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III.I. Unique factorization domains

Let R be a commutative domain, and α ∈ R\{0}. We recall (cf.
III.H.6) that

(III.I.1) α is irreducible ⇐⇒ (α) is maximal in PP(R).

We are interested in

(a) when r ∈ R\{0} can be expressed as a product of irreducibles,
and

(b) when (and in what sense) such a factorization is unique.

III.I.2. DEFINITION. R satisfies the ascending chain condition for
principal ideals (ACCPI) iff for each chain I1 ⊆ I2 ⊆ · · · in PP(R),
there exists n ∈N such that Im = In for all m ≥ n.

III.I.3. REMARK. If Ik = (ak), this says that

· · · | a3 | a2 | a1 =⇒ ∃n ∈N such that am ∼ an (∀m ≥ n).

That is, there are no infinite sequences {ai} ⊆ R where each ai+1 is a
proper factor of ai (ai+1 | ai but ai - ai+1). In this form, the ACCPI is
known as the divisor chain condition (DCC), which is the terminol-
ogy I’ll use for both.

III.I.4. LEMMA. DCC holds =⇒ every I ∈ PP(R) is contained in a
maximal element.

PROOF. (a) ∈ PP(R) =⇒ (a) maximal or (a) ( (a′). Rinse and
repeat; DCC implies this terminates. �

III.I.5. THEOREM. DCC holds =⇒ any r ∈ R\(R∗ ∪ {0}) is a finite
product of irreducibles.

PROOF. Clearly (r) ∈ PP(R). Assume r is not itself irreducible.
Then (r) is not maximal in PP(R), so that III.I.4 gives a proper con-
tainment (r) ( (a1) in a maximal element (a1) ∈ PP(R); we thus
have r = a1r1, with r1 ∈ R\(R∗ ∪ {0}). If r1 is not irreducible, repeat
to get (r1) ( (a2) maximal in PP(R), which gives r1 = a2r2.
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Suppose this process doesn’t terminate. Then we obtain sequences{
a1, a2, a3, . . . of irreducible elements
r1, r2, r3, . . . of elements of R\(R∗ ∪ {0})

such that r = a1a2 · · · anrn (∀n). Hence rn = rn+1an+1, with an+1 /∈
R∗, so that (rn) ( (rn+1) (∀n), a contradiction by the DCC.

Conclude that for some n, rn is irreducible, and r = a1a2 · · · anrn

presents r as a product of irreducibles. �

III.I.6. DEFINITION. (i) Let r ∈ R. Two factorizations

r1 · · · rm = r = s1 · · · sn

into irreducibles are essentially equivalent if

m = n and ∃ σ ∈ Sn such that si ∼ rσ(i) (i = 1, . . . , n).

(ii) R is a unique factorization domain (UFD) if{
(a) every r ∈ R\(R∗ ∪ {0}) is a product of irreducibles, and
(b) this product is essentially unique.

(iii) Given a UFD R and r = r1 · · · rn ∈ R\(R∗ ∪ {0}) (with r1, . . . , rn

irreducible), we define the length `(r) to be n. (The length of a unit
is defined to be 0.) Clearly `(rs) = `(r) + `(s) for all r, s ∈ R\{0}.

Continuing for the time being with a general commutative do-
main R, we have the

III.I.7. DEFINITION. An element a ∈ R\(R∗ ∪ {0}) is prime if

a | bc =⇒ a | b or a | c.

(Note that this is the same as saying that (a) is a prime ideal.)

III.I.8. LEMMA. For a ∈ R\(R∗ ∪ {0}), a prime =⇒ a irreducible.

PROOF. Given a ∈ R prime, suppose a = bc. Then a | b or a | c.
If a | b, we have b = ar (for some r ∈ R) =⇒ a = arc =⇒ rc = 1
=⇒ c ∈ R∗. Likewise, if a | c, then b ∈ R∗. So a is irreducible. �

The converse does not hold in general:
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III.I.9. EXAMPLE. In Z[
√

10], 3 is irreducible (by a norm argu-
ment, cf. III.D.6). But 3 is not prime:

3 | 9 = (1 +
√

10)(−1 +
√

10),

but 3 divides neither 1 +
√

10 nor −1 +
√

10.

One way to think of all this is that for a principal ideal (a),

(III.I.10) (a) maximal +3 (a) prime +3 (a) maximal
in PP(R)

a prime
��

OO

+3 a irreducible.
��

OO

III.I.11. DEFINITION. R satisfies the primeness condition (PC) if
every irreducible element is also prime.

III.I.12. THEOREM. Let R be a commutative domain. Then

R is a UFD ⇐⇒ R satisfies DCC and PC.

PROOF. ( =⇒ ): Suppose given an ascending chain (a1) ⊆ (a2) ⊆
· · · in PP(R); without loss of generality we may assume (a1) 6= {0}.
Then `(a1), `(a2), . . . is a non-increasing27 sequence in N. So there
exists an n ∈N such that (∀m ≥ n) `(am) = `(an) =: `. Now

(am) ⊇ (an) =⇒ am | an =⇒ an = amr

and factoring into irreducibles gives

an,1 · · · an,` = am,1 · · · am,`(r1, · · · rju)

(where u ∈ R∗ and the rest are irreducible). By (essential) unique-
ness, j = 0 (i.e. r ∈ R∗) and after reordering an,i ∼ am,i =⇒ am ∼ an

=⇒ (am) = (an) (∀m ≥ n). So DCC holds.
Next, if r is irreducible and r | ab, write ab = rc. If a ∈ R∗

then r | b, and if b ∈ R∗ then r | a; otherwise, write a = a1 · · · ak,
b = b1 · · · b`, c = c1 · · · cm (for factorizations into irreducibles), which

27e.g. factor both sides of a1 = a2r into irreducibles to see `(a2) ≤ `(a1).
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gives a1 · · · akb1 · · · b` = rc1 · · · cm. By (essential) uniqueness, r ∼
some ai or bj =⇒ r | a or b. So r is prime, i.e. PC holds.

(⇐= ): Let r ∈ R\(R∗ ∪ {0}) be given. Since DCC holds, r is a
product of irreducibles by III.I.5. To check the (essential) uniqueness,
let µ(r) denote the minimum number of irreducible factors in such a
product. If µ(r) = 1, then r is irreducible, and can’t split as a product
of more than one, so clearly uniqueness holds.

Suppose we have uniqueness for all r with µ(r) < M, and let
µ(r) = M; write r = r1 · · · rM for a (minimal length) factorization
into irreducibles. By PC, the ri are prime. If r = s1 · · · sN is another
factorization into irreducibles, then rM | s1 · · · sN =⇒ rM | some sj,
say sN. Since sN is irreducible (and rM /∈ R∗), we get sN = rMu (for
some u ∈ R∗), i.e. rM ∼ sN. But now r′ = (u−1r1)r2 · · · rM−1 has
µ(r′) < M and r′ = s1 · · · sN−1. By induction, M − 1 = N − 1 and
(permuting factors if needed) sj ∼ rj (j = 1, . . . , M − 1) and we are
done. �

In particular, in a UFD, prime and irreducible elements are the
same thing. So we get the following analogue of III.H.8:

III.I.13. COROLLARY. Let R be a UFD, α ∈ R\(R∗ ∪ {0}). Then
R/(α) is a domain ⇐⇒ α is irreducible.

PROOF. Combine III.F.6 with the fact that (α) is prime iff α is. �

III.I.14. EXAMPLES.
(A) All PIDs (and hence all Euclidean domains) are UFDs.
(B) F[x, y] and Z[x] are UFDs but (as we know) not PIDs.
(C) There is no number ring that is a UFD but not a PID.

We will prove (B) and (C) in §§III.K-III.L; for now, here is the

PROOF OF (A). Consider an ascending chain I1 ⊆ I2 ⊆ · · · in
PP(R), and consider the ideal J = ∪j≥1 Ij ⊂ R. Since R is a PID,
J = (a) for some a ∈ J. But then a ∈ In for some n, so J = (a) ⊂ In

=⇒ Im = In for all m ≥ n. So DCC holds.
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Next suppose that a ∈ R is irreducible, and a | bc but a - b. Then
b /∈ (a) =⇒ (a, b) ) (a). By (III.I.1), (a) is maximal in PP(R). Since
R is a PID, (a, b) is principal. So (a, b) = R. It follows that there exist
p, q ∈ R such that ap + bq = 1; multiplying by c gives apc + bcq = c.
Since a | bc, we therefore have a | c. Conclude that a is prime. So PC
holds, and III.I.12 finishes the job. �


