III.G. Polynomial rings

Throughout we shall assume that *R*, *S* denote commutative rings. We defined polynomial rings over *R* in an indeterminate *x* (and in independent indeterminates $x_1, ..., x_n$) in III.A.3(iv). From the inductive construction there it is clear that (writing $I = (i_1, ..., i_n) \in \mathbb{N}^n$ and $\underline{x}^I := x_1^{i_1} \cdots x_n^{i_n}$)

(III.G.1)
$$0 = \sum_{I} a_{I} \underline{x}^{I} \in R[x_{1}, \dots, x_{n}] \quad \Longleftrightarrow \quad \text{all } a_{I} = 0.$$

Write $\iota: R \hookrightarrow R[x]$ (or $R[x_1, \ldots, x_n]$).

III.G.2. THEOREM. Given $\varphi \colon R \to S$ and $u \in S$, there exists a unique homomorphism $\tilde{\varphi} \colon R[x] \to S$ such that $\tilde{\varphi}(x) = u$ and $\tilde{\varphi} \circ \iota = \varphi$. (More generally, given $u_1, \ldots, u_n \in S$, there exists a unique $\tilde{\varphi}_n \colon R[x_1, \ldots, x_n] \to$ S such that $\tilde{\varphi}_n(x_i) = u_i$ ($\forall i$) and $\tilde{\varphi}_n \circ \iota = \varphi$.)

PROOF. Uniqueness follows from the fact that $\tilde{\varphi}$ [resp. $\tilde{\varphi}_n$] is specified on generators of R[x], namely R and x [resp. x_1, \ldots, x_n].

For existence of $\tilde{\varphi}$, define $\tilde{\varphi}(\sum_k a_k x^k) := \sum_k \varphi(a_k) u^k$. We have

$$\begin{split} \tilde{\varphi}(\sum_{k} a_{k} x^{k}) \tilde{\varphi}(\sum_{\ell} b_{\ell} x^{\ell}) &= \sum_{n} \left(\sum_{k+\ell=n} \varphi(a_{k}) \varphi(b_{\ell}) \right) u^{n} \\ &= \sum_{n} \varphi(\sum_{k+\ell=n} a_{k} b_{\ell}) u^{n} \quad \text{[since } \varphi \text{ homom.]} \\ &= \tilde{\varphi} \left(\sum_{n} \left(\sum_{k+\ell=n} a_{k} b_{\ell} \right) x^{n} \right) \\ &= \tilde{\varphi} \left(\left(\sum_{k} a_{k} x^{k} \right) \left(\sum_{\ell} b_{\ell} x^{\ell} \right) \right) \,, \end{split}$$

so $\tilde{\varphi}$ is a homomorphism (the other checks being trivial).

For existence of $\tilde{\varphi}_n$, apply induction: at each stage, we extend $\tilde{\varphi}_{n-1}$: $R[x_1, \ldots, x_{n-1}] \to S$ to $\tilde{\varphi}_n$: $R[x_1, \ldots, x_{n-1}][x_n] \to S$ restricting to $\tilde{\varphi}_{n-1}$ and sending $x_n \mapsto u_n$.

III.G.3. DEFINITION. If $S \supset R$ and φ is the inclusion, $\tilde{\varphi}$ [resp $\tilde{\varphi}_n$] is denoted ev_{*u*} [resp. ev_{*u*}], and the image by

$$\operatorname{ev}_u(R[x]) =: R[u]$$

[resp. $ev_{\underline{u}}(R[x_1, ..., x_n]) =: R[u_1, ..., u_n])$]. Note that this image consists of polynomials in *u* [resp. the {*u_i*}].

III.G.4. COROLLARY. Writing $I_u := \ker(ev_u)$, we have

$$R[u] \cong R[x]/I_u$$

and $I_u \cap R = \{0\}$ (and the obvious analogues for <u>u</u>).

PROOF. Use the Fundamental Theorem together with injectivity of $ev_u|_R (= \varphi)$.

III.G.5. COROLLARY. Given $\sigma \in \mathfrak{S}_n$, there exists a unique automorphism $\zeta(\sigma)$ of $R[x_1, \ldots, x_n]$ sending $x_i \mapsto x_{\sigma(i)}$.

PROOF. Put $S := R[x_1, ..., x_n]$, $u_i := x_{\sigma(i)}$, and $\zeta(\sigma) := \tilde{\varphi}_n$. An inverse is provided by $\zeta(\sigma^{-1})$.

III.G.6. DEFINITION. As in III.G.3, let u or u_1, \ldots, u_n be elements of a ring S containing R.

(i) *u* is **transcendental** over $R \iff ev_u$ is injective.

(ii) Otherwise, *u* is **algebraic** over *R*. In this case there exists $f(x) \in I_u \setminus \{0\}$, so that f(u) = 0 in *S*. (That is, *u* satisfies a polynomial equation with coefficients in *R*.)

(iii) u_1, \ldots, u_n are algebraically independent over $R \iff ev_{\underline{u}}$ is injective; otherwise, they are algebraically dependent.

As a consequence of (III.G.1), u_1, \ldots, u_n are algebraically independent if, and only if,

(III.G.7)
$$\sum_{I} r_{I} \underline{u}^{I} = 0 \implies \text{all } r_{I} = 0.$$

On the other hand, if $R = \mathbb{F}$ and *S* are fields,¹⁹ and each u_i algebraic over \mathbb{F} , then $\mathbb{F}[u_1, \ldots, u_n]$ is called an **algebraic extension**²⁰ of \mathbb{F} .

III.G.8. PROPOSITION. An algebraic extension (of a field \mathbb{F}) is a field. Moreover, every element of this field is algebraic over \mathbb{F} .

 $^{^{19}}$ The argument below works for *S* a domain. We will give a "higher-level" approach to III.G.8 when we study PIDs.

²⁰This is a provisional (somewhat nonstandard) definition. The (standard) terminology *algebraic field extension*, used later in these notes, refers to something more general: a field containing \mathbb{F} , all of whose elements are algebraic over \mathbb{F} . (This need not be generated by a finite number of elements.)

PROOF. We only have to prove this for $\mathbb{F}[u]$, u algebraic (since induction then yields it for $\mathbb{F}[u_1, \ldots, u_n]$). Let $f(x) = \sum_{k=0}^n a_k x^k \in \mathbb{F}[x]$ be a (nonzero) polynomial *of minimal degree* with f(u) = 0. (Note that this degree is n.) Since S has no zero-divisors, f(x) is irreducible. In particular, $a_0 \neq 0$ and (rescaling) we may assume $a_0 = 1$. Then $(-\sum_{k=1}^n a_k u^{k-1}) \cdot u = 1$ shows that u is invertible in $\mathbb{F}[u]$.

Now let $v \in \mathbb{F}[u]$ be arbitrary. If there exists *some* polynomial $g(x) = \sum_k b_k x^k \in \mathbb{F}[x]$ with g(v) = 0 in *S*, then the same argument (taking *g* of minimal degree, $b_0 = 1$, etc.) produces an inverse for *v* in $\mathbb{F}[u]$, namely $-\sum_{k>0} b_k v^{k-1}$. So this will prove both statements of the Proposition.

Notice that $\mathbb{F}[u]$ is a vector space over \mathbb{F} of dimension n. Indeed, using f(u) = 0 ($\implies u^n = -\sum_{k=0}^{n-1} \frac{a_k}{a_n} u^k$) we can reduce the degree of any polynomial in u (i.e. element of $\mathbb{F}[u]$) to $\leq n - 1$. Moreover, if $\sum_{k=0}^{n-1} c_k u^k = \sum_{k=0}^{n-1} c'_k u^k \in \mathbb{F}[u]$ then $c_k = c'_k$: otherwise the difference of the two sides gives a polynomial of degree < n with u as a root, contradicting minimality of n.

So to find the desired polynomial g, consider the linear transformation $\mu_v \colon \mathbb{F}[u] \to \mathbb{F}[u]$ given by multiplication by v. (This is calculated in the basis $1, u, \dots, u^{n-1}$ by using f(u) = 0.) Taking g to be the characteristic polynomial of μ_v , by Cayley-Hamilton $0 = g(\mu_v) =$ $\mu_{g(v)}$. As S hence $\mathbb{F}[u]$ has no zero-divisors, g(v) is itself zero. \Box

III.G.9. EXAMPLE. An algebraic extension *F* of \mathbb{Q} is called a **number field**. By III.G.8, every $\alpha \in F$ has $f(x) \in \mathbb{Q}[x]$ such that $f(\alpha) = 0$. The **ring of integers** $\mathcal{O}_F \subset F$ comprises those α with an *f* of the form

(III.G.10)
$$x^m + a_{m-1}x^{m-1} + \dots + a_0, \quad a_j \in \mathbb{Z}.$$

(Such a polynomial, with top coefficient 1, is called **monic**.) Checking directly that \mathcal{O}_F is a ring is too messy. We postpone that to when we have the tools for a better approach, which will show in addition that the characteristic polynomial of multiplication by $\alpha \in \mathcal{O}_F$ (as in the above proof) is itself monic integral. Since that polynomial

144

has degree $n := \dim_{\mathbb{Q}}(F)$ (from the proof), we only need to consider equations (III.G.10) with m = n.

Consider $F = \mathbb{Q}[\sqrt{d}] \cong \mathbb{Q}[x]/(x^2 - d)$. What is \mathcal{O}_F ? (We assume d squarefree, so that $d \not\equiv 0$.)

Since the above "*n*" is just 2 in this case, an element $a + b\sqrt{d}$ ($a, b \in \mathbb{Q}$) of *F* belongs to \mathcal{O}_F if and only if it satisfies

$$0 = (a + b\sqrt{d})^2 + m(a + b\sqrt{d}) + n \text{ for some } m, n \in \mathbb{Z}.$$

Then $0 = (a^2 + b^2d + ma + n) + (2ab + mb)\sqrt{d}$, and so either (i) b = 0 and $a^2 + ma + n = 0$ ($\implies a \in \mathbb{Z}$)

(i) b = 0 and $u^{-1} + mu + n = 0$ ($\longrightarrow u^{-1}$ or

(ii)
$$-2a = m \ (\implies a = \frac{A}{2}, A \in \mathbb{Z})$$
 and
 $b^2 = -\frac{A^2 + 2mA + 4n}{4d} \ (\implies b = \frac{B}{2}, B \in \mathbb{Z}).$

In case (ii), $\frac{A^2+B^2d+2mA}{4} (= -n) \in \mathbb{Z} \implies A^2+B^2d+2mA \equiv 0.$ Thus:

- if *A* is even, then $B^2 d \equiv 0$ (and $d \not\equiv 0$) hence *B* is even; while
- if *A* is odd, then *m* is odd and (noting $3^2, 1^2 \equiv 1$)

$$1 + B^2 d + 2 \underset{(4)}{\equiv} 0 \implies B^2 d \underset{(4)}{\equiv} 1 \implies B \text{ odd and } d \underset{(4)}{\equiv} 1.$$

This gives the " \subseteq " half of

(III.G.11)
$$\mathcal{O}_F = \begin{cases} \mathbb{Z}[\frac{1+\sqrt{d}}{2}], & d \equiv 1\\ \mathbb{Z}[\sqrt{d}], & \text{otherwise.} \end{cases}$$

The reverse inclusion " \supseteq " is more straightforward: given $\alpha = a + b\sqrt{d}$ on the RHS, consider $(x - \alpha)(x - \tilde{\alpha})$, where $\tilde{\alpha} = a - b\sqrt{d}$ as usual.

Polynomial division. Earlier we made assertions about polynomial division in $\mathbb{F}[x]$, \mathbb{F} a field. Now it is time to be more precise. Given $f(x) = \sum_{j=0}^{d} a_j x^j$ with $a_j \in R$ (an arbitrary commutative ring) and $a_d \neq 0$, write deg(f) := d. We set deg $(0) := -\infty$. Then (III.G.12)

 $deg(fg) \le deg(f) + deg(g)$ (with equality if *R* is a domain)

and

(III.G.13)
$$\deg(f+g) \le \max(\deg(f), \deg(g))$$

III.G.14. PROPOSITION. *R* domain \implies $R[x_1, \ldots, x_n]$ domain and $R[x_1, \ldots, x_n]^* = R^*$.

PROOF. For n = 1, $fg = 0 \implies \deg(f) + \deg(g) = \deg(fg) = -\infty \implies f$ or g = 0; while $fg = 1 \implies \deg(f) + \deg(g) = 0 \implies \deg(f) = 0 = \deg(g) \implies f, g \in R^*$. For n > 1, use induction. \Box

For *R* not a domain, we need not have $R[x]^*$ equal to R^* : e.g. in $\mathbb{Z}_9[x]$, (1+3x)(1-3x) = 1.

Now let *R* be any commutative ring, and

$$f = \sum_{i=0}^{n} a_i x^i$$
, $g = \sum_{j=0}^{m} b_j x^j \in R[x]$.

III.G.15. THEOREM (Polynomial long division). There exist $k \in \mathbb{N}$ and $q, r \in R[x]$ such that $\deg(r) < \deg(g)$ and $(b_m)^k f = qg + r$. If $b_m \in R^*$ then we have f = qg + r, and q, r are unique.

PROOF. Assume $(n =) \deg(f) \ge \deg(g) (= m)$ (since otherwise we're done). Writing²¹

$$f_{1} := b_{m}f - \underbrace{a_{n}x^{n-m}g}_{p_{1}} \quad (\text{noting } n_{1} := \deg(f_{1}) < \deg(f))$$
$$f_{2} := b_{m}f_{1} - a_{n_{1}}^{(1)}x^{n_{1}-m}g =: (b_{m})^{2}f - p_{2}g$$
$$:$$

we eventually

reach

$$r := f_k := b_m^k f - p_k g$$
 of degree $\langle \deg(g) \rangle$

For the uniqueness statement, we are assuming $b_m \in R^*$. If $q_1g + r_1 = q_2g + r_2$, then $\deg((q_1 - q_2)g) = \deg(r_2 - r_1) < m$. If $q_1 - q_2 \neq 0$, then (since b_m is not a zero-divisor) $\deg((q_1 - q_2)g) \geq m$ yields a contradiction. So $q_1 = q_2$, and thus $r_1 = r_2$.

²¹Note: $a_k^{(j)}$ denote coefficients of f_i .

146

III.G.16. COROLLARY. Given $f \in R[x]$ and $a \in R$, there exist unique $q, r \in R[x]$ such that f(x) = (x - a)q(x) + f(a). Hence, $(x - a) | f(x) \iff f(a) = 0$. (Such an "a" is called a **root** of f.)

All of this is for a general commutative ring. More narrowly:

III.G.17. COROLLARY. If *R* is a domain, then a polynomial $f \in R[x]$ of degree $n := \deg(f)$ has at most *n* roots.

PROOF. Let a_1, \ldots, a_r be distinct roots of f. We have $(x - a_1) | f$ by III.G.16. Assume inductively $(x - a_1) \cdots (x - a_{k-1}) | f$. Then $f(x) = (x - a_1) \cdots (x - a_{k-1})g(x)$

$$\implies 0 = f(a_k) = \underbrace{(a_k - a_1) \cdots (a_k - a_{k-1})}_{\neq 0} g(a_k)$$

 $\implies 0 = g(a_k) \text{ (since } R \text{ is a domain)}$ $\implies g(x) = (x - a_k)h(x) \text{ (for some } h \in R[x])$ $\implies (x - a_1) \cdots (x - a_k) \mid f.$

So in fact, $f(x) = H(x) \prod_{j=1}^{r} (x - a_i)$ (for some $H \in R[x]$) hence $n \ge r$.

What if *R* is not a domain? Consider, say, polynomials over \mathbb{Z}_6 : f(x) = 3x has $\overline{0}$, $\overline{2}$, and $\overline{4}$ as roots. So III.G.17 fails.

Turning to the case where *R* is a field, we have the famous

III.G.18. THEOREM. The multiplicative group of a finite field is cyclic. More generally, any finite subgroup G of the multiplicative group of a field F is cyclic.

PROOF. Recall from II.D.15 that since *G* is abelian, *G* is cyclic $\iff \exp(G) = |G|$. This was based on the fact that there exists an element of order $\exp(G) := \min\{e \in \mathbb{N} \mid g^e = 1 \ (\forall g \in G)\}$. In general, $\exp(G) \le |G|$ since $g^{|G|} = 1$ for all $g \in G$.

Now every $g \in G$ satisfies $g^{\exp(G)} - 1 = 0$. But III.G.17 \implies $x^{\exp(G)} - 1$ has at most $\exp(G)$ roots. So $|G| \le \exp(G)$.

III.G.19. EXAMPLE. This says $\mathbb{Z}_{17}^* \cong \mathbb{Z}_{16}$, and not $\mathbb{Z}_2^{\times 4}$, $\mathbb{Z}_8 \times \mathbb{Z}_2$, etc. — this beats trying to find a generator!

III.G.20. REMARK. Assuming the structure theorem for finitely generated abelian groups,²² we can give a different proof of III.G.18 as follows. The structure theorem tells us that $G \cong \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}$ where $m_1 > 1$ and $m_1 \mid m_2 \mid \cdots \mid m_k$. So every $g \in G$ is a root²³ of $x^{m_k} - 1$, hence $|G| \leq m_k$ (by III.G.17), whence k = 1.

As we shall see later,²⁴ there exist finite fields of prime power order (for any prime power).

III.G.21. COROLLARY. If \mathbb{F} is a finite field, then $\mathbb{F} \cong \mathbb{Z}_p[u]$ where \mathbb{Z}_p is its prime subfield and u is algebraic over \mathbb{Z}_p .

PROOF. Let *u* be a generator of the multiplicative group $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$. \Box

Polynomial functions. Let \mathbb{F} be a field, $\mathbb{F}^n := \mathbb{F} \times \cdots \mathbb{F}$ (*n* times). Consider a different kind of evaluation map:

(III.G.22)

$$\Phi_{n,\mathbb{F}} \colon \mathbb{F}[x_1,\ldots,x_n] \longrightarrow \mathbb{F}^{\mathbb{F}^n} = \prod_{\underline{n}\in\mathbb{F}^n} \mathbb{F} \left(=: \frac{\text{ring of }\mathbb{F}\text{-valued}}{\text{functions over }\mathbb{F}^n} \right)$$
$$f(\underline{x}) \longmapsto \{f(\underline{u})\}_{\underline{u}\in\mathbb{F}^n}$$

The image $\Phi_{n,\mathbb{F}}(\mathbb{F}[x_1,...,x_n]) =: \mathcal{P}_n(\mathbb{F})$ is called the *ring of* (\mathbb{F} -valued) polynomial functions over \mathbb{F}^n . We write s_i for $\Phi_{n,\mathbb{F}}(x_i)$, the *i*th coordinate function, and clearly $\mathcal{P}_n(\mathbb{F}) = \mathbb{F}[s_1,...,s_n]$. Two questions arise:

- Are *all* functions polynomial functions? (i.e. is $\Phi_{n,\mathbb{F}}$ surjective?)
- Do distinct polynomials yield distinct functions? (i.e. is $\Phi_{n,\mathbb{F}}$ injective? Note that this would imply that $\mathcal{P}_n(\mathbb{F}) \cong \mathbb{F}[x_1, \ldots, x_n]$.)

We can give a surprisingly clear answer to both questions with the aid of the following

²²This will be discussed and proved in the context of modules where it belongs.

²³Note that the group operation is being written multiplicatively, because *G* is a multplicative group inside a field. In "additive" terms, $g^{m_k} - 1 = 0$ reads $m_k g = 0$. ²⁴Obviously \mathbb{Z}_{p^n} isn't a field, so that won't cut it!

III.G.23. LEMMA. Assume $|\mathbb{F}| = \infty$. Then for each $f \in \mathbb{F}[x_1, \ldots, x_n]$ other than the zero polynomial, there exists $\underline{u} \in \mathbb{F}^n$ with $f(\underline{u}) \neq 0$.

PROOF. For n = 1: any $f \in \mathbb{F}[x]$ has at most deg(f) ($< \infty$) roots, so $\Phi_{n,\mathbb{F}}(f) \neq 0$. Next, assuming the result for n - 1 indeterminates, let $f_n \in \mathbb{F}[x_1, \ldots, x_{n-1}][x_n]$. Writing $f_n = g_0 + g_1 x_n + \cdots + g_d x_n^d$, let $\underline{u}' \in \mathbb{F}^{n-1}$ be such that $g_d(\underline{u}') \neq 0$. Then $f_n(\underline{u}', x_n)$ is a nontrivial polynomial in x_n , and we get $u_n \in \mathbb{F}$ such that $f_n(\underline{u}', u_n) \neq 0$. \Box

III.G.24. THEOREM. $\Phi_{n,\mathbb{F}}$ is injective $\iff |\mathbb{F}| = \infty$.

PROOF. If $|\mathbb{F}| = q < \infty$, then $|\mathbb{F}^*| = q - 1$ and so $\alpha^{q-1} = 1 \implies \alpha^q = \alpha \ (\forall \alpha \in \mathbb{F}) \implies x_1^q - x_1 \in \ker(\Phi_{n,\mathbb{F}}).$

If $|\mathbb{F}| = \infty$, the lemma implies that no nonzero $f \in \mathbb{F}[x_1, \dots, x_n]$ is sent to the zero function.

III.G.25. THEOREM. If $|\mathbb{F}| < \infty$, then $\Phi_{n,\mathbb{F}}$ is surjective.

PROOF. The proof of III.G.23 shows that when $\deg_{x_i}(f) < q :=$ $|\mathbb{F}|$ for all *i*, there exists $\underline{u} \in \mathbb{F}^n$ such that $f(\underline{u}) \neq 0$. This is because at each stage of the induction, the number of roots of f_n in x_n is less than the number of elements of \mathbb{F} .

On the other hand, the functions $x_i^q - x_i$ in the proof of III.G.24 belong to ker $(\Phi_{n,\mathbb{F}})$. By the division algorithm, for every $k \ge q$ we get $x_i^k = (x_i^q - x_i)Q(x_i) + R(x_i)$ with deg(R) < q, and so any $f \in \mathbb{F}[x_1, \ldots, x_n]$ is of the form

$$\sum_{i=1}^{n} g_i(\underline{x})(x_i^q - x_i) + g(\underline{x}), \text{ with } \deg_{x_i}(g) < q \ (\forall i).$$

Hence $f \in \ker(\Phi_{n,\mathbb{F}}) \iff g(\underline{x}) = 0$, which yields

(III.G.26) $\mathcal{P}_n(F) \cong \mathbb{F}[x_1, \dots, x_n] / (x_1^q - x_1, \dots, x_n^q - x_n).$

But $|\mathbb{F}^{\mathbb{F}^n}| = q^{q^n}$, and

$$|\mathcal{P}_n(F)| = #\{\text{choices for } g(\underline{x}) = \sum_{i_1,\dots,i_n=0}^{q-1} a_I \underline{x}^I\} = q^{q^n}$$

as well.

Symmetric polynomials. Looking back at III.G.5, the automorphisms $\zeta(\sigma)$ of $\mathbb{F}[x_1, \ldots, x_n]$ produce a group homomorphism

$$\zeta\colon\mathfrak{S}_n\to\operatorname{Aut}(\mathbb{F}[x_1,\ldots,x_n]).$$

We will write $\mathbb{F}[x_1, ..., x_n]^{\mathfrak{S}_n}$ for the subring of $\zeta(\mathfrak{S}_n)$ -invariant elements, i.e. the **symmetric polynomials**. Also note that a polynomial is called **homogeneous** if all its monomial terms have the same total degree (= sum of exponents).

III.G.27. DEFINITION. (i) The **elementary symmetric polynomi**als²⁵ are

$$e_1(\underline{x}) = \sum_i x_i, \ e_2(\underline{x}) = \sum_{i < j} x_i x_j, \ \ldots, \ e_n(\underline{x}) = x_1 \ldots x_n.$$

(ii) The Newton symmetric polynomials are

$$s_1(\underline{x}) = \sum_i x_i, \ s_2(\underline{x}) = \sum_i x_i^2, \ \ldots, \ s_n(\underline{x}) = \sum_i x_i^n.$$

Both sets belong to $\mathbb{F}[x_1, ..., x_n]^{\mathfrak{S}_n}$, which is easiest to see for the $\{e_i\}$ by writing formally

(III.G.28)
$$\prod_{i=1}^{n} (y - x_i) = \sum_{j=0}^{n} (-1)^j e_j(\underline{x}) y^{n-j}.$$

We shall prove below that the e_i "span" $\mathbb{F}[x_1, \ldots, x_n]^{\mathfrak{S}_n}$. (More precisely, III.G.29 means that there is one and only one way to write each symmetric polynomial in the form $\sum_{D \in \mathbb{N}^n} a_D \underline{e}^D$, where $\underline{e}^D := e_1(\underline{x})^{d_1} \cdots e_n(\underline{x})^{d_n}$.) As you will show in HW, the s_i also "span the symmetric polynomials" if $n! \neq 0$ in \mathbb{F} .

Consider the ring homomorphism

$$\mathcal{E}_n \colon \mathbb{F}[x_1, \dots, x_n] \longrightarrow \mathbb{F}[x_1, \dots, x_n]^{\mathfrak{S}_n}$$

 $x_i \longmapsto e_i(\underline{x})$

with image $\mathbb{F}[e_1,\ldots,e_n]$.

III.G.29. THEOREM. \mathcal{E}_n is an isomorphism.

150

 $[\]overline{^{25}}$ Note that $e_k(\underline{x})$ has $\binom{n}{k}$ monomial terms.

PROOF. We begin with <u>surjectivity</u>. Since every symmetric polynomial is a sum of homogeneous symmetric polynomials, it suffices to prove that every homogeneous symmetric polynomial is a polynomial in the $\{e_i\}$.

Under the lexicographic ordering on monomials, let $a_K x_1^{k_1} \cdots x_n^{k_n}$ be the highest-order term in some given symmetric f; since f contains all permutations of each monomial, we have $k_1 \ge k_2 \ge \cdots \ge k_n$. The highest monomial in $e_1^{k_1-k_2} e_2^{k_2-k_3} \cdots e_n^{k_n}$ is

$$(x_1)^{k_1-k_2}(x_1x_2)^{k_2-k_3}(x_1x_2x_3)^{k_3-k_4}\cdots(x_1\cdots x_n)^{k_n}=x_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}.$$

Hence $f - a_K e_1^{k_1 - k_2} \cdots e_n^{k_n}$ has lower highest monomial than f, and continuing on in this manner we eventually reach the zero polynomial.

Turning to <u>injectivity</u>, consider a finite sum $\sum_D a_D \underline{e}^D$ (with not all a_D zero). For each $D \in \mathbb{N}^n$, write (for i = 1, ..., n) $k_i = d_i + \cdots + d_n$, and consider those (nonzero) $a_D \underline{e}^D$ with largest $|K| := \sum_i k_i$. The highest monomial in each is $a_D x_1^{k_1} \cdots x_n^{k_n}$, and these are all distinct $(D \neq D' \implies K \neq K')$. Taking the (unique) $a_D \underline{e}^D$ with "highest highest" monomial, we see that this monomial occurs once, with a nonzero coefficient. Hence $\sum_D a_D \underline{e}^D \neq 0$.