,...,u, are algebraically inde-
pendent if, and only if,

(IIL.G.7) Yoru'=0 = allr;=0.
I

On the other hand, if R = F and S are fields,19 and each u; algebraic
over F, then F[uy, ..., uy,] is called an algebraic extension?’ of IF.

III.G.8. PROPOSITION. An algebraic extension (of a field IF) is a field.
Moreover, every element of this field is algebraic over IF.

OThe argument below works for S a domain. We will give a “higher-level” ap-
proach to IIL.G.8 when we study PIDs.

2OThis is a provisional (somewhat nonstandard) definition. The (standard) termi-
nology algebraic field extension, used later in these notes, refers to something more
general: a field containing F, all of whose elements are algebraic over F. (This
need not be generated by a finite number of elements.)
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PROOF. We only have to prove this for F[u], u algebraic (since in-
duction then yields it for Fluy, ..., u,]). Let f(x) = Yp_axx* € Fx]
be a (nonzero) polynomial of minimal degree with f(u) = 0. (Note that
this degree is n.) Since S has no zero-divisors, f(x) is irreducible. In
particular, ap # 0 and (rescaling) we may assume gy = 1. Then
(— k=1 ﬂk“k_l)

Now let v € F[u] be arbitrary. If there exists some polynomial

-u = 1 shows that u is invertible in IF|u].

g(x) = Yy bpx* € Flx] with ¢(v) = 0in S, then the same argument
(taking ¢ of minimal degree, by = 1, etc.) produces an inverse for v
in F[u], namely — Y~ bxo* 1. So this will prove both statements of
the Proposition.

Notice that IF[u] is a vector space over F of dimension 7. Indeed,
using f(u) =0 (= u" = —Y/°} o u) we can reduce the degree
of any polynomial in u (i.e. element of F[u]) to < n — 1. Moreover, if
Ek 0 cpuk = =Y cku € Fu] then c; = c;: otherwise the difference
of the two sides gives a polynomial of degree < n with u as a root,
contradicting minimality of 7.

So to find the desired polynomial g, consider the linear transfor-
mation py: IF[u] — F[u] given by multiplication by v. (This is calcu-
lated in the basis 1, u,...,u" ! by using f(u) = 0.) Taking ¢ to be the
characteristic polynomial of i, by Cayley-Hamilton 0 = g(y») =
Hg(v)- As S hence [F[u] has no zero-divisors, g(v) is itself zero. O

III.G.9. EXAMPLE. An algebraic extension F of Q is called a num-
ber field. By II.G.8, every a € F has f(x) € Q[x] such that f(«) =
The ring of integers Or C F comprises those a with an f of the form

(IIL.G.10) X4 gy xX™ N+ ay, a; € Z.

(Such a polynomial, with top coefficient 1, is called monic.) Check-
ing directly that O is a ring is too messy. We postpone that to when
we have the tools for a better approach, which will show in addi-
tion that the characteristic polynomial of multiplication by & € Or
(as in the above proof) is itself monic integral. Since that polynomial
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has degree n := dimg(F) (from the proof), we only need to consider
equations (III.G.10) with m = n.

Consider F = Q[v/d] = Q[x]/(x*> — d). What is Or? (We assume
d squarefree, so that d %f) 0.)

£__ 7

Since the above “n” is just 2 in this case, an element a + bv/d
(a,b € Q) of F belongs to O if and only if it satisfies

0= (a+bVd)?+m(a+bVd)+n forsomem,n e Z.

Then 0 = (a? + b%d 4+ ma + n) + (2ab + mb)~/d, and so either
() b=0anda?>+ma+n=0(= ac Z)
or
(i) 2a=m(—= a:%, A € Z)and
h2 — _A2+2TdA+4n (= b= g/ B € 7).
In case (i), A+BH2A (= _y) ¢ Z — A2 4 B2d 4 2mA
Thus:
e if A is even, then B%d % 0 (and d % 0) hence B is even; while

e if A is odd, then m is odd and (noting 32,12 % 1)

=1l
e

1+B%d+2=0 — B*2d=1 — Boddandd=1.
(4) (4) (4)

This gives the “C” half of

(4)

(IILG.11) OF =
Z[Vd], otherwise.

{Z[%ﬁ], d=1
The reverse inclusion “2” is more straightforward: given & = a +
bv/d on the RHS, consider (x — a)(x — &), where & = a — b\/d as
usual.

Polynomial division. Earlier we made assertions about polyno-
mial division in F[x], F a field. Now it is time to be more precise.
Given f(x) = 27:0 ajx/ with a; € R (an arbitrary commutative ring)
and a; # 0, write deg(f) := d. We set deg(0) := —oo. Then
(IIL.G.12)

deg(fg) < deg(f) + deg(g) (with equality if R is a domain)
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and

(II1.G.13) deg(f + g) < max (deg(f),deg(g))-

II1.G.14. PROPOSITION. R domain = R]xy,...,x,] domain and
R[x1,...,xa]* = R*.
PROOF. Forn =1, fg =0 = deg(f) +deg(g) = deg(fg) =

—o0 = forg=0;while f¢ =1 = deg(f) +deg(g) =0 =
deg(f) =0=deg(g) = f,g € R*. Forn > 1, use induction. [
For R not a domain, we need not have R[x]|* equal to R*: e.g. in
Zylx], (1+3x)(1—3x) =1.
Now let R be any commutative ring, and
n . m .
f=)Yax', g=) bx) € Rlx].
i=0 j=0
III.G.15. THEOREM (Polynomial long division). There exist k € IN

and q,v € R[x| such that deg(r) < deg(g) and (by)*f = qg+7r. If
by € R* then we have f = qg + r, and q, v are unique.

PROOF. Assume (n =) deg(f) > deg(g) (= m) (since otherwise
we're done). Writing?!

f1:=0bnf —a,x"""¢ (noting ny := deg(f1) < deg(f))
pP1
fa = bufi — ay) A Mg =t (bu)f — pag

we eventually
reach

ri= fy:=Uyf —prg of degree < deg(g)

For the uniqueness statement, we are assuming b,, € R*. If 19 +

r1 = qag + 12, then deg((g1 — q2)g) = deg(ra —r1) < m. Ilf g1 — g2 #
0, then (since by, is not a zero-divisor) deg((q1 — g2)g) > m yields a
contradiction. So g1 = g, and thus r; = r,. O

2INote: a]((j ) denote coefficients of f]
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II1.G.16. COROLLARY. Given f € R[x] and a € R, there exist unique
q,7 € R[x| such that f(x) = (x —a)gq(x) + f(a). Hence, (x —a) | f(x)
<= f(a) =0. (Suchan “a” is called a root of f.)

All of this is for a general commutative ring. More narrowly:

II1.G.17. COROLLARY. If R is a domain, then a polynomial f € R]x|
of degree n := deg( f) has at most n roots.

PROOF. Let ay, ..., a, be distinct roots of f. We have (x —ay) | f
by II1.G.16. Assume inductively (x —ay)---(x —ax_1) | f. Then

f(x) = (x—a1)-- - (x — ag1)g(x)

= 0= fla) = (ax —a) - -~ (@ — a_1)g ()
20
—> 0= g(ax) (since R is a domain)

— g(x) = (x —ax)h(x) (for someh € Rx])
— (x—a1)-(x—a) | f.

So in fact, f(x) = H(x)[Tj—y(x —a;) (for some H € RI[x]) hence
n>r. U

What if R is not a domain? Consider, say, polynomials over Zs:
f(x) =3xhas0, 2, and 4 as roots. So II.G.17 fails.
Turning to the case where R is a field, we have the famous

III.G.18. THEOREM. The multiplicative group of a finite field is cyclic.
More generally, any finite subgroup G of the multiplicative group of a field
F is cyclic.

PROOF. Recall from IL.D.15 that since G is abelian, G is cyclic
<= exp(G) = |G|. This was based on the fact that there exists
an element of order exp(G) := min{e e N | ¢* =1 (Vg € G)}. In
general, exp(G) < |G| since ¢/¢l =1 forall g € G.

Now every ¢ € G satisfies ¢&*P(C) —1 = 0. But II.G.17 —
x®P(C) — 1 has at most exp(G) roots. So |G| < exp(G). O

III.G.19. EXAMPLE. This says Z3, = Z6, and not ZZX4, Zg X 2o,
etc. — this beats trying to find a generator!
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III.G.20. REMARK. Assuming the structure theorem for finitely
generated abelian groups,?” we can give a different proof of I11.G.18
as follows. The structure theorem tells us that G = Z,,, x --- X Z,,
where m; > 1and my | my | --- | my. So every ¢ € G is a root™ of
x" —1, hence |G| < my (by II1.G.17), whence k = 1.

As we shall see later,** there exist finite fields of prime power
order (for any prime power).

II1.G.21. COROLLARY. IfIF is a finite field, then IF = Z,[u] where Z,,
is its prime subfield and u is algebraic over Z.,.

PROOF. Let u be a generator of the multiplicative group F* =

F\{0}. O

Polynomial functions. LetFbea field, F" := F x - - - IF (n times).
Consider a different kind of evaluation map:

(II.G.22)
O, p: Flxq...., %, L FF = 1—[ F (= ring of [F-valued
" neln functions over F"
f(x) — {f(u) }ucpr

The image @, p(F[x1, ..., xy]) =: Pu(IF) is called the ring of (F-valued)
polynomial functions over F". We write s; for ®, p(x;), the i coor-
dinate function, and clearly P, (F) = Flsy,...,s,]. Two questions

arise:

e Are all functions polynomial functions? (i.e. is ®,, F surjective?)
e Do distinct polynomials yield distinct functions? (i.e. is ®, F in-
jective? Note that this would imply that P, (F) = F[xy, ..., x4].)

We can give a surprisingly clear answer to both questions with the
aid of the following

22This will be discussed and proved in the context of modules where it belongs.

2Note that the group operation is being written multiplicatively, because G is a
multplicative group inside a field. In “additive” terms, " — 1 = O reads mg = 0.

24Obviously Z,n isn’t a field, so that won't cut it!
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II1.G.23. LEMMA. Assume |IF| = oo. Then for each f € F[x1, ..., Xy)
other than the zero polynomial, there exists u € " with f(u) # 0.

PROOF. For n = 1: any f € F[x] has at most deg(f) (< o) roots,
so ©,r(f) # 0. Next, assuming the result for n — 1 indeterminates,
let f, € Flxy,...,x, 1][xn]. Writing f, = o + g1%n + - - - g4x%, let
u' € F"! be such that g;(u') # 0. Then f,(/, x,) is a nontrivial
polynomial in x,,, and we get u,, € FF such that f, (v, u,) # 0. O

II1.G.24. THEOREM. @, | is injective <= |F| = .

PROOF. If |F| = g < o, then |F*| =g—1landsoai ! =1 =
0l =ua(Va € F) = x? —x1 € ker(®, F).

If |IF| = oo, the lemma implies that no nonzero f € Flxy,..., x,]
is sent to the zero function. O

II1.G.25. THEOREM. If |FF| < oo, then ®,,  is surjective.

PROOF. The proof of II1.G.23 shows that when deg, (f) < q :=
|IF| for all 7, there exists u € F" such that f(u) # 0. This is because
at each stage of the induction, the number of roots of f, in x;, is less
than the number of elements of IF.

On the other hand, the functions x? — x; in the proof of II1.G.24
belong to ker(®, ). By the division algorithm, for every k > g we
get x¥ = (x7 — x,)Q(x;) + R(x;) with deg(R) < g, and so any f €
F[x1,...,x,] is of the form

Zgl x —x;) +g(x), with deg, (g) < g (Vi).

Hence f € ker(®, r) <= g(x) = 0, which yields
(I11.G.26) Pu(F) 2 Flxy, ..., xn)/ (x] — x1,..., x5 — x0).
But |[F¥"| = 47", and

[P (F)| = #{choices for g(x) = Zq ioax'} =¢7

as well. O
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Symmetric polynomials. Looking back at III.G.5, the automor-
phisms (o) of F[xy, ..., x,] produce a group homomorphism

{: 6, — Aut(F[xy, ..., x4)).

We will write F[xy, ..., x,]®" for the subring of {(&,)-invariant ele-
ments, i.e. the symmetric polynomials. Also note that a polynomial
is called homogeneous if all its monomial terms have the same total
degree (= sum of exponents).

III.G.27. DEFINITION. (i) The elementary symmetric polynomi-
als® are

=Y xi, ex(x) =) xxj, ..., en(x) =x1... x5
i i<j
(ii) The Newton symmetric polynomials are
x) = in, so(x) = inz, e, Sp(x) = Zx?
i i i
Both sets belong to Flxy, ..., xn]G”, which is easiest to see for the
{e;} by writing formally

(IIL.G.28) [Ty —x) = Y (=1e(x)y" .

We shall prove below that the e; “span” F[x, ..., xn]G”. (More pre-
cisely, III.G.29 means that there is one and only one way to write
each symmetric polynomial in the form Y pcnn ape?, where el :=
er(x) -+ e,(x)%.) As you will show in HW, the s; also “span the
symmetric polynomials” if n! # 0 in FF.

Consider the ring homomorphism

En:Flxy, ..., xy] — Flxy,...,x,]%
xj — ej(x)
with image Fley, ..., ey).
III.G.29. THEOREM. &, is an isomorphism.

ZNote that ex(x) has (}) monomial terms.
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PROOF. We begin with surjectivity. Since every symmetric poly-
nomial is a sum of homogeneous symmetric polynomials, it suffices
to prove that every homogeneous symmetric polynomial is a poly-
nomial in the {e; }.

Under the lexicographic ordering on monomials, let a lelq - xkn

be the highest-order term in some given symmetric f; since f con-

tains all permutations of each monomial, we have ky > k, > --- >
ky. The highest monomial in elfszelész3 e is

(1)1 782 (1200 )F2 89 (g a0 )oK - (g - ) = b

Hence f —a Kelfrk2 . ~eﬁ” has lower highest monomial than f, and
continuing on in this manner we eventually reach the zero polyno-
mial.

Turning to injectivity, consider a finite sum ¥, ape” (with not all
ap zero). For each D € IN", write (fori =1,...,n)k;=d;+---+d,,

and consider those (nonzero) apeP with largest |K| := Y ;k;. The
highest monomial in each is a Dxllcl e xﬁ”, and these are all distinct

(D # D' = K # K'). Taking the (unique) apeP with “highest
highest” monomial, we see that this monomial occurs once, with a
nonzero coefficient. Hence ¥, apeP # 0. O



