III.I. Unique factorization domains

Let R be a commutative domain, and $\alpha \in R \backslash\{0\}$. We recall (cf. III.H.6) that
(III.I.1) $\quad \alpha$ is irreducible $\Longleftrightarrow(\alpha)$ is maximal in $\mathcal{P} \mathcal{P}(R)$.

We are interested in
(a) when $r \in R \backslash\{0\}$ can be expressed as a product of irreducibles, and
(b) when (and in what sense) such a factorization is unique.
III.I.2. DEFINITION. R satisfies the ascending chain condition for principal ideals (ACCPI) iff for each chain $I_{1} \subseteq I_{2} \subseteq \cdots$ in $\mathcal{P} \mathcal{P}(R)$, there exists $n \in \mathbb{N}$ such that $I_{m}=I_{n}$ for all $m \geq n$.
III.I.3. Remark. If $I_{k}=\left(a_{k}\right)$, this says that

$$
\cdots\left|a_{3}\right| a_{2} \mid a_{1} \Longrightarrow \exists n \in \mathbb{N} \text { such that } a_{m} \sim a_{n}(\forall m \geq n)
$$

That is, there are no infinite sequences $\left\{a_{i}\right\} \subseteq R$ where each a_{i+1} is a proper factor of $a_{i}\left(a_{i+1} \mid a_{i}\right.$ but $\left.a_{i} \nmid a_{i+1}\right)$. In this form, the ACCPI is known as the divisor chain condition (DCC), which is the terminology I'll use for both.
III.I.4. LEMMA. DCC holds \Longrightarrow every $I \in \mathcal{P} \mathcal{P}(R)$ is contained in a maximal element.

PROOF. $(a) \in \mathcal{P} \mathcal{P}(R) \Longrightarrow(a)$ maximal or $(a) \subsetneq\left(a^{\prime}\right)$. Rinse and repeat; DCC implies this terminates.
III.I.5. THEOREM. DCC holds \Longrightarrow any $r \in R \backslash\left(R^{*} \cup\{0\}\right)$ is a finite product of irreducibles.

Proof. Clearly $(r) \in \mathcal{P} \mathcal{P}(R)$. Assume r is not itself irreducible. Then (r) is not maximal in $\mathcal{P} \mathcal{P}(R)$, so that III.I. 4 gives a proper containment $(r) \subsetneq\left(a_{1}\right)$ in a maximal element $\left(a_{1}\right) \in \mathcal{P} \mathcal{P}(R)$; we thus have $r=a_{1} r_{1}$, with $r_{1} \in R \backslash\left(R^{*} \cup\{0\}\right)$. If r_{1} is not irreducible, repeat to get $\left(r_{1}\right) \subsetneq\left(a_{2}\right)$ maximal in $\mathcal{P} \mathcal{P}(R)$, which gives $r_{1}=a_{2} r_{2}$.

Suppose this process doesn't terminate. Then we obtain sequences

$$
\begin{cases}a_{1}, a_{2}, a_{3}, \ldots & \text { of irreducible elements } \\ r_{1}, r_{2}, r_{3}, \ldots & \text { of elements of } R \backslash\left(R^{*} \cup\{0\}\right)\end{cases}
$$

such that $r=a_{1} a_{2} \cdots a_{n} r_{n}(\forall n)$. Hence $r_{n}=r_{n+1} a_{n+1}$, with $a_{n+1} \notin$ R^{*}, so that $\left(r_{n}\right) \subsetneq\left(r_{n+1}\right)(\forall n)$, a contradiction by the DCC.

Conclude that for some n, r_{n} is irreducible, and $r=a_{1} a_{2} \cdots a_{n} r_{n}$ presents r as a product of irreducibles.
III.I.6. Definition. (i) Let $r \in R$. Two factorizations

$$
r_{1} \cdots r_{m}=r=s_{1} \cdots s_{n}
$$

into irreducibles are essentially equivalent if

$$
m=n \text { and } \exists \sigma \in \mathfrak{S}_{n} \text { such that } s_{i} \sim r_{\sigma(i)}(i=1, \ldots, n)
$$

(ii) R is a unique factorization domain (UFD) if
$\left\{\right.$ (a) every $r \in R \backslash\left(R^{*} \cup\{0\}\right)$ is a product of irreducibles, and (b) this product is essentially unique.
(iii) Given a UFD R and $r=r_{1} \cdots r_{n} \in R \backslash\left(R^{*} \cup\{0\}\right)$ (with r_{1}, \ldots, r_{n} irreducible), we define the length $\ell(r)$ to be n. (The length of a unit is defined to be 0 .) Clearly $\ell(r s)=\ell(r)+\ell(s)$ for all $r, s \in R \backslash\{0\}$.

Continuing for the time being with a general commutative domain R, we have the
III.I.7. Definition. An element $a \in R \backslash\left(R^{*} \cup\{0\}\right)$ is prime if

$$
a|b c \Longrightarrow a| b \text { or } a \mid c \text {. }
$$

(Note that this is the same as saying that (a) is a prime ideal.)
III.I.8. LEMMA. For $a \in R \backslash\left(R^{*} \cup\{0\}\right)$, a prime \Longrightarrow a irreducible.

Proof. Given $a \in R$ prime, suppose $a=b c$. Then $a \mid b$ or $a \mid c$. If $a \mid b$, we have $b=a r$ (for some $r \in R$) $\Longrightarrow a=\operatorname{arc} \Longrightarrow r c=1$ $\Longrightarrow c \in R^{*}$. Likewise, if $a \mid c$, then $b \in R^{*}$. So a is irreducible.

The converse does not hold in general:
III.I.9. EXAMPLE. In $\mathbb{Z}[\sqrt{10}]$, 3 is irreducible (by a norm argument, cf. III.D.6). But 3 is not prime:

$$
3 \mid 9=(1+\sqrt{10})(-1+\sqrt{10}),
$$

but 3 divides neither $1+\sqrt{10}$ nor $-1+\sqrt{10}$.
One way to think of all this is that for a principal ideal (a),

III.I.11. Definition. R satisfies the primeness condition (PC) if every irreducible element is also prime.
III.I.12. THEOREM. Let R be a commutative domain. Then

$$
R \text { is a UFD } \quad \Longleftrightarrow \quad R \text { satisfies DCC and PC. }
$$

PROOF. (\Longrightarrow) : Suppose given an ascending chain $\left(a_{1}\right) \subseteq\left(a_{2}\right) \subseteq$ \cdots in $\mathcal{P} \mathcal{P}(R)$; without loss of generality we may assume $\left(a_{1}\right) \neq\{0\}$. Then $\ell\left(a_{1}\right), \ell\left(a_{2}\right), \ldots$ is a non-increasing ${ }^{27}$ sequence in \mathbb{N}. So there exists an $n \in \mathbb{N}$ such that $(\forall m \geq n) \ell\left(a_{m}\right)=\ell\left(a_{n}\right)=: \ell$. Now

$$
\left(a_{m}\right) \supseteq\left(a_{n}\right) \Longrightarrow a_{m} \mid a_{n} \quad \Longrightarrow \quad a_{n}=a_{m} r
$$

and factoring into irreducibles gives

$$
a_{n, 1} \cdots a_{n, \ell}=a_{m, 1} \cdots a_{m, \ell}\left(r_{1}, \cdots r_{j} u\right)
$$

(where $u \in R^{*}$ and the rest are irreducible). By (essential) uniqueness, $j=0$ (i.e. $r \in R^{*}$) and after reordering $a_{n, i} \sim a_{m, i} \Longrightarrow a_{m} \sim a_{n}$ $\Longrightarrow\left(a_{m}\right)=\left(a_{n}\right)(\forall m \geq n)$. So DCC holds.

Next, if r is irreducible and $r \mid a b$, write $a b=r c$. If $a \in R^{*}$ then $r \mid b$, and if $b \in R^{*}$ then $r \mid a$; otherwise, write $a=a_{1} \cdots a_{k}$, $b=b_{1} \cdots b_{\ell}, c=c_{1} \cdots c_{m}$ (for factorizations into irreducibles), which

[^0]gives $a_{1} \cdots a_{k} b_{1} \cdots b_{\ell}=r c_{1} \cdots c_{m}$. By (essential) uniqueness, $r \sim$ some a_{i} or $b_{j} \Longrightarrow r \mid a$ or b. So r is prime, i.e. PC holds.
$(\Longleftarrow):$ Let $r \in R \backslash\left(R^{*} \cup\{0\}\right)$ be given. Since DCC holds, r is a product of irreducibles by III.I.5. To check the (essential) uniqueness, let $\mu(r)$ denote the minimum number of irreducible factors in such a product. If $\mu(r)=1$, then r is irreducible, and can't split as a product of more than one, so clearly uniqueness holds.

Suppose we have uniqueness for all r with $\mu(r)<M$, and let $\mu(r)=M$; write $r=r_{1} \cdots r_{M}$ for a (minimal length) factorization into irreducibles. By PC, the r_{i} are prime. If $r=s_{1} \cdots s_{N}$ is another factorization into irreducibles, then $r_{M}\left|s_{1} \cdots s_{N} \Longrightarrow r_{M}\right|$ some s_{j}, say s_{N}. Since s_{N} is irreducible (and $r_{M} \notin R^{*}$), we get $s_{N}=r_{M} u$ (for some $\left.u \in R^{*}\right)$, i.e. $r_{M} \sim s_{N}$. But now $r^{\prime}=\left(u^{-1} r_{1}\right) r_{2} \cdots r_{M-1}$ has $\mu\left(r^{\prime}\right)<M$ and $r^{\prime}=s_{1} \cdots s_{N-1}$. By induction, $M-1=N-1$ and (permuting factors if needed) $s_{j} \sim r_{j}(j=1, \ldots, M-1)$ and we are done.

In particular, in a UFD, prime and irreducible elements are the same thing. So we get the following analogue of III.H.8:
III.I.13. Corollary. Let R be a UFD, $\alpha \in R \backslash\left(R^{*} \cup\{0\}\right)$. Then $R /(\alpha)$ is a domain $\Longleftrightarrow \alpha$ is irreducible.

Proof. Combine III.F. 6 with the fact that (α) is prime iff α is.
III.I.14. EXAMPLES.
(A) All PIDs (and hence all Euclidean domains) are UFDs.
(B) $\mathbb{F}[x, y]$ and $\mathbb{Z}[x]$ are UFDs but (as we know) not PIDs.
(C) There is no number ring that is a UFD but not a PID.

We will prove (B) and (C) in $\S \S$ III.K-III.L; for now, here is the
Proof of (A). Consider an ascending chain $I_{1} \subseteq I_{2} \subseteq \cdots$ in $\mathcal{P} \mathcal{P}(R)$, and consider the ideal $J=\cup_{j \geq 1} I_{j} \subset R$. Since R is a PID, $J=(a)$ for some $a \in J$. But then $a \in I_{n}$ for some n, so $J=(a) \subset I_{n}$ $\Longrightarrow I_{m}=I_{n}$ for all $m \geq n$. So DCC holds.

Next suppose that $a \in R$ is irreducible, and $a \mid b c$ but $a \nmid b$. Then $b \notin(a) \Longrightarrow(a, b) \supsetneq(a)$. By (III.I.1), (a) is maximal in $\mathcal{P} \mathcal{P}(R)$. Since R is a PID, (a, b) is principal. So $(a, b)=R$. It follows that there exist $p, q \in R$ such that $a p+b q=1$; multiplying by c gives $a p c+b c q=c$. Since $a \mid b c$, we therefore have $a \mid c$. Conclude that a is prime. So PC holds, and III.I. 12 finishes the job.

[^0]: ${ }^{27}$ e.g. factor both sides of $a_{1}=a_{2} r$ into irreducibles to see $\ell\left(a_{2}\right) \leq \ell\left(a_{1}\right)$.

