70 II. GROUPS
II.LK. Generators and relations

The abelian case. Let G be an abelian group. We will write the
group operation as “+”. Note that for ¢ € G and a € Z, the nota-
tion ag means adding g to itself a times (or, if 2 < 0, its inverse —g
to itself |a| times). So it is the equivalent of exponentiation in the
multiplicative notation.

I1.K.1. PROPOSITION. The following are equivalent:
Q)G ={mg1+ - +angn | a; € Z} for some g1,...,8n € G, called a
generating set for G.
(ii)) G = Z" /K for somen € N, K < Z".

PROOF. If (i) holds, define ¢: Z" — Gtosend a := (ay,...,a,) —
Y. a;g;. By the Fundamental Theorem, G = Z" / ker(¢).
Conversely, assuming (ii), write 7 for the composition

7" 57" /K S G,

and set g; := 7(¢;) (Where ¢, is the i standard basis vector). Every
element of Z" is of the form ), a;e;, and 7 is surjective; thus, every
element of G is of the form 1 (}_; a;e;) = Y ;ain(e;) = Y; a:gi. H

I1.K.2. DEFINITION. (i) If the equivalent conditions of I1.K.1 hold,
G is finitely generated (f.g.).
(ii) K is called the relations subgroup for G.
(iii) If G = Z™ (for some m), G is (f.g.) free abelian of rank m. The
image of the standard basis {¢;}!" ; C Z™ under the isomorphism is
called a basis of G.

IL.K.3. EXAMPLES. (i) Z,, is f.g. (with one generator: 1), and iso-
morphic to Z/nZ.

(i) Q is not f.g.: if you pick 1,...,  then any i ; a;¢ can be repre-
sented with denominator []; s; — clearly not possible for an arbitrary
rational number.



II.LK. GENERATORS AND RELATIONS 71

(iii) Suppose G = Z3/K, and K = Z2? with basis (11, -21,-10),
(1, —6,—5). Then we can write G in terms of “generators and rela-
tions”:?!

Z(X,Y,Z)
(11X —21Y —10Z, X — 6Y —5Z)°

The key here is using the fact that K is free, and further, having a

G=

basis for K. The next result and its proof generalize this:

I1.K.4. THEOREM. Every subgroup of a free f.g. abelian group is free
f.g.; more precisely, any K < Z" is = Z" for some m < n.

PROOF. If n = 1, let a € NN K be as small as possible. If b &
K\ {0} is not a multiple of a, then ged(a,b) = ¢1a+ (b € K, and is
less than 4, a contradiction. So K = (1) = Z.

Now, assuming the statement for n — 1, consider the projection
: K — Z to the first Z-factor. If 7(K) = {0}, we're done by in-
duction (as ker(rr) < Z"~!). Otherwise, 7(K) (< Z) consists of

multiples of some a = 7(«), « € K. Hence any € K is of the form

(B— Moc) + @tx € ker(m) + (),

a
and ker(7r) N (&) = {0}. So by (say) ILE.11(iii), K = ker(7) x (a),
and applying the inductive assumption to ker(rr) < Z"~!, we are
done. (Note that the proof also yields a method for constructing a
basis, starting with a.) O

In fact, the group in Ex. IL.K.3(iii) is & Z45 X Z, which inspires
the next statement:

II.K.5. PROPOSITION-DEFINITION. (Let G be abelian.) The subset
Gtor € G comprising elements of finite order is a subgroup, the torsion
part of G; while G/ Gyor 15 a free abelian group (all nonzero elements are of
infinite order), the free part of G. (If G is f.g., this is = Z™ for some m.)

PROOF. Given g1, §2 € Gior, we have a; € IN with a;¢; = 0. Then
lem(ay,az) - (g1 +g2) =0 = g1+ 92 € Gior. (So it’s closed under
addition — the rest is trivial.)

21The notation Z(X,Y,Z) means the free abelian group with basis X, Y, Z; the
denominator means the subgroup generated by those two elements.
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Given § € G\Gtor, if g € Gior for some a € N, then there exists
b € N such that 0 = b(ag) = (ba)g, making ¢ € Gior, a contra-
diction. So g has infinite order in G/Gior. (I skip the proof of the
parenthetical for now; we will return to f.g. abelian groups in the
context of modules.) O

I1.K.6. REMARK. Prop. I1.K.5 is false for nonabelian groups. There
is no reason, if g1 and g» don’t commute, why ¢¢ = 1 and g} = 1
should imply that g;¢> has finite order. One example is*? PSL,(Z),
which is generated by R = (71 ) and S = (9 ! ). These elements
satisfy R = (}{) = S? (i.e. have finite order), but their product

RS = (}1) has infinite order.

The general (non-abelian) case. We return to multiplicative no-
tation. Given a subset S C G, we defined the subgroup generated by
S as

(S) := smallest subgroup of G containing S.

For later use, also write
(S) := smallest normal subgroup of G containing S.

A set of generators for G is a subset S such that (S) = G (and it
is minimal if for all " C S, we have (S’) < G). We say that G is
finitely generated iff there exists a finite set S with G = (S). Having
a (small) generating set is useful because of the following

I1.K.7. PROPOSITION. A homomorphism ¢: G — H is defined by its
behavior on a generating set. That is, if G = (S) and ¢,n are homomor-
phisms with ¢(s) = n(s) (Vs € S), then ¢ = 1.

PROOF. Any g € G may be written in the form g = 51 - - - sy with
s; € S (and possible repetitions). Hence, ¢(g) = ¢(s1) - - - ¢(sn) =
7(s1) -~ n(sn) = 1(8)- 3

IL.K.8. PROPOSITION. Given ¢: H — G, if (H) D Sand (S) = G,
then ¢ is surjective.

251, (Z) quotiented by the normal 2-element subgroup generated by ( _01 _01 ) .
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PROOF. Since ¢(H) is a group, (S) < ¢(H). O

Now let S be a set, not a subset of a group, just a set. Consider
the set of words on S, by which we mean the set of expressions

my M3

s)tsy?---spk (k>0,5€8,meZ)

subject only to the (equivalence) relation s7s? = s7t0 (for each s € S).

Denote this set by?® (S), and introduce the binary operation of “con-
catenating words” together with the obvious inverses s, "' - - - 57"
to put a group structure on it. (Clearly the subset S generates the

resulting group (S)!!) More intrinsically, we have the

I1.K.9. PROPOSITION-DEFINITION. There exists a unique group
FsDOS

with the (universal) property that: for all groups G and maps f: S —
G, there exists a unique homomorphism ¢: .#s — G making the
diagram

S——— Fs

N

commute. In fact, s = (S). It is called the free group on S.

PROOF. First we prove existence by showing that (S) has this
property. Define ¢: (S) — Gby ¢(sy" ---s.*) = f(s1)™ -+ - f(s)™*.
This is clearly well-defined and a homomorphism, and any other
homomorphism # making the diagram commute must have 7 (s) =
f(s) forall s € S, hence (by ILK.7) y = ¢.

23This designation is temporary, as — while standard — it is likely to get confused
with the other meaning of (S) for a subset of a group. After I1.K.9 we will be using
Zs instead.
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For uniqueness, suppose .# and ¢ are two groups containing S
as a subset and satisfying the universal property. Then there are ho-
momorphisms ¢ and 7 making

F F
/ lq) and 8/ T’?
commute. But then
F 9
8/ llyoq) and S/ lgooq

commute as well, and then the uniqueness in the universal property
gives 7o ¢ =idg and p oy = idg. So .# = ¢ and we are done. [

Henceforth I will drop (S) for free groups and use it only for
subgroups generated by a subset.

I1.K.10. REMARK. A similar characterization exists for the free
abelian group /s on S. In I1.K.9, wherever “group(s)” occurs, re-
place it by “abelian group(s)”, and replace (S) by the group of finite
formal sums mqs1 + - - - + mysp withk > 0, m; € Zands; € S. In
the (modified) first paragraph of the proof, ¢(misy + - - - + mysy) =
f(sy)™ --- f(sg)™ is well-defined and a homomorphism precisely
because G is abelian.

Now let § C G be a finite generating set. We have by IL.K.8-I.K.9
a (surjective) homomorphism

p: Fs—» G
with ¢(s) = s for each s € S. By the Fundamental Theorem,
G = Fs/ ker(¢),
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where of course ker(¢) is normal; and if ker(¢) = (R)) for some
subset R C %g, this becomes

(ILK.11) G=Zs/(R)
— a presentation of G in terms of generators S and relations R. If
|R| < oo, we say that G is finitely presented. We conclude with
some

ILK.12. EXAMPLES. (i) Dy 2 Fy, py / (1", B2, rhrh)).
(i) PSLo(Z) = Fys ry/ (S% R3)).
(iii) [HW] s = Fs/[Fs, Fs] for any set S.

The next two examples illustrate the role these concepts play in
algebraic topology and complex analysis.

(iv) A compact Riemann surface C of genus g is, topologically, the sur-
face of a sphere with ¢ handles attached, or of a donut with g holes.

e —~ -
© > 9
g=1
KL
s S
S~—TS> ' >
A
/A AV
g=2 ‘ = *
W A
& >

Choosing a point x € C, its fundamental group 711(C) is the set of
closed curves starting and ending at x modulo the equivalence rela-
tion given by continuous deformation;?* the group operation is con-
catenating loops and inversion is reversing the direction. In fact, it

24More precisely, a closed curve is a continuous map 7: [0,1] — C with y(0) =
7(1); and 7¢ and 7 are equivalent if there is a continuous map I': [0,1] x [0,1] —
C with () =T(0,t) and 1 (t) = T'(1,¢).
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is the quotient of a free group on certain loops (shown for g = 1,2)
modulo a single relation:

1(C) = Py o, g e}/ (T [, Bil)-

The relation arises from cutting open the surface as shown, then ob-
serving that the boundary can be continuously deformed to a point.
(To see that the boundary curve is the product of commutators shown,
start at the red dot with  resp. 8;.)

(v) Let N > 3, and set k := NTZ [Tpn(1— l) (where p is prime) and

g := 1+ N=6%. Recall the congruence subgroups
I'(N) :=ker{SL,(Z) — SLy(Z/NZ)}.

Let H:= {x+1iy | x € R, y € R-o} denote the upper half-plane in

C. We let T(N) act on $ by fractional linear transformations, with

az+b
cz+d-

(g Z ) sending z — The “quotient set”
Y(N) :=$/T(N)

obtained® by identifying all points related by I'(N), is a genus g Rie-
mann surface with x points removed. Moreover, writing 71, ..., Y«
for loops around these points, we have

F(N) = 7T1(Y(N)) J{le Beertig, B, Y1 'yK}/<<H1 1[“1/:8 ] H;'czl 'Yj»'

In particular, I'(N) is finitely presentable (in fact, it is also torsion-
free).

2That is, Y(N) is the set of orbits of the group action on §).



