172 IIL. RINGS
IIILK. Gauss’s lemma and polynomials over UFDs

Let R be a UFD, and F := §(R) its field of fractions. Recall that
R[x]* = R* and F[x]* = F* = F\{0}.

II1.K.1. DEFINITION. (i) Given f = Y{_,ax* € R[x], the content
of f (defined up to units) is ¢(f) := ged({ar}) € R.

(ii) f is primitive if ¢(f) ~ 1. Notice that monic polynomials are
primitive.

Clearly in general f = c(f) - g, with g primitive, since
(f) = ged({a}) = c(f) - ged({)) — ged({2}) = 1.

II1.K.2. PROPOSITION. Given f € F[x]\{0}, we have

. g € R[x] primitive
IIL.K.3 =g, with
(IILK.3) f=uag, wi {a c

4

in which g is unique up to multiplication by units (i.e. R*).

[I.K.4. REMARK. One way we will apply this is via
f=ag8
(II.K.5) f,gboth primitive € R[x] = a€R".
n € F*

This follows from IILLK2 since 1 f = f = a - g gives two decom-
positions of the form (IILK.3), so that the uniqueness implies that
f = g - unit. More loosely, (IIL.LK.5) says that “two primitive polyno-
mials which are associate in F[x] are associate in R[x].”

PROOF OF IILK.2. Write f = Y3 f5x¥, ax € R, by € R\{0}. Let
B := Tl by, so that Bf € R[x]|, and v := c(Bf). Then g := gf € R[x]
is primitive and f = 4g. If a’¢’ = f = ag with g, ¢’ primitive, then
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3b € R such that

ab,a’'b e R = (ab)g = (a'b)g’
—— ——
contentab  content a’b

ab ~ a'b

uab = a'b (u € R*)
abg = uabg’

g =ug

g~g,

Lei il

which completes the proof. 0

The following basic result goes back to Gauss’s Disquisitiones
Arithmeticae (c. 1800).

III.K.6. GAUSS’S LEMMA (v. 1.0). f,¢ € R[x] primitive — fg
primitive.

PROOF. Write f = Y ja;x', ¢ = Y bixl, fg = Y cpxk, and
suppose that c(fg) ¢ R* (aiming for a contradiction). Let 7 | c(fg) be
irreducible. Since R is a UFD, r is also prime.

As f [resp. g]is primitive, r cannot divide all the a; [resp. b]-], and
so there exists a least ij [resp. jo] such that r { a;, [resp. r { bj)]. Since
r is prime, we have r { a;)b;;. On the other hand, r | ¥/; a¢bi;+j,—¢
and r | Yy, a¢big1j,—¢, s0 that

71 (Zecig@ebigrjo—e + aigbjy + Losig@ebigrjo—e) = Cigtjo-

This contradicts the assumption that r divides c(fg). Conclude that
c(fg) € R* and fg is primitive. O

Now let 1 € R[x]\R be a polynomial of positive degree.

III.K.7. GAUSS’S LEMMA (v. 2.0). h is irreducible in R[x] <= h s
primitive (in R[x]) and irreducible in F|x|.

PROOF. ( <= ): If h is reducible in R[x|, then we have h = fg
with f,¢ ¢ R[x]* = R*. Assume deg(f) < deg(g). Then either
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deg(f) = 0and f | c(h) = c(h) = 1, or deg(f) >0 = h
reducible in F[x].

( = ): If h is irreducible in R[x], then obviously / is primitive.
Let h = fg in F[x]|, with f,g both of positive degree. By IIL.K.2,
f = afo, § = Bgo (with fy,go € R[x] primitive, and o, § € F*) —
h = aBfogo. By IILK.6, fogo is primitive. By (IILK.5), fogo ~ h =
ap € R* = h = («Bfo)go is reducible in R[x], a contradiction. [

Recall that we are assuming R is a UFD.
II1.K.8. THEOREM. R[x] is a UFD. (In particular, Z|x| is one.)

So uniqueness of factorization is stable under adjoining indeter-
minates, unlike the property of having all ideals be principal.

II1.K.9. COROLLARY. R[x1,...,xy] is a UFD. (So for [F any field,
F(xq,...,x,] is one.)

In particular, F[xy, ..., x,] is a UFD, which is fortunate since oth-
erwise algebraic geometry would have no chance of working!

PROOF OF III.K.9. Recall that F[x]isa UFD. Given f € R[x]\{0},
we have

f=cflg (¢ € R[x] primitive)
=c(f)g1- - 8k (8; € F[x] irreducibles)

—c(A)(Br1fi) - (Befi) (B € F', f; € R[x] primitive)

_ . (f1- - - fx primitive by IILK.6,
=c(f)Bfr-- fi hence B € R* by (ILK5)

=wa1---apf1 fx (a; € R irreducible)

where the last step is possible because R is a UFD. Clearly the «; are
irreducible in R[x], and by IIL.K.7, so are the f;.

Now we must show the essential uniqueness of this factoriza-
tion. If f = aj---ajfi- - f (deg(aj) = 0, deg(f;) > 0) is an-
other factorization into irreducibles in R[x], then ILK.7 = the
f} are irreducible in F[x] and primitive, whence (by IILK.6) f1 - - - i,
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is primitive. So we get aq ---ap ~ &} ---aj and f1- - fl, ~ fio- fi
by IILK.2. Since Risa UFD, £ = ¢’ and &} ~ a,(;) (in R, hence in R [x])
for some ¢ € &,. And because F[x| is a UFD, k = k’ and f]-’ ~ frii)
(in F[x], hence in R[x] by IILK.2) for some 77 € &y. O

II1.K.10. COROLLARY. Let f € R[x]| be primitive, ¢ € R[x]\{0}, and
f | gin F[x]. Then f | gin R[x].

PROOF. Using IILK.9, write ¢ = a71---a;g1- - g, with a; € R
irreducible and g; € R[x] irreducible of positive degree. By IIL.K.7,
the g; are primitive, and irreducible in F[x]. Hence we may write
g = (&1---ajg1)8g2 - - g as a product of irreducibles in Fx].

Since f | g in F[x| (and F[x] is a UFD), we have f = Bg; ---gi,
for some B € F* and {iy,...,i;} € {1,...,k}; note that g; ---g; is
primitive by IIL.K.6. Since f is also primtive, applying IIL.K.5 gives
B € R*. So f|gin R[x]. O

IIT.K.11. COROLLARY. Given g € R[x] monic, f € F[x] monic divid-
ing g (in F[x]). Then f € R[x].

PROOF. Write (by ILLK.2) f = ah, with h € R[x| primitive and
a € F*. Then h|g in F[x], and so (by II1.K.10) |g in R[x]. Accordingly,
we write ¢ = hG, with G € R[x]. Since the highest coefficient of g is
1, the highest coefficients of h and G must be units, say uj, ug € R*.
But then f monic = a = u; ', and so f € R[x]. O

The main application of these results for now is to proving irre-
ducibility for polynomials over Q.

III.K.12. COROLLARY. If f € Z|[x] is monic, then all rational roots
are integers.

PROOF. If g € Q is a root, then (by IIL.G.16) x — g divides f in
Q[x]. By IILK.11, x — g must belong to Z[x|, i.e. g € Z. O

IIL.K.13. EXAMPLE. We claim that f = x® — 3x — 1 isirreducible in
Q[x]. By III.K.7, it suffices to show irreducibility in Z[x]. If it factored
there, it would have a linear factor, necessarily x 41 or x — 1 (why?).
But f(1) = —3 and f(—1) = 1 are both nonzero.
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II1.K.14. EISENSTEIN’S IRREDUCIBILITY CRITERION. If f(x) = ag +
mx + - +apx™ € Z[x|, and there exists a prime p such that p|a; (for
i=0,...,n—1), pta,and p?{ ag, then f is irreducible in Q[x].

PROOF. First notice that if f is not primitive, then p { ¢(f), and
f= c(fT is primitive and still satisfies the hypotheses. Moreover, if
f is irreducible in Q[x], so is f. So we may assume for the rest of the
proof that f is primitive.

By IIL.K.7, it suffices to show that f is irreducible in Z|x]. Suppose
that f = ghwhereg =bop+---+bx"and h = co+ - - - + csx°. Since
f is primitive, r and s are both positive, and the assumptions yield:
e p | boco but p? { bycy hence (swapping ¢ and & if needed) p 1 co
and p | bp; and
e ptb.cs hence p 1 by.

Let iy denote the least integer i for which p { b;. Since 0 < iy <7 <n

we have
p } aj, = CObz’o -+ C1bi0_1 + -+ CiObO
~— N ~ ~
pf Pl
which is a contradiction. O

IIT.K.15. EXAMPLE. To see that f = x" — p is irreducible in Q[x],
simply note that the hypotheses of II1.K.14 hold: p does not divide
the coefficient of x”, but divides all other coefficients, with p2 not
dividing the constant term.

The last two examples show that if § € R satisfies 6> — 30 — 1
[resp. 0" = p] then
QO] 2 Q[x]/(x* —3x —1) [resp. 2 Q[x]/(x" — p)]

is a field, using the fact that Q[x] is a PID (cf. IIL.H.8). Since Z|[x] is a
UFD, the corresponding quotients of Z[x| are domains by IIL1.13.



