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III.J. Greatest common divisors

III.J.1. DEFINITION. Let R be a commutative ring, and S ⊂ R a
nonempty subset. Then γ ∈ R is a GCD of S if{

(i) γ | s (∀s ∈ S), and
(ii) δ | s (∀s ∈ S) =⇒ δ | γ.

If 1 is a GCD of S , then S is relatively prime.28

III.J.2. REMARKS. (a) In terms of ideals: (i) S ⊂ (γ); and (ii) S ⊂
(δ) =⇒ (γ) ⊂ (δ). If S is relatively prime, then S (or (S)) is not
contained in a proper principal ideal.

(b) If γ, γ′ are two GCDs of S , then (a) =⇒ (γ) = (γ′) =⇒ γ ∼ γ′.
That is, if a GCD exists, it is unique up to units.

(c) R PID =⇒ (S) = (γ) for some γ ∈ R, which is clearly a GCD
for S , and γ = s1r1 + · · ·+ snrn for some sj ∈ S , rj ∈ R.

(c’) Conversely to (c), if every S ⊂ R has a GCD of the form γ = ∑i siri,
then we have (S) ⊃ (γ) ⊃ (S) =⇒ (S) is principal. Since any
I = (I), R is then a PID. (As every UFD is not a PID, the italicized
property cannot hold for UFDs in general.)

(d) Dually, we have the notion of least common multiple (LCM): `
is a LCM of S if (i) s | ` (∀s ∈ S) and (ii) s | κ (∀s ∈ S) =⇒ ` | κ.

(e) For two elements: γ is a GCD of a, b ∈ R if: (i) γ | a and γ | b, and
(ii) δ | a, b =⇒ δ | γ.

Of course, a GCD need not always exist: in Z[
√

10], let a = 3 +

3
√

10, b = 9. Then δ = 3 and δ′ = 1 +
√

10 both divide a and b
properly (i.e. the quotient is not a unit). Moreover, we have a - b,
b - a, δ - δ′, and δ′ - δ. Were there a GCD γ of a and b, we’d have29

28As for ideals, a pair of relatively prime elements (|S| = 2) is said to be coprime.
29We write α ‖ β for “α is a proper divisor of β”, which is to say that α | β and β

α
is not a unit. The reason we’d have (say) δ ‖ γ here is that, were γ

δ a unit, δ′ | γ
would become δ′ | δ, which is false.
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δ′, δ ‖ γ ‖ a, b =⇒

N (δ) = N (δ′) = 9 ‖ N (γ) ‖ 81 = N (a) = N (b) =⇒

N (γ) = 27 =⇒ γ = c + d
√

10 with c2 − 10d2 = 27 =⇒ c2 ≡
(10)

7, a

contradiction since 7 is not a square mod 10.
But Z[

√
10] (as we know) is not a UFD, and in the UFD case the

situation changes:

III.J.3. THEOREM. Any nonempty subset S of a UFD R has a GCD.

PROOF. Write D :=
{

r ∈ R
∣∣ r | s (∀s ∈ S)

}
⊂ R for the set of all

divisors. Clearly 1 ∈ D =⇒ D 6= ∅. Recalling the length function
`(r) (= # of irreducible factors in r) for a UFD, r ∈ D =⇒ `(r) ≤ `(s)
(∀s ∈ S) =⇒ ∃ γ ∈ D of maximal length `(γ).

Let a ∈ D be arbitrary. We claim that a | γ, which will establish
that γ is a GCD of S .

Write D′ for the common divisors of γ and a. Arguing as above,
there exists c ∈ D′ of maximal length `(c); and we may write a = cd,
γ = cδ. Clearly it is enough to show that d ∈ R∗, since then c | γ =⇒
a | γ.

Suppose this is not so — i.e., that d /∈ R∗, with irreducible factor f .
Then `(c f ) = `(c) + 1, while c f | a. By maximality of `(c), we must
have c f - γ, hence f - δ.

Now for every s ∈ S , we have a, γ | s =⇒ c f | s = γξ = cδξ

=⇒ f | δξ. By III.I.12, since R is a UFD and f is irreducible, f is
prime. Since f - δ, it follows that f | ξ, hence γ f | s. Since s was
arbitrary, γ f ∈ D. But `(γ f ) = `(γ) + 1, contradicting maximality
of `(γ). �

III.J.4. DEFINITION. R satisfies the GCD condition (GCDC) if ev-
ery pair a, b ∈ R has a GCD.

When the GCDC holds, we shall write gcd(a, b) (which is then
well-defined up to a unit).

III.J.5. REMARKS. (i) Note that (by III.J.3) UFDs satisfy the GCDC;
and (by III.J.2(c)) for a PID we have (a, b) = (gcd(a, b)).
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(ii) The GCDC implies the existence of GCDs for all nonempty finite
subsets S ⊂ R. [PROOF: given S = {s1, . . . , sn}, inductively assume
that there exists a GCD γ0 for {s1, . . . , sk−1}. Then γ := gcd(γ0, sk)

has γ | γ0 | s1, . . . , sk−1 and γ | sk. Moreover, if γ′ | s1, . . . , sk then
γ | s1, . . . , sk−1 =⇒ γ′ | γ0, which together with γ′ | sk yields γ′ | γ.]
So “gcd(S)” makes sense.30

(iii) If γ1 = gcd(S1), γ2 = gcd(S2) for two nonempty finite subsets,
the same argument gives gcd(S1 ∪ S2) = gcd(γ1, γ2).

(iv) If γ = gcd(S) (for a finite subset S = {s1, . . . , sn}) and r ∈ R,
then (writing rS := {rs1, . . . , rsn}) we have rγ = gcd(rS).

III.J.6. PROPOSITION. Let R be a commutative domain. Then GCDC
=⇒ PC (primeness condition).

PROOF. Assume GCDC, and let π ∈ R be irreducible; we claim
that π is prime. First note that

gcd(π, a) ∼
{

π, if π | a
1, if π - a.

Let π | αβ and π - α. We must show π | β.
Suppose otherwise: π - β. Then (writing ( , ) for gcd( , ))

1 ∼ (π, α)(π, β) ∼ ((π, α)π, (π, α)β)

∼
(
(π2, πα), (πβ, αβ)

)
∼ (π2, πα, πβ, αβ)

∼ (π(π, α, β), αβ) ∼ (π, αβ) ∼ π,

a contradiction since π is not a unit. �

III.J.7. COROLLARY. Let R be a commutative domain, with GCDC and
DCC. Then R is a UFD.

30The reader may wonder about infinite subsets, since their GCDs exist in III.J.3 for
UFDs. But the GCDC doesn’t imply R is a UFD, and can’t handle infinite subsets,
without also assuming the DCC. For example, if you are feeling adventurous, try
to show that if R ⊂ C is the ring of all algebraic integers (i.e. roots of monic
polynomials, which we will show yield a ring later on), then the GCDC holds, but
S := {2q | q ∈ Q, q >

√
2} ⊂ R has no GCD.
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PROOF. Combine III.J.6 and III.I.12. �

This leads to a second proof that PIDs are UFDs, since the GCDC
obviously holds for PIDs (cf. III.J.2(c)).

III.J.8. REMARK. In some of the remarks and computations above,
we have treated some aspects of GCDs in terms of ideals. Before
proceeding, we want to emphasize that when R is not a PID, some
caution is warranted.

Consider that we have two notions of coprimality for a, b in a
commutative ring R:

(i) The ideals (a), (b) are coprime if (a) + (b) (= (a, b)) = R
(ii) The elements a, b are coprime if gcd(a, b) = 1.

Clearly (i) =⇒ (ii). But (ii) doesn’t imply (i) in a non-PID, e.g. in
the UFD F[x, y], (x) and (y) are not coprime as ideals, but x and y are
coprime as elements.

So far we have said a lot about the theory of GCDs, and nothing
about effectively computing them (when they are not visibly obvi-
ous).

III.J.9. EUCLID’S ALGORITHM. In a PID, gcd(α, β) is the princi-
pal generator of (α, β), which gives a clue how to find it. If R is
Euclidean, this leads to a (very efficient) algorithm. Define qi and ri

recursively by

α = q1β + r1 δ(r1) < δ(β) [or r1 = 0]

β = q2r1 + r2 δ(r2) < δ(r1) [or r2 = 0]

r1 = q3r2 + r3 δ(r3) < δ(r2) [or r3 = 0]

...
...

As δ doesn’t take negative values, eventually some rn+1 = 0 (where
rn 6= 0):

rn−1 = qn+1rn + 0.
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Now look at this in terms of ideals:

(α, β) = (q1β + r1, β) =

(β, r1) = (q2r1 + r2, r1) =

(r1, r2) = (q3r2 + r3, r2) =

(r2, r3) = · · · =

(rn−1, rn) = (qn+1rn, rn) = (rn).

This proves the

III.J.10. THEOREM. For α, β in a Euclidean domain R, gcd(α, β) is the
last nonzero remainder in the Euclidean algorithm.

We now turn to a couple of applications of Euclid’s algorithm
and GCDs in Z.

Application 1: The RSA cryptosystem.

III.J.11. PROPOSITION. Suppose k, k′, m ∈ Z>1, gcd(a, m) = 1, and
kk′ ≡

φ(m)
1. Then akk′ ≡

(m)
a.

PROOF. Since a ∈ Z∗m, we have aφ(m) ≡
(m)

1 by Euler’s theorem

II.D.9, and so akk′ = a · aNφ(m) = a(aφ(m))N ≡
(m)

a. �

As k is invertible mod φ(m) provided they are coprime, we have

III.J.12. COROLLARY. The map (·)k : Z∗m → Z∗m is an isomorphism if
gcd(k, φ(m)) = 1, and has inverse (·)k′ .

Say you want to be able to receive secure communications from
me over a public channel:

You Pick two large primes p, q, put m = pq. Then φ(m) = (p−
1)(q− 1). Now

(III.J.13)
let k ∈ (0, φ(m)) ∩Z be large,

with (k, φ(m)) = 1, and find k′.

Make m, k public; and keep p, q, φ(m), k′ secret.
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Me I take a message, encode it as a single number a ∈ (0, m)∩Z,
and send you

b := āk ∈ Zm.

You Compute b̄k′ ∈ Zm, recovering (by III.J.11) my message a.

Suppose someone overhears m, k, b and wants to break the code to re-
cover a. They must find k′, which requires knowing φ(m), for which
they will need to be able to factor m (into p and q). Unless they have
a quantum computer, this could take centuries.

As for us, how do we manage III.J.13? By using Euclid: first, to
check gcd(k, φ(m)) = 1; but less obviously, to solve the congruence
kk′ ≡

φ(m)
1:

φ(m) = kq0 + r0 =⇒ r0 = φ(m)− kq0 ≡
φ(m)
−kq0

k = r0q1 + r1 =⇒ r1 = k− r0q1 ≡
φ(m)

k + kq0q1 = k(1 + q0q1)

r0 = r1q2 + r2 =⇒ r2 = r0 − r1q2 ≡
φ(m)
−kq0 − k(1 + q0q1)q2

... = −k(q0 + q2 + q0q1q2)

Eventually, some rn = 1 and so the algorithm gives

1 ≡
φ(m)

k · (big mess).

The big mess is our k′.

Application 2: Prime factorization in quadratic fields. Let p be
an odd prime number (∈ N), and K = Q[

√
d] a quadratic number

field (d squarefree). Below, (p) will mean pOK, i.e. the ideal (p) ⊂
OK. Denote by I(K) the monoid of ideals31 in OK. An element
I ∈ I(K) is irreducible if we cannot write I = I1 I2, with both I1, I2

proper in OK. We would like to factor (p) in I(K) as a product of
irreducibles.

31cf. Problem Set 7 #4. Here we take this to consist of all nonzero ideals.
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We know that OK is often not a UFD, and that GCDs may not
exist. So we are not going to take them inOK. Rather, the connection
of this section to GCDs comes from Hurwitz’s theorem (cf. III.F.17).
Recall that given I = (α, β) ⊂ OK and Ĩ = (α̃, β̃), it says that

• αα̃, ββ̃, and αβ̃ + βα̃ belong to Z, and
• if g is their GCD in Z, then I Ĩ = (g) = gOK.

It is the main tool in the proof of the following

III.J.14. THEOREM. As an element of I(K), the ideal (p) ⊂ OK de-
composes into irreducibles as follows:

(i) d ≡
(p)

0 =⇒ (p) = (p,
√

d)2 =: ℘p
2, and we say p ramifies.

(ii) d ≡
(p)

m2 6≡
(p)

0 =⇒ (p) = (p, m−
√

d)(p, m +
√

d) =: ℘p℘̃p (where

℘p 6= ℘̃p), and we say p splits.

(iii) d 6≡
(p)

square =⇒ (p) is irreducible in OK, and we say p is inert.

PROOF. Introduce the ideal norm N : I(K) → N\{0}, sending a
nonzero ideal I ⊂ OK to the unique generator in N of I Ĩ. (That is,
I Ĩ = (N(I)).) This is well-defined by Hurwitz, and is a multiplica-
tive monoid homomorphism. Moreover, it is useful for detecting
irreducibles: if N(I) = 1, then

I Ĩ = (N(I)) = (1) = OK ⊆ I = IOK ⊆ I Ĩ

forces I = OK. So if N(I) is prime, then I is irreducible in I(K).
For (i), combining Hurwitz with the fact that d is squarefree and

divisible by p, we get ℘p
2 = (p,

√
d)(p,

√
d) = (gcdZ(p2, 0, d)) = (p)

=⇒ N(℘p) = p =⇒ pr irreducible.
For (ii), again by Hurwitz we have

℘p℘̃p = (p, m−
√

d)(p, m +
√

d) = (gcdZ(p2, 2pm, m2 − d))

= (p · gcdZ(p, 2m, n)) = (p)

since p odd and m 6≡
(p)

0 =⇒ p, 2m coprime. Again N(℘p) = p =

N(℘̃p), and so both ℘p and ℘̃p are irreducible.
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Finally, for (iii), begin by noting that N((p)) = p2, and suppose
that (p) is not irreducible. Then there exists an ideal I of norm p with
I ) (p) (as (p) must break into two such). Assume the following

III.J.15. FACT. Every I ∈ I(K) is generated by 2 elements of OK.

which will be proved in a moment. Then I = (α, β) =⇒ p =

gcdZ(αα̃, ββ̃, αβ̃ + βα̃). Since I ) (p), p cannot divide both α and β;
say p - α = r+s

√
d

2 (where r ≡
(2)

s).

On the other hand, p | αα̃ = r2−s2d
4 =⇒ r2 ≡

(4p)
s2d. If p | s

then p | r and so (writing r = pr′, s = ps′, with r′ ≡
(2)

s′) we have

α = pr′+ps′
√

d
2 = p( r′+s′

√
d

2 ) hence p|α, a contradiction. Therefore
p - s, and there exists an inverse s−1 ∈ Zp. We then find that

d ≡
(p)

(ss−1)2d ≡
(p)

s2d(s−1)2 ≡
(p)

r2(s−1)2 ≡
(p)

(rs−1)2,

in contradiction to our hypothesis in (iii). Conclude that I cannot
exist, and (p) is irreducible. �

Here is a standard bit of notation attached to III.J.14.

III.J.16. DEFINITION. Define the Legendre symbol by

(
d
p

)
:=


0 in case (i)
1 in case (ii)
−1 in case (iii)

It won’t be used until a later section.
We now prove Fact III.J.15 — actually a bit more. Recall:

• any subgroup K ≤ Zn is ∼= Zm for some m ≤ n (cf. II.K.4); and
• any quadratic number field is of the form Q[x]/(x2 − d) (with el-

ements of the form q1 + q2x) hence a Q-vector space of dimension
2. In fact, for a general number field F,32 we’ll show in the Galois
theory unit that F ∼= Q[x]/(mu) for some minimal polynomial mu

of degree n, so that dimQ F = n =: [F:Q].
32We already saw this for number fields of the form Q[u] (cf. III.G.9 and its proof,
and III.H.13); the point here is that even those which appear to require multiple
generators really have just one.
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III.J.17. PROPOSITION.
(a) Let F be a number field, OF its ring of integers.33

(i) Every nonzero ideal I ⊂ OF contains a basis for F as a Q-vector
space, hence a subgroup ∼= Z[F:Q].

(ii) Assuming that OF
∼= Z[F:Q] (and F ∼= Q[F:Q]),34 we have that

I ∼= Z[F:Q], with basis spanning F/Q.

(b) Let K = Q[
√

d], and I ⊂ OK be a nonzero ideal. Then as an additive
abelian group, I = 〈γ, δ〉, for some γ, δ ∈ OK; and, moreover, I = (γ, δ).

PROOF. (a) (i) If β1, . . . , βn (n = [F:Q]) is a basis for F/Q, then I
claim that there exists b ∈ Z such that bβi ∈ OF (∀i). To see this, note
that each βi satisfies some monic rational polynomial equation, as F
is algebraic over Q. Taking b to be the product of all denominators
of the coefficients of this equation, the bβi will satisfy equations with
integer coefficients:

βd + a1
b1

βd−1 + a2
b2

βd−2 + · · ·+ ad
bd

= 0

=⇒ (bβ)d

bd + a1
b1bd−1 (bβ)d−1 + a2

b2bd−2 (bβ)d−2 + · · ·+ ad
bd

= 0

=⇒ (bβ)d + a1
b
b1
(bβ)d−1 + a2

b2

b2
(bβ)d−2 + · · ·+ ad

bd

bd
= 0.

Next, taking any α ∈ I\{0}, each bβiα ∈ I; and since (in F) mul-
tiplication by αb is invertible, the {bβiα} cannot satisfy a nontrivial
Q-linear relation (without contradicting linear independence of the
{βi}). So I contains a Zn.

(ii) Applying II.K.4 to I ≤ OF
∼= Zn gives I ∼= Zm for some

m ≤ n. Applying it to the result of (i) (that I contains a subgroup
isomorphic to Zn) gives n ≤ m. So m = n.

(b) We have OK
∼= 〈1,

√
d〉 or 〈1, 1+

√
d

2 〉, in either case isomorphic
to Z2 as an abelian group. So (a)(ii) yields I ∼= Z2; and writing
I = 〈γ, δ〉 (Z-linear combinations of γ, δ), we clearly have I ⊂ (γ, δ)

(OK-linear combinations). Since γ, δ ∈ I and I is an ideal, we also
have I ⊃ (γ, δ). �

33We have yet to check that this is a ring, except for F = Q[
√

d].
34These will turn out to be always true (as we already know for quadratic fields).


