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III.H. Principal ideal domains

Let R be a commutative domain.

III.H.1. DEFINITION. R is a principal ideal domain (PID) if every
ideal I ⊆ R is principal.

Regardless of whether R is a PID, note that we have

(III.H.2)

{
r | s ⇐⇒ (r) ⊇ (s)

r ∼ s ⇐⇒ (r) = (s)

for r, s ∈ R.

III.H.3. EXAMPLES (of PIDs).
(A) R = Z (consider the additive subgroups).
(B) Euclidean domains (which of course includes (A)).
(C) F[x] (F any field), Z[i], and Z[1+

√
−11

2 ] (HW) are Euclidean, hence
PIDs by (B).
(D) Z[1+

√
−19

2 ], while non-Euclidean (HW), is a PID.

PROOF OF (B). Given I ⊆ R an ideal in a Euclidean domain R, let
β ∈ I\{0} be of minimal δ(β) (∈ N), and take α ∈ I to be arbitrary.
Then

α = βq + r (q, r ∈ R)

with (i) δ(r) < δ(β) and r = α− βq ∈ I\{0}, or (ii) r = 0. Since (i)
contradicts minimality of δ(β), we have (ii) and α = βq ∈ (β) =⇒
I ⊆ (β). Since β ∈ I, we have (β) ⊆ I; thus I = (β) is principal. �

PROOF OF (D). Write α := 1+
√
−19

2 and R := Z[α]. Let I be any
nonzero ideal of R, and take x ∈ I\{0} of minimal norm xx̃ = |x|2

(i.e. minimal |x|). We will show that I = xR (= (x)). Equivalently,
working in the field of fractions K = Q[α], we can try to show that
the fractional ideal J := x−1 I is R. (Clearly, from I ⊃ xR we have
J ⊃ R.)

Step 1 Any element γ ∈ J\R has imaginary part=(γ) differing from any

integral multiple of
√

19
2 by at least

√
3

2 , i.e. =(γ) ∈ [
√

3
2 ,
√

19−
√

3
2 ] +

√
19
2 Z.
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Given γ ∈ J, suppose |γ− r| < 1 for some r ∈ R. Since γ = x−1r0

for some r0 ∈ I, we have 1 > |x−1r0 − r| =⇒ |x| > |r0 − rx|. Since
|x| is minimal, r0 − rx /∈ I\{0}. But r0 − rx ∈ I as r0, x ∈ I. So the
only possibility is for r0 − rx to be 0, i.e. γ = x−1r0 = r ∈ R.

Conclude that any γ ∈ J\R has |γ− r| ≥ 1 (∀r ∈ R). Represent-
ing elements of R in the complex plane by red dots, the following
picture explains why the above claim holds:
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α−ᾱ

since being outside the circles forces γ inside the union of translates
of the grey strip by

√
19
2 iZ. In fact, since we can translate (in J\R) by

elements of R, this shows: if J\R 6= ∅, then there exists γ ∈ J\R with
=(γ) ∈ [

√
3

2 ,
√

19−
√

3
2 ] and <(γ) ∈ (−1

2 , 1
2 ].

Step 2 For such a γ, we have γ = α
2 or − ᾱ

2 .

We have =(2γ) ∈ [
√

3,
√

19−
√

3] and <(2γ) ∈ (−1, 1]. In particu-
lar, <(2γ) is within 1

2 of either 1
2 or −1

2 . Accordingly, either |2γ− α|2

or |2γ + ᾱ|2 is

≤ (
√

19
2 −

√
3)2 + (1

2)
2 = 8−

√
57 < 8− 7 = 1,
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i.e. 2γ is within 1 of α or −ᾱ — hence cannot be in J\R by Step 1.
Conclude that 2γ ∈ R. But the only elements of R in the rectangle

to which 2γ is confined are α,−ᾱ. Hence γ = α
2 or − ᾱ

2 .

Step 3 J does not contain either of these elements.

Since J is closed under multiplication by elements of R, if γ = α
2 or

− ᾱ
2 , then αᾱ

2 ∈ J. But

αᾱ
2 =

1+
√
−19

2 ·1−
√
−19

2
2 = 1+19

8 =
5
2

,

which is within 1 of an element (say, 3) of R so cannot be in J\R. On
the other hand, 5

2 /∈ R. So 5
2 /∈ J, a contradiction.

Thus there exists no γ ∈ J\R; that is, J = R. Hence I = (x) is
principal as desired. �

III.H.4. EXAMPLES (of non-PIDs).

(A) Z[
√

10] is not a PID.

PROOF. Writing I := (3, 1 +
√

10), Hurwitz gives

I Ĩ = (3, 1 +
√

10)(3, 1−
√

10) = (gcd(9,−9, 6)) = (3).

Suppose I = (β) for some β = a + b
√

10 ∈ Z[
√

10]. Then (3) = I Ĩ =
(ββ̃) = (a2 − 10b2) =⇒ a2 − 10b2 ∼ 3. Since Z∗ = {±1}, we get
a2 − 10b2 = ±3, which by a recent HW problem is impossible. �

(B) R[x], where R is a PID, need not be a PID. In particular, F[x, y]
(for F a field) is not.

PROOF. Consider the proper ideal I := {∑i,j aijxiyj | a00 = 0} =
(x, y) in F[x, y]. If I = ( f ) then f | x, y.

Now I claim that x is irreducible. To show this, suppose x = gh.
Since F[y] is a domain, the degrees (as polynomials in x over F[y])
satisfy degx g + degx h = 1. Swapping g and h if needed, we have
degx g = 0 and degx h = 1 hence g ∈ F∗ = (F[x, y])∗ is a unit.
Likewise, y is irreducible.
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So f = ax or a, for a ∈ (F[x, y])∗ = F∗; and f = by or b, with
b ∈ (F[x, y])∗ = F∗. Obviously then f ∈ F∗, which gives I = R[x, y],
a contradiction. We conclude that I is not principal. �

(C) Z[x] is not a PID: consider I = (3, x3 − x2 + 2x − 1) (HW) or,
more simply, I = (3, x).

(D) Two more non-examples are (i) Z[
√
−17] and (ii) Z[1+

√
−23

2 ]. I
won’t prove this, but rather just say where the argument in the proof
of III.H.3(D) goes wrong: for (i), the bounding argument in Step 2 —
i.e. getting |2γ− α| or |2γ + ᾱ| < 1 — fails because (viewed as a lat-
tice) R is now too “spread out” vertically. For (ii), Step 2 still works,
but αᾱ

2 = 23+1
8 = 3 belongs to R hence fails to yield a contradiction.

We now turn to some remarks on principal ideals generated by
irreducible elements. To begin, let R be a commutative domain, and
α ∈ R\{0}. Notice that in general

α irreducible =⇒ α /∈ R∗ =⇒ α - 1

=⇒ (α) 63 1 =⇒ (α) ∈ PP ,
(III.H.5)

where “PP” denotes the set of proper principal ideals of R.

III.H.6. THEOREM. α is irreducible ⇐⇒ (α) is maximal in25 PP .

PROOF. ( =⇒ ): Suppose (β) ∈ PP and (β) ⊇ (α). Then β /∈ R∗

and α = βr (for some r ∈ R). Since α is irreducible, r must belong to
R∗. So (α) = (β).

(⇐= ): Let (α) be maximal in PP , and write α = βγ, with β /∈
R∗. Then (β) ∈ PP and (β) ⊇ (α). By maximality of (α) in PP ,
(β) = (α) hence we can write β = αδ. This gives α = αδγ =⇒
δγ = 1 =⇒ γ ∈ R∗. Thus α is irreducible. �

In general, for a principal ideal (α), “maximality in PP” is quite
a bit weaker than “maximality”. Of course, when R is a PID these
are equivalent, and we get the

25The RHS contains two assertions: (α) ∈ PP , and (α) is maximal there.
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III.H.7. COROLLARY. Let R be a PID, α ∈ R\{0}. Then26

α is irreducible ⇐⇒ (α) is maximal amongst proper ideals.

III.H.8. COROLLARY. Let R be a PID, α ∈ R\(R∗ ∪ {0}). Then:
(i) R/(α) is a field ⇐⇒ α is irreducible; and
(ii) otherwise, R/(α) isn’t a domain.

PROOF. (i) Follows at once from III.H.7 and III.F.3.
(ii) If α is not irreducible, then there exist β, γ ∈ R\(R∗ ∪ {0}) such
that α = βγ. Suppose β ∈ (α); then β = αr (r ∈ R) =⇒ α = αrγ

=⇒ rγ = 1 =⇒ γ ∈ R∗, a contradiction.
So β, γ /∈ (α) =⇒ β̄, γ̄ 6= 0̄ in R/(α) but β̄γ̄ = ᾱ = 0̄. �

Now let F be a field and S ⊃ F a ring, with u ∈ S. Recall from
III.G.3 the evaluation map evu : F[x]→ S sending x 7→ u, with image
=: F[u], and kernel =: Iu. Since F[x] is a PID, Iu = (g) for some
g ∈ F[x], and Iu ∩ F = {0} =⇒ g /∈ F∗ (= F[x]∗). If g = 0, then
u is transcendental over F; otherwise, deg(g) > 0 and u is algebraic
over F.

Henceforth assume that u is algebraic; then as F is a field, we
may also assume that g is monic. In fact, since any two generators of
Iu are associate, this uniquely determines g.

III.H.9. DEFINITION. The (unique) monic generator mu of Iu is
called the minimal polynomial of u over F.

III.H.10. LEMMA. This mu is the lowest-degree polynomial in F[x]\{0}
having u as a root.

PROOF. f (u) = 0 =⇒ f ∈ Iu = (mu) =⇒ f = muq =⇒
deg( f ) ≥ deg(mu) or f = 0. �

III.H.11. COROLLARY. F[u] is a field ⇐⇒ mu is irreducible in F[x].
Otherwise, F[u] is not a domain.

PROOF. Immediate from F[u] ∼= F[x]/Iu and III.H.8. �

26The RHS here means that (α) is a maximal ideal (in the standard sense).
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III.H.12. REMARK. The following construction of F[u] appears
tautological but is actually the most useful one. Let g(x) ∈ F[x]
be a monic polynomial of positive degree; we put S := F[x]/(g(x))
and u := x + (g(x)) ∈ S. Then the evaluation map evu : F[x] �
F[x]/(g(x)) is just the natural map, with kernel Iu = (g(x)). Hence
F[u] = F[x]/(g(x)), and g(x) = mu(x). The construction yields a
field if and only if g(x) is irreducible. Regardless of that, every ele-
ment of F[u] can be written in exactly one way as a sum ∑d−1

k=0 akuk

with ak ∈ F and d := deg(g). This makes it a vector space over F of
dimension d with basis 1, u, . . . , ud−1.

This construction is important, for instance, when studying num-
ber fields. Let F = Q. Rather than starting with u ∈ S = C and
sending x to that, we start with an irreducible polynomial and need
never make any reference to C. So to take one example, we can define
Q[
√
−3] := Q[x]/(x2 + 3). This is both practically superior (when

studying polynomials for which we don’t know an “explicit” root)
and theoretically superior (as we don’t have to invoke the funda-
mental theorem of algebra). In Q[u] := Q[x]/(g(x)) one still thinks
of u as an abstract root of g. If desired, we can map Q[u] into C in
multiple ways by sending u to any root of g in C.

III.H.13. EXAMPLE. I claim that F = Q[θ] := Q[x]/(x3− x + 2) is
a field. Suppose otherwise; then g := x3 − x + 2 is reducible, which
means it has a linear and quadratic factor. The linear factor obviously
would have a root P

Q ∈ Q (written in lowest terms). But

P3

Q3 − P
Q + 2 = 0 =⇒ Q = 1 =⇒ P3 − P + 2 = 0, P ∈ Z;

and reducing mod 5, multiplying by P̄ and using P̄4 = 1̄ gives 1̄−
P̄2 + 2̄P̄ = 0̄ =⇒ P̄(P̄− 2̄) = 1̄. Since 1̄−1 = 1̄, 2̄−1 = 3̄, 3̄−1 = 2̄,
and 4̄−1 = 4̄, this is impossible.

As the polynomial has degree 3, F is a vector space over Q of
dimension 3, with basis 1, θ, θ2. The field F is called a cubic field.


