III.K. Gauss's lemma and polynomials over UFDs

Let *R* be a UFD, and $F := \mathfrak{F}(R)$ its field of fractions. Recall that $R[x]^* = R^*$ and $F[x]^* = F^* = F \setminus \{0\}$.

III.K.1. DEFINITION. (i) Given $f = \sum_{k=0}^{n} a_k x^k \in R[x]$, the **content** of *f* (defined up to units) is $c(f) := \text{gcd}(\{a_k\}) \in R$.

(ii) *f* is **primitive** if $c(f) \sim 1$. Notice that monic polynomials are primitive.

Clearly in general $f = c(f) \cdot g$, with *g* primitive, since

$$c(f) = \gcd(\{a_k\}) = c(f) \cdot \gcd(\{\frac{a_k}{c(f)}\}) \implies \gcd(\{\frac{a_k}{c(f)}\}) = 1.$$

,

III.K.2. PROPOSITION. *Given* $f \in F[x] \setminus \{0\}$ *, we have*

(III.K.3)
$$f = \alpha g, \text{ with } \begin{cases} g \in R[x] \text{ primitive} \\ \alpha \in F^* \end{cases}$$

in which g is unique up to multiplication by units (i.e. R^*).

III.K.4. REMARK. One way we will apply this is via

(III.K.5)
$$\begin{cases} f = \alpha g \\ f, g \text{ both primitive } \in R[x] \implies \alpha \in R^*. \\ \alpha \in F^* \end{cases}$$

This follows from III.K.2 since $1 \cdot f = f = \alpha \cdot g$ gives two decompositions of the form (III.K.3), so that the uniqueness implies that $f = g \cdot$ unit. More loosely, (III.K.5) says that "two primitive polynomials which are associate in F[x] are associate in R[x]."

PROOF OF III.K.2. Write $f = \sum_{k=0}^{n} \frac{a_k}{b_k} x^k$, $a_k \in R$, $b_k \in R \setminus \{0\}$. Let $\beta := \prod_k b_k$, so that $\beta f \in R[x]$, and $\gamma := c(\beta f)$. Then $g := \frac{\beta}{\gamma} f \in R[x]$ is primitive and $f = \frac{\gamma}{\beta} g$. If $\alpha' g' = f = \alpha g$ with g, g' primitive, then

$\exists b \in R \text{ such that}$

$$ab, a'b \in R \implies \underbrace{(ab)g}_{\text{content } ab} = \underbrace{(a'b)g'}_{\text{content } a'b}$$
$$\implies ab \sim a'b$$
$$\implies uab = a'b \quad (u \in R^*)$$
$$\implies abg = uabg'$$
$$\implies g = ug'$$
$$\implies g \sim g',$$

which completes the proof.

The following basic result goes back to Gauss's Disquisitiones Arithmeticae (c. 1800).

III.K.6. GAUSS'S LEMMA (v. 1.0). $f,g \in R[x]$ primitive $\implies fg$ primitive.

PROOF. Write $f = \sum_{i=0}^{n} a_i x^i$, $g = \sum_{j=0}^{m} b_j x^j$, $fg = \sum_{k=0}^{m+n} c_k x^k$, and *suppose that* $c(fg) \notin R^*$ (aiming for a contradiction). Let $r \mid c(fg)$ be irreducible. Since *R* is a UFD, *r* is also prime.

As *f* [resp. *g*] is primitive, *r* cannot divide all the a_i [resp. b_j], and so there exists a *least* i_0 [resp. j_0] such that $r \nmid a_{i_0}$ [resp. $r \nmid b_{j_0}$]. Since *r* is prime, we have $r \nmid a_{i_0}b_{j_0}$. On the other hand, $r \mid \sum_{\ell < i_0} a_\ell b_{i_0+j_0-\ell}$ and $r \mid \sum_{\ell > i_0} a_\ell b_{i_0+j_0-\ell}$, so that

$$r \nmid (\sum_{\ell < i_0} a_\ell b_{i_0+j_0-\ell} + a_{i_0} b_{j_0} + \sum_{\ell > i_0} a_\ell b_{i_0+j_0-\ell}) = c_{i_0+j_0}.$$

This contradicts the assumption that *r* divides c(fg). Conclude that $c(fg) \in R^*$ and fg is primitive.

Now let $h \in R[x] \setminus R$ be a polynomial of positive degree.

III.K.7. GAUSS'S LEMMA (v. 2.0). *h* is irreducible in $R[x] \iff h$ is primitive (in R[x]) and irreducible in F[x].

PROOF. (\Leftarrow): If *h* is reducible in R[x], then we have h = fg with $f,g \notin R[x]^* = R^*$. Assume deg $(f) \leq deg(g)$. Then either

 $\deg(f) = 0$ and $f \mid c(h) \implies c(h) \approx 1$, or $\deg(f) > 0 \implies h$ reducible in F[x].

 (\implies) : If *h* is irreducible in R[x], then obviously *h* is primitive. Let h = fg in F[x], with f, g both of positive degree. By III.K.2, $f = \alpha f_0, g = \beta g_0$ (with $f_0, g_0 \in R[x]$ primitive, and $\alpha, \beta \in F^*$) \implies $h = \alpha \beta f_0 g_0$. By III.K.6, $f_0 g_0$ is primitive. By (III.K.5), $f_0 g_0 \sim h \implies$ $\alpha \beta \in R^* \implies h = (\alpha \beta f_0) g_0$ is reducible in R[x], a contradiction. \Box

Recall that we are assuming *R* is a UFD.

III.K.8. THEOREM.
$$R[x]$$
 is a UFD. (In particular, $\mathbb{Z}[x]$ is one.)

So uniqueness of factorization is stable under adjoining indeterminates, unlike the property of having all ideals be principal.

III.K.9. COROLLARY. $R[x_1, ..., x_n]$ is a UFD. (So for \mathbb{F} any field, $\mathbb{F}[x_1, ..., x_n]$ is one.)

In particular, $F[x_1, ..., x_n]$ is a UFD, which is fortunate since otherwise algebraic geometry would have no chance of working!

PROOF OF III.K.9. Recall that F[x] is a UFD. Given $f \in R[x] \setminus \{0\}$, we have

f = c(f)g	$(g \in R[x] \text{ primitive})$
$= c(f)g_1\cdots g_k$	$(g_j \in F[x] \text{ irreducibles})$
$= c(f)(\beta_1 f_1) \cdots (\beta_k f_k)$	$(\beta_j \in F^*, f_j \in R[x] \text{ primitive})$
$= c(f)\beta f_1\cdots f_k$	$(f_1 \cdots f_k \text{ primitive by III.K.6,}$ hence $\beta \in R^*$ by (III.K.5))
$= \alpha_1 \cdots \alpha_\ell f_1 \cdots f_k$	$(\alpha_i \in R \text{ irreducible})$

where the last step is possible because *R* is a UFD. Clearly the α_i are irreducible in *R*[*x*], and by III.K.7, so are the f_i .

Now we must show the essential uniqueness of this factorization. If $f = \alpha'_1 \cdots \alpha'_{\ell'} f'_1 \cdots f'_{k'}$ (deg $(\alpha'_i) = 0$, deg $(f'_j) > 0$) is another factorization into irreducibles in R[x], then III.K.7 \implies the f'_j are irreducible in F[x] and primitive, whence (by III.K.6) $f'_1 \cdots f'_{k'}$

174

is primitive. So we get $\alpha_1 \cdots \alpha_\ell \sim \alpha'_1 \cdots \alpha'_{\ell'}$ and $f'_1 \cdots f'_{k'} \sim f_1 \cdots f_k$ by III.K.2. Since *R* is a UFD, $\ell = \ell'$ and $\alpha'_i \sim \alpha_{\sigma(i)}$ (in *R*, hence in *R*[*x*]) for some $\sigma \in \mathfrak{S}_\ell$. And because *F*[*x*] is a UFD, k = k' and $f'_j \sim f_{\pi(j)}$ (in *F*[*x*], hence in *R*[*x*] by III.K.2) for some $\pi \in \mathfrak{S}_k$.

III.K.10. COROLLARY. Let $f \in R[x]$ be primitive, $g \in R[x] \setminus \{0\}$, and $f \mid g$ in F[x]. Then $f \mid g$ in R[x].

PROOF. Using III.K.9, write $g = \alpha_1 \cdots \alpha_j g_1 \cdots g_k$, with $\alpha_i \in R$ irreducible and $g_j \in R[x]$ irreducible of positive degree. By III.K.7, the g_j are primitive, and irreducible in F[x]. Hence we may write $g = (\alpha_1 \cdots \alpha_j g_1)g_2 \cdots g_k$ as a product of irreducibles in F[x].

Since $f \mid g$ in F[x] (and F[x] is a UFD), we have $f = \beta g_{i_1} \cdots g_{i_r}$ for some $\beta \in F^*$ and $\{i_1, \ldots, i_r\} \subseteq \{1, \ldots, k\}$; note that $g_{i_1} \cdots g_{i_r}$ is primitive by III.K.6. Since f is also primitive, applying III.K.5 gives $\beta \in R^*$. So $f \mid g$ in R[x].

III.K.11. COROLLARY. Given $g \in R[x]$ monic, $f \in F[x]$ monic dividing g (in F[x]). Then $f \in R[x]$.

PROOF. Write (by III.K.2) $f = \alpha h$, with $h \in R[x]$ primitive and $\alpha \in F^*$. Then h|g in F[x], and so (by III.K.10) h|g in R[x]. Accordingly, we write g = hG, with $G \in R[x]$. Since the highest coefficient of g is 1, the highest coefficients of h and G must be units, say $u_h, u_G \in R^*$. But then f monic $\Longrightarrow \alpha = u_h^{-1}$, and so $f \in R[x]$.

The main application of these results for now is to proving irreducibility for polynomials over Q.

III.K.12. COROLLARY. If $f \in \mathbb{Z}[x]$ is monic, then all rational roots are integers.

PROOF. If $q \in \mathbb{Q}$ is a root, then (by III.G.16) x - q divides f in $\mathbb{Q}[x]$. By III.K.11, x - q must belong to $\mathbb{Z}[x]$, i.e. $q \in \mathbb{Z}$.

III.K.13. EXAMPLE. We claim that $f = x^3 - 3x - 1$ is irreducible in $\mathbb{Q}[x]$. By III.K.7, it suffices to show irreducibility in $\mathbb{Z}[x]$. If it factored there, it would have a linear factor, necessarily x + 1 or x - 1 (why?). But f(1) = -3 and f(-1) = 1 are both nonzero.

III. RINGS

III.K.14. EISENSTEIN'S IRREDUCIBILITY CRITERION. If $f(x) = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x]$, and there exists a prime p such that $p|a_i$ (for $i = 0, \ldots, n-1$), $p \nmid a_n$ and $p^2 \nmid a_0$, then f is irreducible in $\mathbb{Q}[x]$.

PROOF. First notice that if *f* is not primitive, then $p \nmid c(f)$, and $\tilde{f} := \frac{f}{c(f)}$ is primitive and still satisfies the hypotheses. Moreover, if \tilde{f} is irreducible in $\mathbb{Q}[x]$, so is *f*. So we may assume for the rest of the proof that *f* is primitive.

By III.K.7, it suffices to show that f is irreducible in $\mathbb{Z}[x]$. Suppose that f = gh where $g = b_0 + \cdots + b_r x^r$ and $h = c_0 + \cdots + c_s x^s$. Since f is primitive, r and s are both positive, and the assumptions yield:

- $p \mid b_0c_0$ but $p^2 \nmid b_0c_0$ hence (swapping *g* and *h* if needed) $p \nmid c_0$ and $p \mid b_0$; and
- $p \nmid b_r c_s$ hence $p \nmid b_r$.

Let i_0 denote the least integer i for which $p \nmid b_i$. Since $0 < i_0 \le r < n$ we have

$$p \mid a_{i_0} = \underbrace{c_0 b_{i_0}}_{p \nmid} + \underbrace{c_1 b_{i_0-1} + \dots + c_{i_0} b_0}_{p \mid}$$

which is a contradiction.

III.K.15. EXAMPLE. To see that $f = x^n - p$ is irreducible in $\mathbb{Q}[x]$, simply note that the hypotheses of III.K.14 hold: p does not divide the coefficient of x^n , but divides all other coefficients, with p^2 not dividing the constant term.

The last two examples show that if $\theta \in \mathbb{R}$ satisfies $\theta^3 - 3\theta - 1$ [resp. $\theta^n = p$] then

$$\mathbb{Q}[\theta] \cong \mathbb{Q}[x] / (x^3 - 3x - 1) \quad [\text{resp.} \cong \mathbb{Q}[x] / (x^n - p)]$$

is a field, using the fact that $\mathbb{Q}[x]$ is a PID (cf. III.H.8). Since $\mathbb{Z}[x]$ is a UFD, the corresponding quotients of $\mathbb{Z}[x]$ are domains by III.I.13.

176