## II.K. Generators and relations

The abelian case. Let $G$ be an abelian group. We will write the group operation as " + ". Note that for $g \in G$ and $a \in \mathbb{Z}$, the notation $a g$ means adding $g$ to itself $a$ times (or, if $a<0$, its inverse $-g$ to itself $|a|$ times). So it is the equivalent of exponentiation in the multiplicative notation.

## II.K.1. Proposition. The following are equivalent:

(i) $G=\left\{a_{1} g_{1}+\cdots+a_{n} g_{n} \mid a_{i} \in \mathbb{Z}\right\}$ for some $g_{1}, \ldots, g_{n} \in G$, called $a$ generating set for $G$.
(ii) $G \cong \mathbb{Z}^{n} / K$ for some $n \in \mathbb{N}, K \leq \mathbb{Z}^{n}$.

PROOF. If (i) holds, define $\varphi: \mathbb{Z}^{n} \rightarrow G$ to send $\underline{a}:=\left(a_{1}, \ldots, a_{n}\right) \mapsto$ $\sum_{i} a_{i} g_{i}$. By the Fundamental Theorem, $G \cong \mathbb{Z}^{n} / \operatorname{ker}(\varphi)$.

Conversely, assuming (ii), write $\eta$ for the composition

$$
\mathbb{Z}^{n} \xrightarrow{v} \mathbb{Z}^{n} / K \xrightarrow{\cong} G,
$$

and set $g_{i}:=\eta\left(\underline{e}_{i}\right)$ (where $\underline{e}_{i}$ is the $i^{\text {th }}$ standard basis vector). Every element of $\mathbb{Z}^{n}$ is of the form $\sum_{i} a_{i} \underline{e}_{i}$, and $\eta$ is surjective; thus, every element of $G$ is of the form $\eta\left(\sum_{i} a_{i} \underline{e}_{i}\right)=\sum_{i} a_{i} \eta\left(\underline{e}_{i}\right)=\sum_{i} a_{i} g_{i}$.
II.K.2. Definition. (i) If the equivalent conditions of II.K. 1 hold, $G$ is finitely generated (f.g.).
(ii) $K$ is called the relations subgroup for $G$.
(iii) If $G \cong \mathbb{Z}^{m}$ (for some $m$ ), $G$ is (f.g.) free abelian of rank $m$. The image of the standard basis $\left\{\underline{e}_{i}\right\}_{i=1}^{m} \subset \mathbb{Z}^{m}$ under the isomorphism is called a basis of $G$.
II.K.3. EXAMPLES. (i) $\mathbb{Z}_{n}$ is f.g. (with one generator: $\overline{1}$ ), and isomorphic to $\mathbb{Z} / n \mathbb{Z}$.
(ii) $\mathbb{Q}$ is not f.g.: if you pick $\frac{r_{1}}{s_{1}}, \ldots, \frac{r_{n}}{s_{n}}$ then any $\sum_{i=1}^{n} a_{i} \frac{r_{i}}{s_{i}}$ can be represented with denominator $\prod_{i} s_{i}$ - clearly not possible for an arbitrary rational number.
(iii) Suppose $G \cong \mathbb{Z}^{3} / K$, and $K \cong \mathbb{Z}^{2}$ with basis $(11,-21,-10)$, $(1,-6,-5)$. Then we can write $G$ in terms of "generators and relations": ${ }^{21}$

$$
G \cong \frac{\mathbb{Z}\langle X, Y, Z\rangle}{\langle 11 X-21 Y-10 Z, X-6 Y-5 Z\rangle}
$$

The key here is using the fact that $K$ is free, and further, having a basis for $K$. The next result and its proof generalize this:
II.K.4. THEOREM. Every subgroup of a free f.g. abelian group is free f.g.; more precisely, any $K \leq \mathbb{Z}^{n}$ is $\cong \mathbb{Z}^{m}$ for some $m \leq n$.

Proof. If $n=1$, let $a \in \mathbb{N} \cap K$ be as small as possible. If $b \in$ $K \backslash\{0\}$ is not a multiple of $a$, then $\operatorname{gcd}(a, b)=\ell_{1} a+\ell_{2} b \in K$, and is less than $a$, a contradiction. So $K=\langle a\rangle \cong \mathbb{Z}$.

Now, assuming the statement for $n-1$, consider the projection $\pi: K \rightarrow \mathbb{Z}$ to the first $\mathbb{Z}$-factor. If $\pi(K)=\{0\}$, we're done by induction (as $\operatorname{ker}(\pi) \leq \mathbb{Z}^{n-1}$ ). Otherwise, $\pi(K)(\leq \mathbb{Z})$ consists of multiples of some $a=\pi(\alpha), \alpha \in K$. Hence any $\beta \in K$ is of the form

$$
\left(\beta-\frac{\pi(\beta)}{a} \alpha\right)+\frac{\pi(\beta)}{a} \alpha \in \operatorname{ker}(\pi)+\langle\alpha\rangle,
$$

and $\operatorname{ker}(\pi) \cap\langle\alpha\rangle=\{0\}$. So by (say) II.E.11(iii), $K \cong \operatorname{ker}(\pi) \times\langle\alpha\rangle$, and applying the inductive assumption to $\operatorname{ker}(\pi) \leq \mathbb{Z}^{n-1}$, we are done. (Note that the proof also yields a method for constructing a basis, starting with $\alpha$.)

In fact, the group in Ex. II.K.3(iii) is $\cong \mathbb{Z}_{45} \times \mathbb{Z}$, which inspires the next statement:
II.K.5. Proposition-Definition. (Let G be abelian.) The subset $G_{\text {tor }} \subseteq G$ comprising elements of finite order is a subgroup, the torsion part of $G$; while $G / G_{\text {tor }}$ is a free abelian group (all nonzero elements are of infinite order), the free part of $G$. (If $G$ is f.g., this is $\cong \mathbb{Z}^{m}$ for some m.)

Proof. Given $g_{1}, g_{2} \in G_{\text {tor }}$, we have $a_{i} \in \mathbb{N}$ with $a_{i} g_{i}=0$. Then $\operatorname{lcm}\left(a_{1}, a_{2}\right) \cdot\left(g_{1}+g_{2}\right)=0 \Longrightarrow g_{1}+g_{2} \in G_{\text {tor }}$. (So it's closed under addition - the rest is trivial.)

[^0]Given $g \in G \backslash G_{\text {tor }}$, if $a g \in G_{\text {tor }}$ for some $a \in \mathbb{N}$, then there exists $b \in \mathbb{N}$ such that $0=b(a g)=(b a) g$, making $g \in G_{\text {tor }}$, a contradiction. So $g$ has infinite order in $G / G_{\text {tor }}$. (I skip the proof of the parenthetical for now; we will return to f.g. abelian groups in the context of modules.)
II.K.6. REMARK. Prop. II.K. 5 is false for nonabelian groups. There is no reason, if $g_{1}$ and $g_{2}$ don't commute, why $g_{1}^{a}=1$ and $g_{2}^{b}=1$ should imply that $g_{1} g_{2}$ has finite order. One example is ${ }^{22} \operatorname{PSL}_{2}(\mathbb{Z})$, which is generated by $R=\left(\begin{array}{cc}-1 & 1 \\ -1 & 0\end{array}\right)$ and $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. These elements satisfy $R^{3}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=S^{2}$ (i.e. have finite order), but their product $R S=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has infinite order.

The general (non-abelian) case. We return to multiplicative notation. Given a subset $S \subseteq G$, we defined the subgroup generated by $S$ as

$$
\langle S\rangle:=\text { smallest subgroup of } G \text { containing } S
$$

For later use, also write

$$
\langle\langle S\rangle\rangle:=\text { smallest normal subgroup of } G \text { containing } S .
$$

A set of generators for $G$ is a subset $S$ such that $\langle S\rangle=G$ (and it is minimal if for all $S^{\prime} \subsetneq S$, we have $\left\langle S^{\prime}\right\rangle<G$ ). We say that $G$ is finitely generated iff there exists a finite set $S$ with $G=\langle S\rangle$. Having a (small) generating set is useful because of the following
II.K.7. Proposition. A homomorphism $\varphi: G \rightarrow H$ is defined by its behavior on a generating set. That is, if $G=\langle S\rangle$ and $\varphi, \eta$ are homomorphisms with $\varphi(s)=\eta(s)(\forall s \in S)$, then $\varphi=\eta$.

Proof. Any $g \in G$ may be written in the form $g=s_{1} \cdots s_{N}$ with $s_{i} \in S$ (and possible repetitions). Hence, $\varphi(g)=\varphi\left(s_{1}\right) \cdots \varphi\left(s_{N}\right)=$ $\eta\left(s_{1}\right) \cdots \eta\left(s_{N}\right)=\eta(g)$.
II.K.8. Proposition. Given $\varphi: H \rightarrow G$, if $\varphi(H) \supset S$ and $\langle S\rangle=G$, then $\varphi$ is surjective.

[^1]Proof. Since $\varphi(H)$ is a group, $\langle S\rangle \leq \varphi(H)$.

Now let $\mathcal{S}$ be a set, not a subset of a group, just a set. Consider the set of words on $\mathcal{S}$, by which we mean the set of expressions

$$
s_{1}^{m_{1}} s_{2}^{m_{2}} \cdots s_{k}^{m_{k}} \quad\left(k \geq 0, s_{i} \in \mathcal{S}, m_{i} \in \mathbb{Z}\right)
$$

subject only to the (equivalence) relation $s^{a} s^{b}=s^{a+b}$ (for each $s \in \mathcal{S}$ ). Denote this set by ${ }^{23}\langle\mathcal{S}\rangle$, and introduce the binary operation of "concatenating words" together with the obvious inverses $s_{k}^{-m_{k}} \cdots s_{1}^{-m_{1}}$ to put a group structure on it. (Clearly the subset $\mathcal{S}$ generates the resulting group $\langle\mathcal{S}\rangle$ !!) More intrinsically, we have the

## II.K.9. Proposition-DEfinition. There exists a unique group

$$
\mathscr{F}_{\mathcal{S}} \supset \mathcal{S}
$$

with the (universal) property that: for all groups $G$ and maps $f: \mathcal{S} \rightarrow$ $G$, there exists a unique homomorphism $\varphi: \mathscr{F}_{\mathcal{S}} \rightarrow G$ making the diagram

commute. In fact, $\mathscr{F}_{\mathcal{S}} \cong\langle\mathcal{S}\rangle$. It is called the free group on $\mathcal{S}$.

Proof. First we prove existence by showing that $\langle\mathcal{S}\rangle$ has this property. Define $\varphi:\langle\mathcal{S}\rangle \rightarrow G$ by $\varphi\left(s_{1}^{m_{1}} \cdots s_{k}^{m_{k}}\right)=f\left(s_{1}\right)^{m_{1}} \cdots f\left(s_{k}\right)^{m_{k}}$. This is clearly well-defined and a homomorphism, and any other homomorphism $\eta$ making the diagram commute must have $\eta(s)=$ $f(s)$ for all $s \in \mathcal{S}$, hence (by II.K.7) $\eta=\varphi$.

[^2]For uniqueness, suppose $\mathscr{F}$ and $\mathscr{G}$ are two groups containing $\mathcal{S}$ as a subset and satisfying the universal property. Then there are homomorphisms $\varphi$ and $\eta$ making

and

commute. But then

and

commute as well, and then the uniqueness in the universal property gives $\eta \circ \varphi=\mathrm{id}_{\mathscr{F}}$ and $\varphi \circ \eta=\mathrm{id} \mathscr{G}$. So $\mathscr{F} \cong \mathscr{G}$ and we are done.

Henceforth I will drop $\langle\mathcal{S}\rangle$ for free groups and use it only for subgroups generated by a subset.
II.K.10. REmARK. A similar characterization exists for the free abelian group $\mathscr{A}_{\mathcal{S}}$ on $\mathcal{S}$. In II.K.9, wherever "group(s)" occurs, replace it by "abelian group(s)", and replace $\langle\mathcal{S}\rangle$ by the group of finite formal sums $m_{1} s_{1}+\cdots+m_{k} s_{k}$ with $k \geq 0, m_{i} \in \mathbb{Z}$ and $s_{i} \in \mathcal{S}$. In the (modified) first paragraph of the proof, $\varphi\left(m_{1} s_{1}+\cdots+m_{k} s_{k}\right):=$ $f\left(s_{1}\right)^{m_{1}} \cdots f\left(s_{k}\right)^{m_{k}}$ is well-defined and a homomorphism precisely because $G$ is abelian.

Now let $\mathcal{S} \subset G$ be a finite generating set. We have by II.K.8-II.K. 9 a (surjective) homomorphism

$$
\varphi: \mathscr{F}_{\mathcal{S}} \rightarrow G
$$

with $\varphi(s)=s$ for each $s \in \mathcal{S}$. By the Fundamental Theorem,

$$
G \cong \mathscr{F}_{\mathcal{S}} / \operatorname{ker}(\varphi)
$$

where of course $\operatorname{ker}(\varphi)$ is normal; and if $\operatorname{ker}(\varphi)=\langle\langle\mathcal{R}\rangle\rangle$ for some subset $\mathcal{R} \subset \mathscr{F}_{\mathcal{S}}$, this becomes

$$
\begin{equation*}
G \cong \mathscr{F}_{\mathcal{S}} /\langle\langle\mathcal{R}\rangle\rangle \tag{II.K.11}
\end{equation*}
$$

- a presentation of $G$ in terms of generators $\mathcal{S}$ and relations $\mathcal{R}$. If $|\mathcal{R}|<\infty$, we say that $G$ is finitely presented. We conclude with some
II.K.12. EXAMPLES. (i) $D_{n} \cong \mathscr{F}_{\{r, h\}} /\left\langle\left\langle r^{n}, h^{2}, r h r h\right\rangle\right\rangle$.
(ii) $\operatorname{PSL}_{2}(\mathbb{Z}) \cong \mathscr{F}_{\{S, R\}} /\left\langle\left\langle S^{2}, R^{3}\right\rangle\right\rangle$.
(iii) $[\mathrm{HW}] \mathscr{A}_{\mathcal{S}} \cong \mathscr{F}_{\mathcal{S}} /\left[\mathscr{F}_{\mathcal{S}}, \mathscr{F}_{\mathcal{S}}\right]$ for any set $\mathcal{S}$.

The next two examples illustrate the role these concepts play in algebraic topology and complex analysis.
(iv) A compact Riemann surface $C$ of genus $g$ is, topologically, the surface of a sphere with $g$ handles attached, or of a donut with $g$ holes.


Choosing a point $x \in C$, its fundamental group $\pi_{1}(C)$ is the set of closed curves starting and ending at $x$ modulo the equivalence relation given by continuous deformation; ${ }^{24}$ the group operation is concatenating loops and inversion is reversing the direction. In fact, it

[^3]is the quotient of a free group on certain loops (shown for $g=1,2$ ) modulo a single relation:
$$
\pi_{1}(C) \cong \mathscr{F}_{\left\{\alpha_{1}, \beta_{1}, \ldots, \alpha_{g}, \beta_{g}\right\}} /\left\langle\left\langle\prod_{i=1}^{g}\left[\alpha_{i}, \beta_{i}\right]\right\rangle\right\rangle
$$

The relation arises from cutting open the surface as shown, then observing that the boundary can be continuously deformed to a point. (To see that the boundary curve is the product of commutators shown, start at the red dot with $\beta$ resp. $\beta_{2}$.)
(v) Let $N \geq 3$, and set $\kappa:=\frac{N^{2}}{2} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right)$ (where $p$ is prime) and $g:=1+\frac{N-6}{12} \kappa$. Recall the congruence subgroups

$$
\Gamma(N):=\operatorname{ker}\left\{\operatorname{SL}_{2}(\mathbb{Z}) \rightarrow \operatorname{SL}_{2}(\mathbb{Z} / N \mathbb{Z})\right\}
$$

Let $\mathfrak{H}:=\left\{x+\mathbf{i} y \mid x \in \mathbb{R}, y \in \mathbb{R}_{>0}\right\}$ denote the upper half-plane in C. We let $\Gamma(N)$ act on $\mathfrak{H}$ by fractional linear transformations, with $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ sending $z \mapsto \frac{a z+b}{c z+d}$. The "quotient set"

$$
Y(N):=\mathfrak{H} / \Gamma(N)
$$

obtained ${ }^{25}$ by identifying all points related by $\Gamma(N)$, is a genus $g$ Riemann surface with $\kappa$ points removed. Moreover, writing $\gamma_{1}, \ldots, \gamma_{\kappa}$ for loops around these points, we have

$$
\left.\Gamma(N) \cong \pi_{1}(Y(N)) \cong \mathscr{F}_{\left\{\alpha_{1}, \beta_{1}, \ldots, \alpha_{g}, \beta_{8}, \gamma_{1}, \ldots, \gamma_{k}\right\}} /\left\langle\prod_{i=1}^{g}\left[\alpha_{i}, \beta_{i}\right] \prod_{j=1}^{\kappa} \gamma_{j}\right\rangle\right\rangle
$$

In particular, $\Gamma(N)$ is finitely presentable (in fact, it is also torsionfree).

[^4]
[^0]:    ${ }^{21}$ The notation $\mathbb{Z}\langle X, Y, Z\rangle$ means the free abelian group with basis $X, Y, Z$; the denominator means the subgroup generated by those two elements.

[^1]:    ${ }^{22} \mathrm{SL}_{2}(\mathbb{Z})$ quotiented by the normal 2-element subgroup generated by $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.

[^2]:    ${ }^{23}$ This designation is temporary, as - while standard - it is likely to get confused with the other meaning of $\langle S\rangle$ for a subset of a group. After II.K. 9 we will be using $\mathscr{F}_{\mathcal{S}}$ instead.

[^3]:    ${ }^{24}$ More precisely, a closed curve is a continuous map $\gamma:[0,1] \rightarrow \boldsymbol{C}$ with $\gamma(0)=$ $\gamma(1)$; and $\gamma_{0}$ and $\gamma_{1}$ are equivalent if there is a continuous map $\Gamma:[0,1] \times[0,1] \rightarrow$ $C$ with $\gamma_{0}(t)=\Gamma(0, t)$ and $\gamma_{1}(t)=\Gamma(1, t)$.

[^4]:    ${ }^{25}$ That is, $Y(N)$ is the set of orbits of the group action on $\mathfrak{H}$.

