66 II. GROUPS

II.J. Automorphisms

- II.J.1. DEFINITION. An isomorphism $\varphi \colon G \stackrel{\cong}{\to} G$ is called an **automorphism** of G.
- II.J.2. EXAMPLES. (i) The identity map id_G is an automorphism of any group.
- (ii) Conjugation by $g \in G$ is denoted $\iota_g \colon G \stackrel{\cong}{\to} G$; automorphisms of this type are called **inner**. (The conjugation must be by an element *of* G, not by an element of some larger group it sits in!) Abelian groups have no non-identity inner automorphisms.
- (iii) If $G \subseteq G'$, then conjugation by $g' \in G'$ does give *an* automorphism of G (but this may or may not be inner).
- (iv) In Example II.I.22(e), \mathfrak{S}_4 acted by conjugation on the ccl

$$\{(12)(34), (13)(24), (14)(23)\} = V_4 \setminus \{1\}.$$

That is, for each $\sigma \in \mathfrak{S}_4$, ι_{σ} induces a permutation of $V_4 \setminus \{1\}$ (\Longrightarrow element of \mathfrak{S}_3 — we got all elements of \mathfrak{S}_3 this way). In fact, each ι_{σ} induces an automorphism of V_4 (since $V_4 \subseteq \mathfrak{S}_4$) and [except for the identity] these are *non*-inner (as V_4 is abelian).

Write

Aut(G) := the set of automorphisms of G, and

Inn(G) := the set of inner automorphisms of G.

II.J.3. PROPOSITION-DEFINITION. Aut(G) is a group under composition of maps, as is Inn(G); and $Inn(G) \subseteq Aut(G)$. So we can define the group of **outer automorphisms** by Out(G) := Aut(G)/Inn(G). If G is abelian, then Out(G) = Aut(G).

PROOF. The composition of two isomorphisms is again an isomorphism; isomorphisms are invertible; and Id_G is an isomorphism. The same goes for inner automorphisms: e.g.,

$$(\iota_g \circ \iota_h)(x) = g(hxh^{-1})g^{-1} = (gh)x(gh)^{-1} = \iota_{gh}(x).$$

Finally, for $x \in G$ and $\alpha \in Aut(G)$,

$$(\alpha \circ \iota_{x} \circ \alpha^{-1}(g) = \alpha(x\alpha^{-1}(g)x^{-1})$$

$$= \alpha(x)\underbrace{\alpha(\alpha^{-1}(g))}_{=g}\alpha(x)^{-1}$$

$$= \iota_{\alpha(x)}(g)$$

$$\implies \alpha \operatorname{Inn}(G)\alpha^{-1} \subseteq \operatorname{Inn}(G).$$

II.J.4. EXAMPLES. (i) $\operatorname{Aut}(V_4) \cong \mathfrak{S}_3$, so we can see Ex. II.I.22(e) in terms of a surjective homomorphism $\mathfrak{S}_4 \stackrel{\iota_{(\cdot)}}{\to} \operatorname{Aut}(V_4)$ (with kernel V_4). So we see that the automorphism group of an abelian group need not be abelian.

 $(ii)^{20}$ Aut $(\mathbb{Z}_n) \cong \mathbb{Z}_n^*$. To see this, consider

$$\mu \colon \mathbb{Z}_n^* \to \operatorname{Aut}(\mathbb{Z}_n)$$
 $\bar{a} \longmapsto \mu_{\bar{a}} := \operatorname{multiplication} \operatorname{by} \bar{a}.$

For injectivity of μ : suppose $\mu_{\bar{a}} = \mathrm{id}_{\mathbb{Z}_n}$; then $\mu_{\bar{a}}(\bar{b}) = \bar{b}$ for any $\bar{b} \in \mathbb{Z}_n$, and taking $\bar{b} = \bar{1}$ gives $\bar{a} = \bar{1}$.

For surjectivity of μ : let $\alpha \in \operatorname{Aut}(\mathbb{Z}_n)$, and set $\bar{a} = \alpha(\bar{1})$. Now

$$(\mu_{\bar{a}} - \alpha)(\bar{b}) = \mu_{\bar{a}}(\bar{b}) - \alpha(\bar{b})$$

$$= \bar{a}\bar{b} - \alpha(\underbrace{\bar{1} + \dots + \bar{1}}_{b \text{ times}})$$

$$= \bar{a}\bar{b} - \alpha(\bar{1}) \cdot \bar{b}$$

$$= \bar{0} \quad (\forall \bar{b})$$

$$\implies \mu_{\bar{a}} = \alpha$$
, so $\alpha \in \text{im}(\mu)$.

We finish this section with a striking result.

Per we recall that $\mathbb{Z}_n^* = \{\bar{a} \mid (a,n) = 1\}$ under multiplication mod n. It's a group because the gcd being 1 means that there exist $r,s \in \mathbb{Z}$ such that ra + sn = 1, i.e. $\bar{r}\bar{a} \equiv \bar{1}$ and so $\bar{r} = \bar{a}^{-1}$. Similarly, $\mu_{\bar{a}}$ below — which is a homomorphism from $\mathbb{Z}_n \to \mathbb{Z}_n$ by the distributive law — has inverse $\mu_{\bar{a}^{-1}}$, making it an automorphism of \mathbb{Z}_n .

68 II. GROUPS

II.J.5. THEOREM. Let n > 2.

- (i) $\operatorname{Inn}(\mathfrak{S}_n) \cong \mathfrak{S}_n$.
- (ii) Assume $n \neq 6$. Then $\operatorname{Aut}(\mathfrak{S}_n) \cong \operatorname{Inn}(\mathfrak{S}_n)$.
- (iii) For n = 6, this is false (and $Out(\mathfrak{S}_6) \cong \mathbb{Z}_2$).

PROOF. (i) We want to show that $\iota: \mathfrak{S}_n \to \operatorname{Aut}(\mathfrak{S}_n)$, the map sending $g \mapsto \iota_g$, is injective — in other words, that $C(\mathfrak{S}_n) = \{1\}$. Let $\sigma \in \mathfrak{S}_n \setminus \{1\}$ be given; it moves at least one number in $\{1, \ldots, n\}$, say $a \mapsto b$. Take any $c \neq a, b$ in $\{1, \ldots, n\}$; then $(bc)\sigma$ sends $a \mapsto c$, while $\sigma(bc)$ sends $a \mapsto b$. So $\sigma \notin C(\mathfrak{S}_n)$, done.

(ii) Any $\alpha \in \operatorname{Aut}(\mathfrak{S}_n)$ sends conjugate elements to conjugate elements (why?). Hence if α is going to move an element of one conjugacy class ccl_1 into a different conjugacy class ccl_2 , it must send all of ccl_1 into ccl_2 , and its inverse does the reverse. So we would have to have $|\operatorname{ccl}_1| = |\operatorname{ccl}_2|$, and moreover (since automorphisms send elements of order k to elements of order k) that *elements* of ccl_1 have the same orders as those in ccl_2 . The goal of this proof is to show that these constraints on an automorphism messing with ccl' s are so tight that it never happens except for n=6.

Now the ccl's in \mathfrak{S}_n with elements of order 2 are the

$$C_k := \left\{ \sigma \in \mathfrak{S}_n \middle| \begin{array}{c} \sigma \text{ has cycle structure} \\ \underbrace{(\cdots) \cdots (\cdots)(\cdot) \cdots (\cdot)}_{k} \end{array} \right\}$$

(i.e. products of *k* disjoint transpositions) for $1 \le k \le \lfloor \frac{n}{2} \rfloor$, with

$$|C_k| = \frac{n!}{(n-2k)!k!2^k}.$$

We have

$$|C_k| = |C_1| \iff \frac{n!}{(n-2k)!k!2^k} = \frac{n!}{(n-2)!2}$$

$$\iff \frac{(n-2)!}{(n-2k)!} = k!2^{k-1}$$

$$\iff \binom{n-2}{2k-2} = \frac{k!2^{k-1}}{(2k-2)!};$$

but the binomial symbol is an integer, whereas $\frac{k!2^{k-1}}{(2k-2)!}$ is not an integer for $k \geq 4$. Moreover, the k=2 case $\binom{n-2}{2}=2$ is also impossible. This leaves k=3, and $\binom{n-2}{4}=1$, which holds $\iff n=6$. We conclude that for $n \neq 6$, $\alpha(C_1)=C_1$.

Now assume that $n \neq 6$, and let an automorphism α be given. We have just shown that α sends transpositions to transpositions. Suppose $\alpha((12)) = (ab)$, and $x \in \{3, ..., n\}$; then

$$(12)(1x) = 3$$
-cycle $\implies \alpha((12)(1x)) = (ab)\alpha((1x)) = 3$ -cycle $\implies \alpha((1x)) = (ac) \text{ or } (bc) \quad c \neq a, b$

Without loss of generality (by swapping a and b if necessary) we may assume $\alpha((1x)) = (ac)$. With this assumption in place, we make the

<u>Claim</u>: $\alpha((1y)) = (ad)$ (for some $d \neq a$) for any $y \in \{2, ..., n\}$. [HW]

Taking this claim for granted, define a permutation of $\{1,\ldots,n\}$ by $\sigma(1):=a,\sigma(y):=$ this "d" for each $y\neq 1$, and compute $\iota_{\sigma^{-1}}\alpha((1y))=\iota_{\sigma^{-1}}((ad))=(1y).$ So $(\iota_{\sigma^{-1}}\circ\alpha)$ is the identity on all (1y)'s. But transpositions generate \mathfrak{S}_n , and since (yy')=(1y')(1y)(1y'), the (1y)'s generate \mathfrak{S}_n all by themselves. It follows that $\iota_{\sigma^{-1}}\circ\alpha=\mathrm{id}_{\mathfrak{S}_n}$, and so $\alpha=\iota_{\sigma^{-1}}$ is an inner automorphism.

(iii) If α is inner, it has to stabilize ccl's, not permute them. The computation above suggests that there may be an automorphism α with $\alpha(C_1) = C_3$, which would have to be outer. Constructing this will be an application of Sylow theory, so we defer the proof of this part. \square