III.G. Polynomial rings

Throughout we shall assume that R, S denote commutative rings. We defined polynomial rings over R in an indeterminate x (and in independent indeterminates x_{1}, \ldots, x_{n}) in III.A.3(iv). From the inductive construction there it is clear that (writing $I=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$ and $\left.\underline{x}^{I}:=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right)$

$$
\begin{equation*}
0=\sum_{I} a_{I} \underline{x}^{I} \in R\left[x_{1}, \ldots, x_{n}\right] \quad \Longleftrightarrow \quad \text { all } a_{I}=0 \tag{III.G.1}
\end{equation*}
$$

Write $\imath: R \hookrightarrow R[x]\left(\right.$ or $\left.R\left[x_{1}, \ldots, x_{n}\right]\right)$.
III.G.2. Theorem. Given $\varphi: R \rightarrow S$ and $u \in S$, there exists a unique homomorphism $\tilde{\varphi}: R[x] \rightarrow S$ such that $\tilde{\varphi}(x)=u$ and $\tilde{\varphi} \circ \imath=\varphi$. (More generally, given $u_{1}, \ldots, u_{n} \in S$, there exists a unique $\tilde{\varphi}_{n}: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow$ S such that $\tilde{\varphi}_{n}\left(x_{i}\right)=u_{i}(\forall i)$ and $\tilde{\varphi}_{n} \circ \imath=\varphi$.)

Proof. Uniqueness follows from the fact that $\tilde{\varphi}$ [resp. $\tilde{\varphi}_{n}$] is specified on generators of $R[x]$, namely R and x [resp. $\left.x_{1}, \ldots, x_{n}\right]$.

For existence of $\tilde{\varphi}$, define $\tilde{\varphi}\left(\sum_{k} a_{k} x^{k}\right):=\sum_{k} \varphi\left(a_{k}\right) u^{k}$. We have

$$
\begin{aligned}
\tilde{\varphi}\left(\sum_{k} a_{k} x^{k}\right) \tilde{\varphi}\left(\sum_{\ell} b_{\ell} x^{\ell}\right) & =\sum_{n}\left(\sum_{k+\ell=n} \varphi\left(a_{k}\right) \varphi\left(b_{\ell}\right)\right) u^{n} \\
& =\sum_{n} \varphi\left(\sum_{k+\ell=n} a_{k} b_{\ell}\right) u^{n} \text { [since } \varphi \text { homom.] } \\
& =\tilde{\varphi}\left(\sum_{n}\left(\sum_{k+\ell=n} a_{k} b_{\ell}\right) x^{n}\right) \\
& =\tilde{\varphi}\left(\left(\sum_{k} a_{k} x^{k}\right)\left(\sum_{\ell} b_{\ell} x^{\ell}\right)\right)
\end{aligned}
$$

so $\tilde{\varphi}$ is a homomorphism (the other checks being trivial).
For existence of $\tilde{\varphi}_{n}$, apply induction: at each stage, we extend $\tilde{\varphi}_{n-1}: R\left[x_{1}, \ldots, x_{n-1}\right] \rightarrow S$ to $\tilde{\varphi}_{n}: R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right] \rightarrow S$ restricting to $\tilde{\varphi}_{n-1}$ and sending $x_{n} \mapsto u_{n}$.
III.G.3. Definition. If $S \supset R$ and φ is the inclusion, $\tilde{\varphi}$ [resp $\tilde{\varphi}_{n}$] is denoted $\mathrm{ev}_{u}\left[\right.$ resp. $\left.\mathrm{ev}_{\underline{u}}\right]$, and the image by

$$
\operatorname{ev}_{u}(R[x])=: R[u]
$$

$\left.\left[\operatorname{resp} . \operatorname{ev}_{\underline{u}}\left(R\left[x_{1}, \ldots, x_{n}\right]\right)=: R\left[u_{1}, \ldots, u_{n}\right]\right)\right]$. Note that this image consists of polynomials in u [resp. the $\left\{u_{i}\right\}$].
III.G.4. Corollary. Writing $I_{u}:=\operatorname{ker}\left(\mathrm{ev}_{u}\right)$, we have

$$
R[u] \cong R[x] / I_{u}
$$

and $I_{u} \cap R=\{0\}$ (and the obvious analogues for \underline{u}).
Proof. Use the Fundamental Theorem together with injectivity of $\left.\mathrm{ev}_{u}\right|_{R}(=\varphi)$.
III.G.5. COROLLARY. Given $\sigma \in \mathfrak{S}_{n}$, there exists a unique automorphism $\zeta(\sigma)$ of $R\left[x_{1}, \ldots, x_{n}\right]$ sending $x_{i} \mapsto x_{\sigma(i)}$.

Proof. Put $S:=R\left[x_{1}, \ldots, x_{n}\right], u_{i}:=x_{\sigma(i)}$, and $\zeta(\sigma):=\tilde{\varphi}_{n}$. An inverse is provided by $\zeta\left(\sigma^{-1}\right)$.
III.G.6. DEFINITION. As in III.G.3, let u or u_{1}, \ldots, u_{n} be elements of a ring S containing R.
(i) u is transcendental over $R \Longleftrightarrow \mathrm{ev}_{u}$ is injective.
(ii) Otherwise, u is algebraic over R. In this case there exists $f(x) \in$ $I_{u} \backslash\{0\}$, so that $f(u)=0$ in S. (That is, u satisfies a polynomial equation with coefficients in R.)
(iii) u_{1}, \ldots, u_{n} are algebraically independent over $R \Longleftrightarrow \mathrm{ev}_{\underline{u}}$ is injective; otherwise, they are algebraically dependent.

As a consequence of (III.G.1), u_{1}, \ldots, u_{n} are algebraically independent if, and only if,

$$
\begin{equation*}
\sum_{I} r_{I} \underline{u}^{I}=0 \quad \Longrightarrow \quad \text { all } r_{I}=0 \tag{III.G.7}
\end{equation*}
$$

On the other hand, if $R=\mathbb{F}$ and S are fields, ${ }^{19}$ and each u_{i} algebraic over \mathbb{F}, then $\mathbb{F}\left[u_{1}, \ldots, u_{n}\right]$ is called an algebraic extension ${ }^{20}$ of \mathbb{F}.
III.G.8. PROposition. An algebraic extension (of a field \mathbb{F}) is a field. Moreover, every element of this field is algebraic over \mathbb{F}.

[^0]Proof. We only have to prove this for $\mathbb{F}[u], u$ algebraic (since induction then yields it for $\left.\mathbb{F}\left[u_{1}, \ldots, u_{n}\right]\right)$. Let $f(x)=\sum_{k=0}^{n} a_{k} x^{k} \in \mathbb{F}[x]$ be a (nonzero) polynomial of minimal degree with $f(u)=0$. (Note that this degree is n.) Since S has no zero-divisors, $f(x)$ is irreducible. In particular, $a_{0} \neq 0$ and (rescaling) we may assume $a_{0}=1$. Then $\left(-\sum_{k=1}^{n} a_{k} u^{k-1}\right) \cdot u=1$ shows that u is invertible in $\mathbb{F}[u]$.

Now let $v \in \mathbb{F}[u]$ be arbitrary. If there exists some polynomial $g(x)=\sum_{k} b_{k} x^{k} \in \mathbb{F}[x]$ with $g(v)=0$ in S, then the same argument (taking g of minimal degree, $b_{0}=1$, etc.) produces an inverse for v in $\mathbb{F}[u]$, namely $-\sum_{k>0} b_{k} v^{k-1}$. So this will prove both statements of the Proposition.

Notice that $\mathbb{F}[u]$ is a vector space over \mathbb{F} of dimension n. Indeed, using $f(u)=0\left(\Longrightarrow u^{n}=-\sum_{k=0}^{n-1} \frac{a_{k}}{a_{n}} u^{k}\right)$ we can reduce the degree of any polynomial in u (i.e. element of $\mathbb{F}[u]$) to $\leq n-1$. Moreover, if $\sum_{k=0}^{n-1} c_{k} u^{k}=\sum_{k=0}^{n-1} c_{k}^{\prime} u^{k} \in \mathbb{F}[u]$ then $c_{k}=c_{k}^{\prime}$: otherwise the difference of the two sides gives a polynomial of degree $<n$ with u as a root, contradicting minimality of n.

So to find the desired polynomial g, consider the linear transformation $\mu_{v}: \mathbb{F}[u] \rightarrow \mathbb{F}[u]$ given by multiplication by v. (This is calculated in the basis $1, u, \ldots, u^{n-1}$ by using $f(u)=0$.) Taking g to be the characteristic polynomial of μ_{v}, by Cayley-Hamilton $0=g\left(\mu_{v}\right)=$ $\mu_{g(v)}$. As S hence $\mathbb{F}[u]$ has no zero-divisors, $g(v)$ is itself zero.
III.G.9. EXAMPLE. An algebraic extension F of \mathbb{Q} is called a number field. By III.G.8, every $\alpha \in F$ has $f(x) \in \mathbb{Q}[x]$ such that $f(\alpha)=0$. The ring of integers $\mathcal{O}_{F} \subset F$ comprises those α with an f of the form

$$
\begin{equation*}
x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}, \quad a_{j} \in \mathbb{Z} \tag{III.G.10}
\end{equation*}
$$

(Such a polynomial, with top coefficient 1, is called monic.) Checking directly that \mathcal{O}_{F} is a ring is too messy. We postpone that to when we have the tools for a better approach, which will show in addition that the characteristic polynomial of multiplication by $\alpha \in \mathcal{O}_{F}$ (as in the above proof) is itself monic integral. Since that polynomial
has degree $n:=\operatorname{dim}_{Q}(F)$ (from the proof), we only need to consider equations (III.G.10) with $m=n$.

Consider $F=\mathbb{Q}[\sqrt{d}] \cong \mathbb{Q}[x] /\left(x^{2}-d\right)$. What is \mathcal{O}_{F} ? (We assume d squarefree, so that $d \neq 0$.)

Since the above " n " is just 2 in this case, an element $a+b \sqrt{d}$ $(a, b \in \mathbb{Q})$ of F belongs to \mathcal{O}_{F} if and only if it satisfies

$$
0=(a+b \sqrt{d})^{2}+m(a+b \sqrt{d})+n \text { for some } m, n \in \mathbb{Z}
$$

Then $0=\left(a^{2}+b^{2} d+m a+n\right)+(2 a b+m b) \sqrt{d}$, and so either
(i) $b=0$ and $a^{2}+m a+n=0(\Longrightarrow a \in \mathbb{Z})$
or
(ii) $-2 a=m\left(\Longrightarrow a=\frac{A}{2}, A \in \mathbb{Z}\right)$ and

$$
b^{2}=-\frac{A^{2}+2 m A+4 n}{4 d}\left(\Longrightarrow b=\frac{B}{2}, B \in \mathbb{Z}\right) .
$$

In case (ii), $\frac{A^{2}+B^{2} d+2 m A}{4}(=-n) \in \mathbb{Z} \Longrightarrow A^{2}+B^{2} d+2 m A \underset{(4)}{\equiv} 0$. Thus:

- if A is even, then $B^{2} d \underset{(4)}{=} 0$ (and $\left.d \underset{(4)}{\neq 0} 0\right)$ hence B is even; while
- if A is odd, then m is odd and (noting $3^{2}, 1^{2} \underset{(4)}{\equiv} 1$)

$$
1+B^{2} d+2 \underset{(4)}{\equiv} 0 \Longrightarrow B^{2} d \underset{(4)}{\equiv} 1 \Longrightarrow B \text { odd and } d \underset{(4)}{\equiv} 1 .
$$

This gives the " \subseteq " half of

$$
\mathcal{O}_{F}= \begin{cases}\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right], & d \overline{\overline{(4)}} 1 \tag{III.G.11}\\ \mathbb{Z}[\sqrt{d}], & \text { otherwise }\end{cases}
$$

The reverse inclusion " \supseteq " is more straightforward: given $\alpha=a+$ $b \sqrt{d}$ on the RHS, consider $(x-\alpha)(x-\tilde{\alpha})$, where $\tilde{\alpha}=a-b \sqrt{d}$ as usual.

Polynomial division. Earlier we made assertions about polynomial division in $\mathbb{F}[x], \mathbb{F}$ a field. Now it is time to be more precise. Given $f(x)=\sum_{j=0}^{d} a_{j} x^{j}$ with $a_{j} \in R$ (an arbitrary commutative ring) and $a_{d} \neq 0$, write $\operatorname{deg}(f):=d$. We set $\operatorname{deg}(0):=-\infty$. Then
(III.G.12)
$\operatorname{deg}(f g) \leq \operatorname{deg}(f)+\operatorname{deg}(g)$ (with equality if R is a domain)
and
(III.G.13)

$$
\operatorname{deg}(f+g) \leq \max (\operatorname{deg}(f), \operatorname{deg}(g))
$$

III.G.14. Proposition. R domain $\Longrightarrow R\left[x_{1}, \ldots, x_{n}\right]$ domain and $R\left[x_{1}, \ldots, x_{n}\right]^{*}=R^{*}$.

Proof. For $n=1, f g=0 \Longrightarrow \operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}(f g)=$ $-\infty \Longrightarrow f$ or $g=0$; while $f g=1 \Longrightarrow \operatorname{deg}(f)+\operatorname{deg}(g)=0 \Longrightarrow$ $\operatorname{deg}(f)=0=\operatorname{deg}(g) \Longrightarrow f, g \in R^{*}$. For $n>1$, use induction.

For R not a domain, we need not have $R[x]^{*}$ equal to R^{*} : e.g. in $\mathbb{Z}_{9}[x],(1+3 x)(1-3 x)=1$.

Now let R be any commutative ring, and

$$
f=\sum_{i=0}^{n} a_{i} x^{i}, \quad g=\sum_{j=0}^{m} b_{j} x^{j} \in R[x] .
$$

III.G.15. Theorem (Polynomial long division). There exist $k \in \mathbb{N}$ and $q, r \in R[x]$ such that $\operatorname{deg}(r)<\operatorname{deg}(g)$ and $\left(b_{m}\right)^{k} f=q g+r$. If $b_{m} \in R^{*}$ then we have $f=q g+r$, and q, r are unique.

Proof. Assume $(n=) \operatorname{deg}(f) \geq \operatorname{deg}(g)(=m)$ (since otherwise we're done). Writing ${ }^{21}$

$$
\begin{aligned}
& f_{1}:=b_{m} f-\underbrace{a_{n} x^{n-m}}_{p_{1}} g \quad\left(\text { noting } n_{1}:=\operatorname{deg}\left(f_{1}\right)<\operatorname{deg}(f)\right) \\
& f_{2}:=b_{m} f_{1}-a_{n_{1}}^{(1)} x^{n_{1}-m} g=:\left(b_{m}\right)^{2} f-p_{2} g
\end{aligned}
$$

we eventually
reach

$$
r:=f_{k}:=b_{m}^{k} f-p_{k} g \quad \text { of degree }<\operatorname{deg}(g)
$$

For the uniqueness statement, we are assuming $b_{m} \in R^{*}$. If $q_{1} g+$ $r_{1}=q_{2} g+r_{2}$, then $\operatorname{deg}\left(\left(q_{1}-q_{2}\right) g\right)=\operatorname{deg}\left(r_{2}-r_{1}\right)<m$. If $q_{1}-q_{2} \neq$ 0 , then (since b_{m} is not a zero-divisor) $\operatorname{deg}\left(\left(q_{1}-q_{2}\right) g\right) \geq m$ yields a contradiction. So $q_{1}=q_{2}$, and thus $r_{1}=r_{2}$.
${ }^{21}$ Note: $a_{k}^{(j)}$ denote coefficients of f_{j}.
III.G.16. Corollary. Given $f \in R[x]$ and $a \in R$, there exist unique $q, r \in R[x]$ such that $f(x)=(x-a) q(x)+f(a)$. Hence, $(x-a) \mid f(x)$ $\Longleftrightarrow f(a)=0$. (Such an " a " is called a root of f.)

All of this is for a general commutative ring. More narrowly:
III.G.17. COROLLARY. If R is a domain, then a polynomial $f \in R[x]$ of degree $n:=\operatorname{deg}(f)$ has at most n roots.

Proof. Let a_{1}, \ldots, a_{r} be distinct roots of f. We have $\left(x-a_{1}\right) \mid f$ by III.G.16. Assume inductively $\left(x-a_{1}\right) \cdots\left(x-a_{k-1}\right) \mid f$. Then $f(x)=\left(x-a_{1}\right) \cdots\left(x-a_{k-1}\right) g(x)$

$$
\begin{aligned}
& \Longrightarrow 0=f\left(a_{k}\right)=\underbrace{\left(a_{k}-a_{1}\right) \cdots\left(a_{k}-a_{k-1}\right)}_{\neq 0} g\left(a_{k}\right) \\
& \Longrightarrow 0=g\left(a_{k}\right) \quad(\text { since } R \text { is a domain) } \\
& \left.\Longrightarrow g(x)=\left(x-a_{k}\right) h(x) \text { (for some } h \in R[x]\right) \\
& \Longrightarrow\left(x-a_{1}\right) \cdots\left(x-a_{k}\right) \mid f .
\end{aligned}
$$

So in fact, $f(x)=H(x) \prod_{j=1}^{r}\left(x-a_{i}\right)$ (for some $H \in R[x]$) hence $n \geq r$.

What if R is not a domain? Consider, say, polynomials over \mathbb{Z}_{6} : $f(x)=3 x$ has $\overline{0}, \overline{2}$, and $\overline{4}$ as roots. So III.G. 17 fails.

Turning to the case where R is a field, we have the famous
III.G.18. THEOREM. The multiplicative group of a finite field is cyclic. More generally, any finite subgroup G of the multiplicative group of a field F is cyclic.

Proof. Recall from II.D. 15 that since G is abelian, G is cyclic $\Longleftrightarrow \exp (G)=|G|$. This was based on the fact that there exists an element of order $\exp (G):=\min \left\{e \in \mathbb{N} \mid g^{e}=1(\forall g \in G)\right\}$. In general, $\exp (G) \leq|G|$ since $g^{|G|}=1$ for all $g \in G$.

Now every $g \in G$ satisfies $g^{\exp (G)}-1=0$. But III.G. $17 \Longrightarrow$ $x^{\exp (G)}-1$ has at $\operatorname{most} \exp (G)$ roots. So $|G| \leq \exp (G)$.
III.G.19. EXAMPLE. This says $\mathbb{Z}_{17}^{*} \cong \mathbb{Z}_{16}$, and not $\mathbb{Z}_{2}^{\times 4}, \mathbb{Z}_{8} \times \mathbb{Z}_{2}$, etc. - this beats trying to find a generator!
III.G.20. Remark. Assuming the structure theorem for finitely generated abelian groups, ${ }^{22}$ we can give a different proof of III.G. 18 as follows. The structure theorem tells us that $G \cong \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{k}}$ where $m_{1}>1$ and $m_{1}\left|m_{2}\right| \cdots \mid m_{k}$. So every $g \in G$ is a root^{23} of $x^{m_{k}}-1$, hence $|G| \leq m_{k}$ (by III.G.17), whence $k=1$.

As we shall see later, ${ }^{24}$ there exist finite fields of prime power order (for any prime power).
III.G.21. COROLLARY. If \mathbb{F} is a finite field, then $\mathbb{F} \cong \mathbb{Z}_{p}[u]$ where \mathbb{Z}_{p} is its prime subfield and u is algebraic over \mathbb{Z}_{p}.

Proof. Let u be a generator of the multiplicative group $\mathbb{F}^{*}=$ $\mathbb{F} \backslash\{0\}$.

Polynomial functions. Let \mathbb{F} be a field, $\mathbb{F}^{n}:=\mathbb{F} \times \cdots \mathbb{F}$ (n times). Consider a different kind of evaluation map:
(III.G.22)

$$
\begin{aligned}
& \Phi_{n, \mathbb{F}}: \mathbb{F}\left[x_{1} \ldots, x_{n}\right] \longrightarrow \mathbb{F}^{\mathbb{F}^{n}}=\prod_{\underline{n} \in \mathbb{F}^{n}} \mathbb{F}\binom{\text { ring of } \mathbb{F} \text {-valued }}{\text { functions over } \mathbb{F}^{n}} \\
& f(\underline{x}) \longmapsto\{f(\underline{u})\}_{\underline{u} \in \mathbb{F}^{n}}
\end{aligned}
$$

The image $\Phi_{n, \mathbb{F}}\left(\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]\right)=: \mathcal{P}_{n}(\mathbb{F})$ is called the ring of $(\mathbb{F}$-valued) polynomial functions over \mathbb{F}^{n}. We write s_{i} for $\Phi_{n, \mathbb{F}}\left(x_{i}\right)$, the $i^{\text {th }}$ coordinate function, and clearly $\mathcal{P}_{n}(\mathbb{F})=\mathbb{F}\left[s_{1}, \ldots, s_{n}\right]$. Two questions arise:

- Are all functions polynomial functions? (i.e. is $\Phi_{n, \mathbb{F}}$ surjective?)
- Do distinct polynomials yield distinct functions? (i.e. is $\Phi_{n, \mathbb{F}}$ injective? Note that this would imply that $\mathcal{P}_{n}(\mathbb{F}) \cong \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$.)
We can give a surprisingly clear answer to both questions with the aid of the following

[^1]III.G.23. Lemma. Assume $|\mathbb{F}|=\infty$. Then for each $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ other than the zero polynomial, there exists $\underline{u} \in \mathbb{F}^{n}$ with $f(\underline{u}) \neq 0$.

Proof. For $n=1$: any $f \in \mathbb{F}[x]$ has at $\operatorname{most} \operatorname{deg}(f)(<\infty)$ roots, so $\Phi_{n, \mathbb{F}}(f) \neq 0$. Next, assuming the result for $n-1$ indeterminates, let $f_{n} \in \mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$. Writing $f_{n}=g_{0}+g_{1} x_{n}+\cdots g_{d} x_{n}^{d}$, let $\underline{u}^{\prime} \in \mathbb{F}^{n-1}$ be such that $g_{d}\left(\underline{u}^{\prime}\right) \neq 0$. Then $f_{n}\left(\underline{u}^{\prime}, x_{n}\right)$ is a nontrivial polynomial in x_{n}, and we get $u_{n} \in \mathbb{F}$ such that $f_{n}\left(\underline{u}^{\prime}, u_{n}\right) \neq 0$.
III.G.24. THEOREM. $\Phi_{n, \mathbb{F}}$ is injective $\Longleftrightarrow|\mathbb{F}|=\infty$.

Proof. If $|\mathbb{F}|=q<\infty$, then $\left|\mathbb{F}^{*}\right|=q-1$ and so $\alpha^{q-1}=1 \Longrightarrow$ $\alpha^{q}=\alpha(\forall \alpha \in \mathbb{F}) \Longrightarrow x_{1}^{q}-x_{1} \in \operatorname{ker}\left(\Phi_{n, \mathbb{F}}\right)$.

If $|\mathbb{F}|=\infty$, the lemma implies that no nonzero $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is sent to the zero function.
III.G.25. THEOREM. If $|\mathbb{F}|<\infty$, then $\Phi_{n, \mathbb{F}}$ is surjective.

Proof. The proof of III.G. 23 shows that when $\operatorname{deg}_{x_{i}}(f)<q:=$ $|\mathbb{F}|$ for all i, there exists $\underline{u} \in \mathbb{F}^{n}$ such that $f(\underline{u}) \neq 0$. This is because at each stage of the induction, the number of roots of f_{n} in x_{n} is less than the number of elements of \mathbb{F}.

On the other hand, the functions $x_{i}^{q}-x_{i}$ in the proof of III.G. 24 belong to $\operatorname{ker}\left(\Phi_{n, \mathbb{F}}\right)$. By the division algorithm, for every $k \geq q$ we get $x_{i}^{k}=\left(x_{i}^{q}-x_{i}\right) Q\left(x_{i}\right)+R\left(x_{i}\right)$ with $\operatorname{deg}(R)<q$, and so any $f \in$ $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is of the form

$$
\sum_{i=1}^{n} g_{i}(\underline{x})\left(x_{i}^{q}-x_{i}\right)+g(\underline{x}), \quad \text { with } \operatorname{deg}_{x_{i}}(g)<q(\forall i)
$$

Hence $f \in \operatorname{ker}\left(\Phi_{n, \mathbb{F}}\right) \Longleftrightarrow g(\underline{x})=0$, which yields

$$
\begin{equation*}
\mathcal{P}_{n}(F) \cong \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right) \tag{III.G.26}
\end{equation*}
$$

But $\left|\mathbb{F}^{\mathbb{F}^{n}}\right|=q^{q^{n}}$, and

$$
\left|\mathcal{P}_{n}(F)\right|=\#\left\{\text { choices for } g(\underline{x})=\sum_{i_{1}, \ldots, i_{n}=0}^{q-1} a_{I} \underline{x}^{I}\right\}=q^{q^{n}}
$$

as well.

Symmetric polynomials. Looking back at III.G.5, the automorphisms $\zeta(\sigma)$ of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ produce a group homomorphism

$$
\zeta: \mathfrak{S}_{n} \rightarrow \operatorname{Aut}\left(\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]\right)
$$

We will write $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{S}_{n}}$ for the subring of $\zeta\left(\mathfrak{S}_{n}\right)$-invariant elements, i.e. the symmetric polynomials. Also note that a polynomial is called homogeneous if all its monomial terms have the same total degree (= sum of exponents).
III.G.27. Definition. (i) The elementary symmetric polynomials ${ }^{25}$ are

$$
e_{1}(\underline{x})=\sum_{i} x_{i}, \quad e_{2}(\underline{x})=\sum_{i<j} x_{i} x_{j}, \ldots, \quad e_{n}(\underline{x})=x_{1} \ldots x_{n} .
$$

(ii) The Newton symmetric polynomials are

$$
s_{1}(\underline{x})=\sum_{i} x_{i}, s_{2}(\underline{x})=\sum_{i} x_{i}^{2}, \ldots, s_{n}(\underline{x})=\sum_{i} x_{i}^{n} .
$$

Both sets belong to $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{S}_{n}}$, which is easiest to see for the $\left\{e_{i}\right\}$ by writing formally

$$
\begin{equation*}
\prod_{i=1}^{n}\left(y-x_{i}\right)=\sum_{j=0}^{n}(-1)^{j} e_{j}(\underline{x}) y^{n-j} \tag{III.G.28}
\end{equation*}
$$

We shall prove below that the e_{i} "span" $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{S}_{n}}$. (More precisely, III.G. 29 means that there is one and only one way to write each symmetric polynomial in the form $\sum_{D \in \mathbb{N}^{n}} a_{D} \underline{e}^{D}$, where $\underline{e}^{D}:=$ $e_{1}(\underline{x})^{d_{1}} \cdots e_{n}(\underline{x})^{d_{n}}$.) As you will show in HW, the s_{i} also "span the symmetric polynomials" if $n!\neq 0$ in \mathbb{F}.

Consider the ring homomorphism

$$
\begin{aligned}
\mathcal{E}_{n}: \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] & \longrightarrow \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{G}_{n}} \\
x_{i} & \longmapsto e_{i}(\underline{x})
\end{aligned}
$$

with image $\mathbb{F}\left[e_{1}, \ldots, e_{n}\right]$.
III.G.29. THEOREM. \mathcal{E}_{n} is an isomorphism.
${ }^{25}$ Note that $e_{k}(\underline{x})$ has $\binom{n}{k}$ monomial terms.

Proof. We begin with surjectivity. Since every symmetric polynomial is a sum of homogeneous symmetric polynomials, it suffices to prove that every homogeneous symmetric polynomial is a polynomial in the $\left\{e_{i}\right\}$.

Under the lexicographic ordering on monomials, let $a_{K} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ be the highest-order term in some given symmetric f; since f contains all permutations of each monomial, we have $k_{1} \geq k_{2} \geq \cdots \geq$ k_{n}. The highest monomial in $e_{1}^{k_{1}-k_{2}} e_{2}^{k_{2}-k_{3}} \cdots e_{n}^{k_{n}}$ is

$$
\left(x_{1}\right)^{k_{1}-k_{2}}\left(x_{1} x_{2}\right)^{k_{2}-k_{3}}\left(x_{1} x_{2} x_{3}\right)^{k_{3}-k_{4}} \cdots\left(x_{1} \cdots x_{n}\right)^{k_{n}}=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}
$$

Hence $f-a_{K} e_{1}^{k_{1}-k_{2}} \cdots e_{n}^{k_{n}}$ has lower highest monomial than f, and continuing on in this manner we eventually reach the zero polynomial.

Turning to injectivity, consider a finite sum $\sum_{D} a_{D} \underline{e}^{D}$ (with not all a_{D} zero). For each $D \in \mathbb{N}^{n}$, write (for $\left.i=1, \ldots, n\right) k_{i}=d_{i}+\cdots+d_{n}$, and consider those (nonzero) $a_{D} \underline{e}^{D}$ with largest $|K|:=\sum_{i} k_{i}$. The highest monomial in each is $a_{D} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$, and these are all distinct $\left(D \neq D^{\prime} \Longrightarrow K \neq K^{\prime}\right)$. Taking the (unique) $a_{D} \underline{e}^{D}$ with "highest highest" monomial, we see that this monomial occurs once, with a nonzero coefficient. Hence $\sum_{D} a_{D} \underline{e}^{D} \neq 0$.

[^0]: ${ }^{19}$ The argument below works for S a domain. We will give a "higher-level" approach to III.G. 8 when we study PIDs.
 ${ }^{20}$ This is a provisional (somewhat nonstandard) definition. The (standard) terminology algebraic field extension, used later in these notes, refers to something more general: a field containing \mathbb{F}, all of whose elements are algebraic over \mathbb{F}. (This need not be generated by a finite number of elements.)

[^1]: ${ }^{22}$ This will be discussed and proved in the context of modules where it belongs.
 ${ }^{23}$ Note that the group operation is being written multiplicatively, because G is a multplicative group inside a field. In "additive" terms, $g^{m_{k}}-1=0$ reads $m_{k} g=0$. ${ }^{24}$ Obviously $\mathbb{Z}_{p^{n}}$ isn't a field, so that won't cut it!

