
66 II. GROUPS

II.J. Automorphisms

II.J.1. DEFINITION. An isomorphism ϕ : G
∼=→ G is called an auto-

morphism of G.

II.J.2. EXAMPLES. (i) The identity map idG is an automorphism
of any group.

(ii) Conjugation by g ∈ G is denoted ıg : G
∼=→ G; automorphisms of

this type are called inner. (The conjugation must be by an element of
G, not by an element of some larger group it sits in!) Abelian groups
have no non-identity inner automorphisms.

(iii) If G E G′, then conjugation by g′ ∈ G′ does give an automor-
phism of G (but this may or may not be inner).

(iv) In Example II.I.22(e), S4 acted by conjugation on the ccl

{(12)(34), (13)(24), (14)(23)} = V4\{1}.

That is, for each σ ∈ S4, ıσ induces a permutation of V4\{1} ( =⇒
element of S3 — we got all elements of S3 this way). In fact, each ıσ

induces an automorphism of V4 (since V4 E S4) and [except for the
identity] these are non-inner (as V4 is abelian).

Write

Aut(G) := the set of automorphisms of G, and

Inn(G) := the set of inner automorphisms of G.

II.J.3. PROPOSITION-DEFINITION. Aut(G) is a group under compo-
sition of maps, as is Inn(G); and Inn(G) E Aut(G). So we can define the
group of outer automorphisms by Out(G) := Aut(G)/Inn(G). If G is
abelian, then Out(G) = Aut(G).

PROOF. The composition of two isomorphisms is again an iso-
morphism; isomorphisms are invertible; and IdG is an isomorphism.
The same goes for inner automorphisms: e.g.,

(ıg ◦ ıh)(x) = g(hxh−1)g−1 = (gh)x(gh)−1 = ıgh(x).
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Finally, for x ∈ G and α ∈ Aut(G),

(α ◦ ıx ◦ α−1(g) = α(xα−1(g)x−1)

= α(x)α(α−1(g))︸ ︷︷ ︸
=g

α(x)−1

= ıα(x)(g)

=⇒ αInn(G)α−1 ⊆ Inn(G). �

II.J.4. EXAMPLES. (i) Aut(V4) ∼= S3, so we can see Ex. II.I.22(e)

in terms of a surjective homomorphism S4

ı(·)
� Aut(V4) (with kernel

V4). So we see that the automorphism group of an abelian group
need not be abelian.

(ii)20 Aut(Zn) ∼= Z∗n. To see this, consider

µ : Z∗n → Aut(Zn)

ā 7−→ µā := multiplication by ā.

For injectivity of µ: suppose µā = idZn ; then µā(b̄) = b̄ for any
b̄ ∈ Zn, and taking b̄ = 1̄ gives ā = 1̄.

For surjectivity of µ: let α ∈ Aut(Zn), and set ā = α(1̄). Now

(µā − α)(b̄) = µā(b̄)− α(b̄)

= āb̄− α(1̄ + · · ·+ 1̄︸ ︷︷ ︸
b times

)

= āb̄− α(1̄)︸︷︷︸
ā

· b̄

= 0̄ (∀b̄)

=⇒ µā = α, so α ∈ im(µ). �

We finish this section with a striking result.

20Here we recall that Z∗n = {ā | (a, n) = 1} under multiplication mod n. It’s a
group because the gcd being 1 means that there exist r, s ∈ Z such that ra+ sn = 1,
i.e. r̄ā ≡

(n)
1̄ and so r̄ = ā−1. Similarly, µā below — which is a homomorphism from

Zn → Zn by the distributive law — has inverse µā−1 , making it an automorphism
of Zn.
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II.J.5. THEOREM. Let n > 2.
(i) Inn(Sn) ∼= Sn.
(ii) Assume n 6= 6. Then Aut(Sn) ∼= Inn(Sn).
(iii) For n = 6, this is false (and Out(S6) ∼= Z2).

PROOF. (i) We want to show that ı : Sn → Aut(Sn), the map
sending g 7→ ıg, is injective — in other words, that C(Sn) = {1}. Let
σ ∈ Sn\{1} be given; it moves at least one number in {1, . . . , n}, say
a 7→ b. Take any c 6= a, b in {1, . . . , n}; then (bc)σ sends a 7→ c, while
σ(bc) sends a 7→ b. So σ /∈ C(Sn), done.

(ii) Any α ∈ Aut(Sn) sends conjugate elements to conjugate ele-
ments (why?). Hence if α is going to move an element of one conju-
gacy class ccl1 into a different conjugacy class ccl2, it must send all
of ccl1 into ccl2, and its inverse does the reverse. So we would have
to have |ccl1| = |ccl2|, and moreover (since automorphisms send el-
ements of order k to elements of order k) that elements of ccl1 have
the same orders as those in ccl2. The goal of this proof is to show
that these constraints on an automorphism messing with ccl’s are so
tight that it never happens except for n = 6.

Now the ccl’s in Sn with elements of order 2 are the

Ck :=

σ ∈ Sn

∣∣∣∣∣∣∣
σ has cycle structure
(··) · · · (··)︸ ︷︷ ︸

k

(·) · · · (·)︸ ︷︷ ︸
n−2k


(i.e. products of k disjoint transpositions) for 1 ≤ k ≤ bn

2 c, with

|Ck| =
n!

(n− 2k)!k!2k .

We have

|Ck| = |C1| ⇐⇒
n!

(n− 2k)!k!2k =
n!

(n− 2)!2

⇐⇒ (n− 2)!
(n− 2k)!

= k!2k−1

⇐⇒
(

n− 2
2k− 2

)
=

k!2k−1

(2k− 2)!
;
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but the binomial symbol is an integer, whereas k!2k−1

(2k−2)! is not an inte-

ger for k ≥ 4. Moreover, the k = 2 case (n−2
2 ) = 2 is also impossible.

This leaves k = 3, and (n−2
4 ) = 1, which holds ⇐⇒ n = 6. We

conclude that for n 6= 6, α(C1) = C1.
Now assume that n 6= 6, and let an automorphism α be given.

We have just shown that α sends transpositions to transpositions.
Suppose α((12)) = (ab), and x ∈ {3, . . . , n}; then

(12)(1x) = 3-cycle =⇒ α((12)(1x)) = (ab)α((1x)) = 3-cycle

=⇒ α((1x)) = (ac) or (bc) c 6= a, b

Without loss of generality (by swapping a and b if necessary) we may
assume α((1x)) = (ac). With this assumption in place, we make the

Claim: α((1y)) = (ad) (for some d 6= a) for any y ∈ {2, . . . , n}. [HW]

Taking this claim for granted, define a permutation of {1, . . . , n} by
σ(1) := a, σ(y) := this “d” for each y 6= 1, and compute ıσ−1α((1y)) =
ıσ−1((ad)) = (1y). So (ıσ−1 ◦ α) is the identity on all (1y)’s. But trans-
positions generate Sn, and since (yy′) = (1y′)(1y)(1y′), the (1y)’s
generate Sn all by themselves. It follows that ıσ−1 ◦ α = idSn , and so
α = ıσ−1 is an inner automorphism.

(iii) If α is inner, it has to stabilize ccl’s, not permute them. The com-
putation above suggests that there may be an automorphism α with
α(C1) = C3, which would have to be outer. Constructing this will be
an application of Sylow theory, so we defer the proof of this part. �


