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III.H. Principal ideal domains

Let R be a commutative domain.

III.LH.1. DEFINITION. Ris a principal ideal domain (PID) if every
ideal I C R is principal.

Regardless of whether R is a PID, note that we have

(IIL.H.2) {sz zii giigg

forr,s € R.

[I1.H.3. EXAMPLES (of PIDs).
(A) R = Z (consider the additive subgroups).
(B) Euclidean domains (which of course includes (A)).
(C) F[x] (F any field), Z]i], and Z [%‘Tl] (HW) are Euclidean, hence
PIDs by (B).
(D) Z[%_Tg], while non-Euclidean (HW), is a PID.

PROOF OF (B). Given I C R anideal in a Euclidean domain R, let
B € I\{0} be of minimal 4(B) (€ IN), and take a € I to be arbitrary.
Then
a=pq+r (47r€R)
with (i) 6(r) < 6(B) and r = a — Bg € I\{0}, or (ii) r = 0. Since (i)
contradicts minimality of §(B), we have (ii) and « = g € () =
I C (B). Since B € I, we have (B) C I; thus I = () is principal. [

PROOF OF (D). Write a := %_Tg and R := Z[a]. Let I be any
nonzero ideal of R, and take x € I\{0} of minimal norm x% = |x|?
(i.e. minimal |x|). We will show that I = xR (= (x)). Equivalently,
working in the field of fractions K = Q[a], we can try to show that
the fractional ideal | := x~1'I is R. (Clearly, from I D xR we have
J] O R)

Step 1|Any element v € J\R has imaginary part 3(vy) differing from any
integral multiple of@ by at least Y3 e () € [‘/75, M] + @Z.
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Given 7 € ], suppose |y —r| < 1 for some r € R. Since v = x~1rg

for some rg € I, wehave 1 > |x 1rg —r| = |x| > |rg — rx|. Since
|x| is minimal, ro — rx ¢ I\{0}. Butrg —rx € I as ry,x € I. So the
only possibility is for ro — rx tobe 0,i.e. v = x lrg = r € R.

Conclude that any v € J\R has |y — 7| > 1 (Vr € R). Represent-
ing elements of R in the complex plane by red dots, the following
picture explains why the above claim holds:
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since being outside the circles forces 7y inside the union of translates

of the grey strip by @iz. In fact, since we can translate (in J\R) by

elements of R, this shows: if J\R # @, then there exists v € J\R with

S(7) € [ 52 and R(7) € (—3,3].

Step 2| For such a vy, we have y = § or —5.

We have 3(27) € [v/3,v/19 — /3] and R(27) € (—1,1]. In particu-
lar, R (27) is within J of either J or —1. Accordingly, either |2y — a|?
or |2y + &|?is

< (Y2324 (L2 =8-VFT<8-7=1,
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i.e. 2y is within 1 of « or —& — hence cannot be in J\R by Step 1.
Conclude that 2y € R. But the only elements of R in the rectangle

to which 2+ is confined are , —&. Hence y = 5 or —%.

Step 3| ] does not contain either of these elements.

Since | is closed under multiplication by elements of R, if 7 = 7 or
—5, then % € J. But

14+v/=19 1-V/=19 5
_ 7 T 1419 _ 2

an
2 2 8 9o’

which is within 1 of an element (say, 3) of R so cannot be in [\R. On
the other hand, % ¢ R. So % ¢ |, a contradiction.

Thus there exists no v € J\R; thatis, ] = R. Hence [ = (x) is
principal as desired. O

[II.H.4. EXAMPLES (of non-PIDs).
(A) Z[v10] is not a PID.

PROOF. Writing I := (3,1 -+ 1/10), Hurwitz gives
IT=(3,1+V10)(3,1—v10) = (ged(9, -9,6)) = (3).

Suppose I = (B) for some B = a +b+/10 € Z[+/10]. Then (3) = II =
(BB) = (a®> —10b*) = a?> — 10b* ~ 3. Since Z* = {+1}, we get
a? — 10b*> = £3, which by a recent HW problem is impossible. [

(B) R[x], where R is a PID, need not be a PID. In particular, F[x, y]
(for F a field) is not.

PROOF. Consider the proper ideal I := {};; aiix'yl | agg = 0} =
(x,y) inFlx,y]. If [ = (f) then f | x,y.

Now I claim that x is irreducible. To show this, suppose x = gh.
Since [F[y| is a domain, the degrees (as polynomials in x over F[y])
satisfy deg, ¢ +deg, h = 1. Swapping ¢ and h if needed, we have
deg, g = Oand deg i = 1 hence g € F* = (F[x,y])* is a unit.
Likewise, y is irreducible.
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So f = ax or a, fora € (Flx,y|)* = F*; and f = by or b, with
b € (F[x,y])* = F*. Obviously then f € F*, which gives I = R]x, y],
a contradiction. We conclude that I is not principal. O

(C) Z[x] is not a PID: consider I = (3,x%> — x> + 2x — 1) (HW) or,
more simply, I = (3,x).

(D) Two more non-examples are (i) Z[v/—17] and (ii) Z[@] I
won’t prove this, but rather just say where the argument in the proof
of III.LH.3(D) goes wrong: for (i), the bounding argument in Step 2 —
i.e. getting |2y — a| or |2y + &| < 1 — fails because (viewed as a lat-
tice) R is now too “spread out” vertically. For (ii), Step 2 still works,
but & = % = 3 belongs to R hence fails to yield a contradiction.

We now turn to some remarks on principal ideals generated by
irreducible elements. To begin, let R be a commutative domain, and
a € R\{0}. Notice that in general

a irreducible — a ¢ R* = atl

(IILH.5)
= (0) 1 = (a) € PP,

where “PP” denotes the set of proper principal ideals of R.
III.H.6. THEOREM. a is irreducible <= (a) is maximal in® PP.

PROOF. ( = ): Suppose (B) € PP and () 2 (a). Then ¢ R*
and a« = Br (for some r € R). Since « is irreducible, ¥ must belong to
R*. So («) = (B).

( <= ): Let () be maximal in PP, and write &« = B, with § ¢
R*. Then (B) € PP and (B) 2 («). By maximality of («) in PP,
(B) = (a) hence we can write p = ad. This gives & = ady =
6y =1 = 7 € R*. Thus a is irreducible. O

In general, for a principal ideal («), “maximality in PP” is quite
a bit weaker than “maximality”. Of course, when R is a PID these
are equivalent, and we get the

25The RHS contains two assertions: (x) € PP, and () is maximal there.
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III.H.7. COROLLARY. Let R be a PID, & € R\{0}. Then®®

w is irreducible <= (w) is maximal amongst proper ideals.

IIT.H.8. COROLLARY. Let R bea PID, &« € R\ (R* U {0}). Then:
(i) R/(«) is a field <= w is irreducible; and
(ii) otherwise, R/ («) isn't a domain.

PROOF. (i) Follows at once from III.H.7 and III.E.3.
(ii) If « is not irreducible, then there exist B,y € R\(R* U {0}) such
that « = By. Suppose B € («a); then p = ar (r € R) = «a = ary
— ry=1 = < € R*, a contradiction.

SoB,v¢ (a) = B,¥y#0inR/(a)but By =a=0. O

Now let IF be a field and S O FF a ring, with u € S. Recall from
II1.G.3 the evaluation map ev,,: F[x] — S sending x — u, with image
=: F[u], and kernel =: I,,. Since F[x] is a PID, I, = (g) for some
¢ € Flx],and I, NF = {0} = ¢ ¢ F*(= F[x]*). If ¢ = 0, then
u is transcendental over IF; otherwise, deg(g) > 0 and u is algebraic
over [F.

Henceforth assume that u is algebraic; then as F is a field, we
may also assume that ¢ is monic. In fact, since any two generators of
I, are associate, this uniquely determines g.

III.LH.9. DEFINITION. The (unique) monic generator m, of I, is
called the minimal polynomial of u over F.

II1.H.10. LEMMA. This m,, is the lowest-degree polynomial in IF[x]\ {0}
having u as a root.

PROOF. f(u) =0 = fel, = (my) = f=myg =
deg(f) > deg(my) or f = 0. O

III.H.11. COROLLARY. F[u] isa field <= m,, is irreducible in FF[x].
Otherwise, F|u] is not a domain.

PROOF. Immediate from F[u] = F[x]/I, and IIL.H.8. O

26The RHS here means that (a) is a maximal ideal (in the standard sense).
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III.H.12. REMARK. The following construction of F[u] appears
tautological but is actually the most useful one. Let g(x) € Flx]
be a monic polynomial of positive degree; we put S := F[x]/(g(x))
and u := x + (g(x)) € S. Then the evaluation map ev,: F[x] —
F[x]/(g(x)) is just the natural map, with kernel I, = (g(x)). Hence
Flu] = F[x]/(g(x)), and g(x) = my(x). The construction yields a
field if and only if g(x) is irreducible. Regardless of that, every ele-
ment of IF[u] can be written in exactly one way as a sum Y.{_ axu*
with a; € F and d := deg(g). This makes it a vector space over F of
dimension d with basis 1,1, ..., u%"1.

This construction is important, for instance, when studying num-
ber fields. Let F = Q. Rather than starting with u € S = C and
sending x to that, we start with an irreducible polynomial and need
never make any reference to C. So to take one example, we can define
Q[v—3] := Q[x]/(x? + 3). This is both practically superior (when
studying polynomials for which we don’t know an “explicit” root)
and theoretically superior (as we don’t have to invoke the funda-
mental theorem of algebra). In Q[u] := Q[x]/(g(x)) one still thinks
of u as an abstract root of g. If desired, we can map Q[u] into C in

multiple ways by sending u to any root of g in C.

IIL.H.13. EXAMPLE. I claim that F = Q6] := Q[x]/ (x> — x +2) is
a field. Suppose otherwise; then g := x3 — x + 2 is reducible, which
means it has a linear and quadratic factor. The linear factor obviously
would have a root 5 € Q (written in lowest terms). But

g—“’;—g+2:0 — Q=1 = P*-P+2=0,PcZ;
and reducing mod 5, multiplying by P and using P* = 1 gives
P2+2P=0 = P(P-2) =1 Sincel !=1,21=33"1=
and 471 = 4, this is impossible.

=
N

4

As the polynomial has degree 3, F is a vector space over Q of
dimension 3, with basis 1, 6, §2. The field F is called a cubic field.



