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III.L. Algebraic number rings

Let F = Q[u1, . . . , un] be an algebraic field extension of Q, and
OF ⊂ F the subset of algebraic integers in F, i.e. elements which are
roots of monic polynomials with coefficients in Z. We begin this sec-
tion by making good on a promise from III.E.8, namely showing that
OF is a ring. One has to be more clever than to attack this directly;
try to check directly that 3

√
5 + 1+

√
17

2 − 3i is an algebraic integer!
Consider an element α ∈ F, with minimal polynomial mα ∈ Q[x].

Recall that this is the unique monic generator of Iα := ker{evα : Q[x]→
F}, or equivalently the lowest-degree (nontrivial, monic) polynomial
over Q having α as a root. Here it is crucial that Q[x] is a PID.

III.L.1. THEOREM. The following are equivalent:
(i) α ∈ OF

(ii) mα ∈ Z[x]
(iii) Z[α] is a finitely generated abelian group

(i.e., Z[α] = Z + αZ + α2Z + · · ·+ αn−1Z for some n ∈N)
(iv) There exists a nontrivial f.g. abelian subgroup G ≤ Q[α] closed under
multiplication by α.

PROOF. We do this “merry-go-round” style:

(i) =⇒ (ii): By definition of OF, there exists a monic f ∈ Z[x] with
f (α) = 0. Then f ∈ Iα = (mα) ⊂ Q[x] =⇒ f = mαg for some
g ∈ Q[x]. But now since f and mα are monic, f ∈ Z[x], and mα| f , we
have mα ∈ Z[x] by III.K.11.

(ii) =⇒ (iii): Let n = deg(mα), so that

mα(x) = xn + an−1xn−1 + · · ·+ a0, ai ∈ Z.

Then mα(α) = 0 =⇒

αn = −an−1αn−1 − · · · − a0 ∈ 〈1, α, α2, . . . , αn−1〉,

where the RHS denotes the additive abelian subgroup of F generated
by these elements. Inductively let m > n, and assume we know that
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αk ∈ 〈1, α, . . . , αn−1〉 for k ≤ m− 1. Then

αm = αm−n · αn ∈ 〈αm−n, αm−n+1, . . . , αm−1〉 ≤ 〈1, α, α2, . . . , αn−1〉.

Hence Z[α] = 〈1, α, . . . , αn−1〉 as a group.

(iii) =⇒ (iv): Take G = Z[α]. Then

αG = αZ[α] = 〈α, α2, . . . , αn〉 ≤ 〈1, α, . . . , αn−1〉 = Z[α] = G.

(iv) =⇒ (i): Let G = 〈γ1, . . . , γr〉 ≤ Q[α] be a finitely generated
abelian subgroup. By assumption on G, we can express

αγi =
r

∑
j=1

µijγj (i = 1, . . . , r) with µij ∈ Z.

Rewriting this in matrix form35 gives

α

γ1
...

γr

 =

µ11 · · · µ1r
... . . . ...

µr1 · · · µrr


︸ ︷︷ ︸

µ(α)

γ1
...

γr



and we see that α is an eigenvalue of µ(α), hence a root of the char-
acteristic polynomial f (x) := det(xIr − µ(α)). Now simply observe
that f is monic and belongs to Z[x]. �

III.L.2. COROLLARY. OF is a subring of F, called the ring of integers
of F (or simply an algebraic number ring).

PROOF. We need only check closedness of OF under addition
and multiplication. Let α, β ∈ OF. Then Z[α] and Z[β] are finitely
generated, from which it follows that Z[α, β] is also finitely gener-
ated. More concretely, if Z[α] = Z + αZ + · · ·+ αn−1Z and Z[β] =

Z + βZ + · · ·+ βm−1Z, then Z[α, β] = Z[α][β] = ∑n−1
i=0 ∑m−1

j=0 αiβjZ.
Both Z[α + β] and Z[αβ] are additive subgroups of Z[α, β], and so

35The vectors here belong to the vector space Q[α]r over the field Q[α], and the re-
sult we are using from linear algebra works over any field: given M~v = λ~v, clearly
~v is in the kernel of left-multiplication by λIr − M, which means the columns of
the latter are dependent and hence that its determinant is zero.



III.L. ALGEBRAIC NUMBER RINGS 179

are themselves finitely generated (cf. II.K.4). By III.L.1, α + β and αβ

belong to OF. �

III.L.3. EXAMPLE. In HW, you’ll show that the pth cyclotomic
polynomial xp−1 + xp−2 + · · ·+ 1 is irreducible (for p an odd prime).

In C[x], this factors as ∏
p−1
k=1 (x− ζk

p) where ζp = e
2πi

p . So all powers
of ζp are algebraic integers, and Z[ζp] ⊆ OQ[ζp]. The field Q[ζp] ∼=
Q[x]/(xp−1 + xp−2 + · · ·+ 1) is called the pth cyclotomic field.

Given an arbitrary element α = a0 + a1ζp + · · · + ap−2ζ
p−2
p ∈

OQ[ζp], we know from III.L.1 that the minimal polynomial has inte-
ger coefficients. In fact, one can use Galois theory to show that all
the ai must be integers, hence that Z[ζp] = OQ[ζp]. We will prove
this next semester, along with the

III.L.4. PROPOSITION (Kummer). If u ∈ Z[ζp]∗, then u/ū is a root
of unity.

I am stating these results now because we will refer to them in an
application at the end of the section.

Integral ideals. Now write, given a number field K, I(K) for its
monoid of integral ideals (i.e. nonzero ideals I ⊂ OK). Slightly chang-
ing notation,36 we write J (K) for the fractional ideals a = λI (λ ∈ K∗,
I ∈ I(K)). Recall that a ∈ J (K) is invertible iff a · b = OK for some
b ∈ J (K).

We have seen that

(a) factorization into irreducibles is not necessarily unique, and
(b) irreducibles need not be prime

in a non-UFD OK. As we shall now see, replacing {O∗K,OK, K} by
{(1), I(K),J (K)}makes these problems disappear.

The proof of the next result requires Galois theory if K is a gen-
eral number field (as it involves introducing discriminants and ideal-
norms in general), so we shall assume it. However, I will explain
how it follows from what we already know when K is quadratic.

36This is instead of writing J (OK).
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III.L.5. THEOREM. (i) Maximal ideals I∈I(K) are invertible inJ (K).

(ii) There exists a homomorphism of monoids N : I(K)→N\{0} strictly
respecting inclusions: I ⊇ J =⇒ N(I) ≤ N(J) with equality iff I = J.

(iii) Every ideal I ∈ I(K) is finitely generated as an abelian group.

PROOF FOR K = Q[
√

d]. (i) We proved J (K) is a group when we
used Hurwitz’s theorem to show 1

N(I) Ĩ · I = (1).

(ii) We know N(I · J) = N(I) ·N(J). Now if I ⊃ J then Ĩ ⊃ J̃
=⇒ I Ĩ ⊃ J J̃ =⇒ (N(I)) ⊃ (N(J)) =⇒ N(I) | N(J) (which is
in fact stronger than N(I) ≤ N(J)). If also N(I) = N(J) =: m, then
Ĩ ⊇ J̃ =⇒

J = (1)J = 1
m I Ĩ J ⊇ 1

m J J̃ I = (1)I = I

hence I = J.
(iii) See Fact III.J.15, proved in III.J.17(b). �

III.L.6. REMARK. (a) From (i), it follows that any product of max-
imal ideals is invertible in J (K).

(b) In (iii), I is of rank [K:Q] as an abelian group, at least according
to unproved assertions in III.J.17.

(c) For any I ∈ I(K), the quotient OK/I is a finite abelian group.
One can define an ideal norm by N(I) := |OK/I|, which agrees with
the definition in the quadratic case.

III.L.7. LEMMA. Given I, J ∈ I(K), with I ⊃ J, and I invertible37 in
J (K). Then:
(i) I−1 J ∈ I(K);
(ii) I | J in I(K); and
(iii) I−1 J ⊃ J, with equality iff I = OK.

PROOF. (i) I ⊃ J =⇒ OK = I−1 I ⊃ I−1 J =⇒ I−1 J ∈ I(K).
(ii) I | I · I−1 J = J.
(iii)OK ⊃ I =⇒ (OK·) I−1 J ⊃ I · I−1 J = J. If I−1 J = J then αJ ⊂

J for each α ∈ I−1. Since J is finitely generated, say = 〈β1, . . . , βn〉,

37This is in fact always true. See III.L.10.
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we can write multiplication by α in this basis: [α]{β} =: µ(α), with
entries in Z. Set f (λ) := det(λI − µ(α)), which as before is monic
and integral. By Cayley-Hamilton, 0 = f (µ(α)) = [ f (α)]{β} =⇒
f (α) = 0 =⇒ α ∈ OK. Since α ∈ I−1 was arbitrary, we have
I−1 ⊂ OK =⇒ OK = I I−1 ⊂ IOK = I =⇒ I = OK. �

III.L.8. REMARK. Note that I(K)∗ — the invertible elements with
inverse in I(K) — is trivial (= {OK}). This is because if both I, I−1 ∈
I(K) then I I−1 = OK ⊃ I = IOK ⊃ I I−1 =⇒ I = OK. Hence the
natural definition of “irreducible element” I ∈ I(K),

“I = I1 I2 =⇒ I1 or I2 is invertible in I(K),”

becomes

“I = I1 I2 =⇒ one of I1 and I2 is just OK”

— no factoring at all. As mentioned at the end of §III.J, this is what
we will mean by an irreducible (integral) ideal.

III.L.9. THEOREM. Any J ∈ I(K) is a product of maximal ideals.

PROOF. Suppose otherwise, and choose J ∈ I(K) a non-product-
of-maximals of smallest possible N(J). Observe that J non-maximal
=⇒ ∃ I ∈ I(K) such that OK ) I ) J =⇒ N(I) < N(J) by
III.L.5(ii). By “minimality” of N(J), I must be a product of maximal
ideals; according to III.L.6(a), it is then invertible in J (K).

By III.L.7, since I is invertible and contains J, we must have I−1 J ∈
I(K), with I−1 J ) J (since I 6= OK) hence N(I−1 J) < N(J). Again
by “minimality” of N(J), I−1 J must be a product of maximal ideals,
which presents J = I · (I−1 J) itself as a product of maximals, a con-
tradiction. �

III.L.10. COROLLARY. (i) Any I ∈ I(K) is invertible in J (K).
(ii) J (K) is a group (abelian, of course).

PROOF. (i) Use III.L.5(i) and III.L.9.
(ii) Given a = λI, a−1 = λ−1 I−1 gives an inverse. �
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III.L.11. REMARK. The Corollary implies that Lemma III.L.7 doesn’t
need the invertibility hypothesis on I. So III.L.7(ii) simply reads

I ⊃ J ⇐⇒ I | J ,

that is, “to divide is to contain”. This is a different result than III.D.16,
but we will call it Caesar’s lemma as well.

Note in addition that for I ⊃ J, III.L.7 now gives J′ := I−1 J ∈
I(K), so that J = I J′. By multiplicativity of N, we get N(J) =

N(I)N(J′) hence N(I) | N(J).

Before stating the next (extremely important) result, recall that a
priori “℘ is a prime ideal” means

(III.L.12) ℘ 3 ab =⇒ ℘ 3 a or ℘ 3 b.

Suppose that ℘ contains I J but not I, and let ı0 ∈ I\(I ∩ ℘). Then
ı0  ∈ I J ⊂ ℘ (∀ ∈ J), hence all  ∈ J are in ℘ by (III.L.12); conclude
that ℘ ⊃ J. This gives an alternate characterization

(III.L.13) ℘ ⊃ I J =⇒ ℘ ⊃ I or ℘ ⊃ J

of primality of ℘, which is more suitable for the present context.

III.L.14. PROPOSITION. For ℘ ∈ I(K) proper (℘ ( OK), the follow-
ing are equivalent:
(a) ℘ is irreducible (in I(K): i.e., doesn’t factor at all);
(b) ℘ is a maximal ideal;
(c) ℘ is a prime ideal; and
(d) ℘ is a prime element in I(K) (℘ | I J =⇒ ℘ | I or ℘ | J).

PROOF. (a) =⇒ (b): If ℘ is non-maximal, it is a product of (multiple)
maximal ideals by III.L.9, and so is not irreducible.

(b) =⇒ (c): If ℘ is maximal, then OK/℘ is a field hence a domain,
and so ℘ is a prime ideal.

(c) =⇒ (d): Caesar.

(d) =⇒ (a): Suppose ℘ is a prime element of I(K), and that ℘ = I J
(I, J ∈ I(K)). Then ℘ | I or ℘ | J, say the former: I = ℘Q (Q ∈ I(K))
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=⇒ ℘ = I J = ℘Q J =⇒ N(℘) = N(℘)N(Q)N(J) in N. So
N(Q) = 1 = N(J), whence Q = OK = J by III.L.7(iii). So ℘ is
irreducible. �

Finally we come to the main point:

III.L.15. COROLLARY. Any ideal I ∈ I(K) has a unique factorization
(up to order) into prime ideals (hence into primes/irreducibles in I(K)).

PROOF. Existence of such a factorization follows from III.L.9 and
III.L.14, and one can give a direct proof of uniqueness using Cae-
sar and III.L.7. A more intuitive approach is to use [Jacobson, Thm.
2.21] extending our results on UFDs to unique factorization monoids.
We want to show I(K) is a UFM, so it suffices to check DCC and PC.
For DCC, use the norm N and III.L.5(ii); and PC follows immediately
from III.L.14. �

Here is a somewhat obvious but useful result:

III.L.16. COROLLARY. Let J ∈ I(K) have prime norm N(J) ∈ N.
Then J satisfies the equivalent conditions of III.L.14.

PROOF. We need only prove that J is maximal. To this end, sup-
pose otherwise and let J ( I ( OK. Then by III.L.5(ii), N(J) >

N(I) > 1 (= N(OK)). But by III.L.7 (cf. Remark III.L.11), we have
N(I)|N(J), a contradiction since N(J) is prime. �

The ideal class group. Next, we denote by PJ (K) ≤ J (K) the
subgroup of principal fractional ideals, i.e. those of the form (λ) :=
λOK, for λ ∈ K∗, and by

C `(K) := J (K)/PJ (K)

the ideal class group.38

III.L.17. DEFINITION. The class number of K is the order

hK := |C `(K)|

38As with J (K), this is a slight change in notation from III.F.16.
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of the ideal class group.39

III.L.18. THEOREM. OK is a PID ⇐⇒ hK = 1.

PROOF. By definition,OK is a PID if and only if all integral ideals
are principal, which is to say (i) I(K) = I(K) ∩ PJ (K). The class
number is 1 exactly when (ii) J (K) = PJ (K). Clearly (ii) implies (i)
by intersecting both sides with I(K). Moreover, given a ∈ J (K), we
have a = λI for some I ∈ I(K); if (i) holds, then I is principal, and
then so is a. Hence (i) implies (ii). �

Write [a] := a · PJ (K) for the coset (ideal class) of a fractional
ideal a. The identity element is [OK] = [(1)] =: e. Here are some
(mostly obvious) rules for working in C `(K):

III.L.19. PROPOSITION. Let I, J ∈ J (K).
(i) [I] = e ⇐⇒ I ∈ PJ (K) (I is principal).

(ii) [I] = [J] ⇐⇒ I · PJ (K) = J · PJ (K) ⇐⇒ I = (λ)J for some
λ ∈ K∗ ⇐⇒ (α)I = (β)J for some α, β ∈ OK\{0}.
(iii) [I][J] = [I J] (multiplication of cosets).
(iv) [I]−1 = [I−1].
(v) [I]m = e ⇐⇒ Im is principal.
(vi) I J = (α) ⇐⇒ [I]−1 = [J].

PROOF OF (VI). e =
(i)
[(α)] = [I J] =

(iii)
[I][J]. �

This is all very useful for solving (or showing insoluble) Dio-
phantine equations like X2 = Y3 − 14, as you will see in Problem
Set 10.

III.L.20. THEOREM. If the ring of integers OK of an algebraic number
field is a UFD, then it is a PID.

III.L.21. COROLLARY. hK = 1 ⇐⇒ OK PID ⇐⇒ OK UFD.

39This is always finite, a fact which we will not be able to prove (but see III.L.27
for the idea).



III.L. ALGEBRAIC NUMBER RINGS 185

PROOF OF III.L.20 FOR K = Q[
√

d]. Suppose that OK is a UFD.
To show that it is a PID (every ideal is principal), it will suffice to
prove that its prime ideals are principal, since (by III.L.14) every
ideal is a product of maximal ideals, and maximal ideals are prime.

So let ℘ ∈ I(K) be a prime ideal, and write N(℘) = ∏i σi for the
(unique) decomposition of its norm into irreducibles in OK. Since
OK is a UFD, these irreducibles σi are prime elements of OK, so that
the (σi) are prime ideals, and thus irreducible in I(K) by III.L.14.

By Hurwitz, ℘℘̃ = (N(℘)) =⇒ ℘ | (N(℘)) = ∏i(σi) =⇒ ℘ |
(σi) for some i (since ℘ ∈ I(K) is a prime element). By irreducibility
of (σi), we have ℘ = (σi), so that ℘ is principal as desired. �

III.L.22. REMARK. (a) In a non-UFD OK, the irreducible σi need
not be prime, and so the (σi) need not be irreducible as elements of
I(K). These principal ideals can and do split up into products of
(necessarily) non-principal prime ideals.

(b) The observation that ℘ | (N(℘)) does generalize to arbitrary
number fields; therefore, so does the above proof.

For all this to be useful for number theory, we need to be able to
compute class groups, which requires being able to find all the prime
ideals and then all the ideals of a given norm. Consider K = Q[

√
d]:

III.L.23. LEMMA. Let ℘ ∈ I(K) be a prime ideal. Then there exists a
unique prime p ∈N such that ℘ | (p). Hence, if p 6= 2 then

(III.L.24) ℘ =

{
℘p or ℘̃p if ( d

p ) = 0 or 1

(p) if ( d
p ) = −1

where in the first line ℘p := (p, m −
√

d) (and ℘̃p = (p, m +
√

d)) are
determined from d ≡

(p)
m2.

PROOF. Let N(℘) = ∏i pni
i be a prime factorization in N. As ℘ is

prime and ℘ | (N(℘)), we must have ℘ | (pi) for some pi =: p. So
N(℘) | N((p)) = p2 (for K quadratic) =⇒ N(℘) = p or p2.

If N(℘) = p, then (by Hurwitz) ℘℘̃ = (p), whence ℘ = ℘p or ℘̃p

since I(K) is a UFM. If N(℘) = p2, then (by III.L.5(ii)) ℘ = (p).
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For the uniqueness, if ℘ | (q) for some other prime q, we get
N(℘) = q or q2; hence q = p. �

If p = 2, the possibilities are a bit more complicated and depend
on the congruence class mod 8 (see Problem Set 10).

Continuing to assume K quadratic, we have the

III.L.25. PROPOSITION. Let I ∈ I(K) and suppose

N(I) = ∏
i

p`i
i ∏

j

′p
mj
j ∏

k

′′pnk
k

is a prime factorization (in N) with ( d
pi
) = 1, ( d

′pj
) = 0, and ( d

′′pk
) = −1.

Then the {nk} are even, and40

I = ∏
i

℘ai
i
℘̃`i−ai

i ∏
j

′℘j
mj ∏

k
(′′pk)

nk
2

with 0 ≤ ai ≤ `i.

PROOF. We have (′′pk) irreducible, (′pj) =
′℘2

j , (pi) = ℘i℘̃i, and

I | (N(I)) = ∏i ℘
`i
i
℘̃`i

i ∏j
′℘2mj

j ∏k(
′′pk)

nk . By uniqueness of fac-

torization in I(K), we have I = ∏i ℘
ai
i
℘̃bi

i ∏j
′℘cj

j ∏k(
′′pk)

dk where

ai, bi ≤ `i, cj ≤ 2mj, dk ≤ nk, and ∏i p`i
i ∏j

′p
mj
j ∏k

′′pnk
k = N(I) =

∏i pai+bi
i ∏j

′p
cj
j ∏k

′′p2dk
k . By uniqueness of factorization in N, ai +

bi = `i, cj = mj, and 2dk = nk. �

III.L.26. EXAMPLE. Let K = Q[
√
−29]. I claim thatOK = Z[

√
−29]

has an ideal of norm 5 and order 3 in C `(K).
Consider the integer prime p = 5: since −29 ≡

(5)
12, we have

(5) = (5, 1−
√
−29)(5, 1 +

√
−29) = ℘5℘̃5; and by the Proposition,

℘5, ℘̃5 are the only ideals of norm 5. Pell’s equation a2 + 29b2 = 5 is
insoluble, so ℘5 is non-principal and [℘5] is nontrivial.

On the other hand, a2 + 29b2 = 125 has solutions (±3,±2), and
so (β) := (3 + 2

√
−29) has norm 53. This gives (β) | (N((β))) =

(5)3 = ℘3
5℘̃

3
5 =⇒ (β) = ℘a

5℘̃
3−a
5 for some a ∈ {0, 1, 2, 3}.

40The notation here means for instance ℘̃ i = ℘̃ pi and ′℘ j = ℘ ′pj
.
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Now β = 5− 2(1−
√
−29) ∈ ℘5, so that (by Caesar) ℘5 | (β).

If also ℘̃5 | (β), then (5) = ℘5℘̃5 | (β) hence 5 | 3 + 2
√
−29, which

is visibly false.41 So we conclude that (β) = ℘3
5, hence that [℘5]

3 =

[℘3
5] = [(β)] = e as claimed. Note also that [℘̃5] = [℘5]

−1 = [℘5]
2

since [℘5][℘̃5] = [℘5℘̃5] = [(5)] = e.

III.L.27. REMARK. In order to compute C `(K) completely, one
uses the Minkowski bound: for each class τ ∈ C `(K), there exists a
representative I ∈ I(K) (i.e. [I] = τ) satisfying

N(I) ≤ BK :=
(

4
π

)r2 n!
nn

√
|∆K|,

where n = [K:Q] is the degree, r2 the number of pairs of conjugate
complex embeddings, and ∆K is the discriminant.42 By III.L.25 (and
its generalization to arbitrary number fields), it follows that there are
only finitely many ideal classes, so that hK < ∞.

Fermat’s equation. The foregoing is useful for treating Diophan-
tine equations, which are polynomial equations in one or more vari-
ables with integer coefficients, to which integer solutions are sought.
A particularly famous example is

(III.L.28) xp + yp = zp , p = prime > 3.

Of course, Fermat’s Last Theorem states that for any exponent n > 2,
the only solutions to xn + yn = zn are the “trivial” ones, with x or
y = 0. The cases n = 4 (Fermat) and 3 (Euler) were proved by
Fermat’s method of descent; and if one has the theorem for some n,
one has it for all exponents divisible by n (why?).

As you may know, the proof was ultimately completed by Wiles
in 1995, building on decades of work by many people on modularity
and Galois representations. What I want to discuss here is Kum-
mer’s big advance in the mid-19th Century, which led to the devel-
opment of ideals.

41That is, 3
5 + 2

5

√
−29 does not belong to Z[

√
−29].

42Say K = Q[
√

d]. Then n = 2; and r2 is 1 for d < 0 and 0 for d > 0. The
discriminant is 4d unless d ≡

(4)
1, in which case it is d.
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Suppose there exists a solution to (III.L.28) in relatively prime
x, y, z ∈ Z\{0}, none divisible by p.43 (In fact, x and y must also be
coprime; otherwise m | x, y =⇒ mp | zp =⇒ gcd(m, z) 6= 1 violates
the relative primality of x, y, z.) We will obtain a contradiction by
passing to the “cyclotomic” number ring Z[ζ], where ζ denotes a
primitive pth root of 1, and considering the equation

(III.L.29) (x + y)(x + yζ) · · · (x + yζ p−1) = zp.

We split the argument up into two cases.

Case 1: Z[ζ] a UFD. As the pth cyclotomic polynomial

(t− ζ) · · · (t− ζ p−1) =
tp − 1
t− 1

= 1 + t + · · ·+ tp−1

evaluates to p at t = 1,

(p) ⊂ (1− ζa) for each a = 1, . . . , p− 1.

Since it is irreducible over Q, it is the minimal polynomial of ζ, and
thus any element of K := Q[ζ] has a unique representation as a0 +

a1ζ + · · ·+ ap−2ζ p−2.
Let ω ∈ Z[ζ] = OK be a prime factor of x + yζ. By unique fac-

torization and (III.L.29), ω | z. If ω also divides x + yζa+1 (for some
a ∈ {1, . . . , p− 1}) then it divides the Z[ζ]-linear combination

ζ−1(x + yζ)− ζ−1(x + yζa+1) = y(1− ζa)

hence yp. Now in Z, gcd(z, yp) | gcd(z, y) · gcd(z, p) = 1 · 1 = 1
=⇒ zm + ypm = 1 for some n, m ∈ Z =⇒ ω | 1 =⇒ ω ∈ Z[ζ]∗, a
contradiction. So ω divides no other factor in LHS(III.L.29).

Since ω divides z, ωp | zp. No ω-factor can divide other factors
(of LHS(III.L.29)), so ωp | x + yζ. By uniqueness of the decompo-
sition of x + yζ into prime factors, and repeating the argument for

43There is a case where one of x, y, z is divisible by p, which (while more compli-
cated) can be treated by similar methods.



III.L. ALGEBRAIC NUMBER RINGS 189

each prime factor, we find that

x + yζ = uαp,

{
α ∈ Z[ζ]

u ∈ Z[ζ]∗.

Write α = a0 + a1ζ + · · ·+ ap−2ζ p−2.
Now we apply Kummer’s result III.L.4 that u/ū is a root of 1 in

Z[ζ], i.e. ±ζk for some k (we may assume u/ū = ζk). Modulo p, in
Z[ζ]/(p), we have by the “freshman’s dream”

αp ≡ ap
0 + ap

1 ζ p + · · ·+ ap
p−2ζ(p−2)p =

p−2

∑
i=0

ap
i =: a ∈ Zp.

Applying complex conjugation (which preserves the integer prime
(p)) to x + yζ = uαp ≡ ua gives x + yζ−1 ≡ ūa hence

ζk(x + yζ−1) =
u
ū
(x + yζ−1) ≡ ua ≡ x + yζ mod (p).

That is, p divides x + yζ − ζkx− ζk−1y in Z[ζ]. By uniqueness of the
representation of elements of Z[ζ], this is impossible unless k = 1.
So

p | (x− y) + ζ(y− x) =⇒ p | x− y =⇒ x ≡
(p)

y.

Writing xp + (−z)p = (−y)p, we obtain similarly x ≡
(p)
−z. But then

2xp ≡ xp + yp = zp ≡ −xp mod (p)

=⇒ p | 3xp, a contradiction.

Case 2: Z[ζ] not a UFD? Well, we aren’t going to prove Fermat’s
Last Theorem for all odd primes, so there must be a catch. But we
can still show non-existence of (nontrivial) solutions in some cases,
by reinterpreting (III.L.29) as an equation

(III.L.30) ((x + y)) ((x + yζ)) · · ·
(
(x + yζ p−1)

)
= (z)p

of ideals in Z[ζ]. We may further (uniquely!) factor both sides of
(III.L.30) into prime ideals. If some prime ideal ℘ ⊃ ((x + yζ)) (i.e.
℘ | ((x + yζ))), then it can’t contain/divide any other of the ideals
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on LHS(III.L.30). (Otherwise ℘ ⊃ (z, yp) = Z[ζ] as before.) Since
I(K) is a UFM, ℘ | (z) =⇒ ℘p | (z)p =⇒ ℘p | ((x + yζ)) and so

((x + yζ)) = Ip, I not necessarily principal.

Now suppose that p is a regular prime: that is,

p - hK (= hQ[ζp]).

In this case, if [I] 6= e ∈ C `(K), then by Lagrange we would have
[I]p 6= e ∈ C `(K), contradicting principality of ((x + yζ)). Therefore
I is principal: I = (α) for some α ∈ Z[ζ]. So ((x + yζ)) = (αp) hence
x + yζ = uαp and we proceed as in Case 1.

The first irregular prime is 37. The method described here essen-
tially settles Fermat for any smaller exponent (prime or not). Note
how deeply we dug into the ideal structure of Z[ζ] to deal with an
equation ostensibly in rational integers!


