## II. GROUPS

## **II.K.** Generators and relations

The abelian case. Let *G* be an abelian group. We will write the group operation as "+". Note that for  $g \in G$  and  $a \in \mathbb{Z}$ , the notation *ag* means adding *g* to itself *a* times (or, if a < 0, its inverse -g to itself |a| times). So it is the equivalent of exponentiation in the multiplicative notation.

II.K.1. PROPOSITION. *The following are equivalent:* 

(i) G = {a<sub>1</sub>g<sub>1</sub> + ··· + a<sub>n</sub>g<sub>n</sub> | a<sub>i</sub> ∈ Z} for some g<sub>1</sub>,..., g<sub>n</sub> ∈ G, called a generating set for G.
(ii) G ≅ Z<sup>n</sup> / K for some n ∈ N, K ≤ Z<sup>n</sup>.

PROOF. If (i) holds, define  $\varphi \colon \mathbb{Z}^n \twoheadrightarrow G$  to send  $\underline{a} := (a_1, \ldots, a_n) \mapsto \sum_i a_i g_i$ . By the Fundamental Theorem,  $G \cong \mathbb{Z}^n / \ker(\varphi)$ .

Conversely, assuming (ii), write  $\eta$  for the composition

$$\mathbb{Z}^n \xrightarrow{\nu} \mathbb{Z}^n / K \xrightarrow{\cong} G,$$

and set  $g_i := \eta(\underline{e}_i)$  (where  $\underline{e}_i$  is the *i*<sup>th</sup> standard basis vector). Every element of  $\mathbb{Z}^n$  is of the form  $\sum_i a_i \underline{e}_i$ , and  $\eta$  is surjective; thus, every element of *G* is of the form  $\eta(\sum_i a_i \underline{e}_i) = \sum_i a_i \eta(\underline{e}_i) = \sum_i a_i g_i$ .

II.K.2. DEFINITION. (i) If the equivalent conditions of II.K.1 hold, *G* is **finitely generated (f.g.)**.

(ii) *K* is called the **relations subgroup** for *G*.

(iii) If  $G \cong \mathbb{Z}^m$  (for some *m*), *G* is (f.g.) **free abelian** of rank *m*. The image of the standard basis  $\{\underline{e}_i\}_{i=1}^m \subset \mathbb{Z}^m$  under the isomorphism is called a **basis** of *G*.

II.K.3. EXAMPLES. (i)  $\mathbb{Z}_n$  is f.g. (with one generator:  $\overline{1}$ ), and isomorphic to  $\mathbb{Z}/n\mathbb{Z}$ .

(ii) Q is *not* f.g.: if you pick  $\frac{r_1}{s_1}, \ldots, \frac{r_n}{s_n}$  then any  $\sum_{i=1}^n a_i \frac{r_i}{s_i}$  can be represented with denominator  $\prod_i s_i$  — clearly not possible for an arbitrary rational number.

(iii) Suppose  $G \cong \mathbb{Z}^3/K$ , and  $K \cong \mathbb{Z}^2$  with basis (11, -21, -10), (1, -6, -5). Then we can write *G* in terms of "generators and relations":<sup>21</sup>

$$G \cong \frac{\mathbb{Z}\langle X, Y, Z \rangle}{\langle 11X - 21Y - 10Z, X - 6Y - 5Z \rangle}.$$

The key here is using the fact that *K* is free, and further, having a basis for *K*. The next result and its proof generalize this:

II.K.4. THEOREM. Every subgroup of a free f.g. abelian group is free f.g.; more precisely, any  $K \leq \mathbb{Z}^n$  is  $\cong \mathbb{Z}^m$  for some  $m \leq n$ .

PROOF. If n = 1, let  $a \in \mathbb{N} \cap K$  be as small as possible. If  $b \in K \setminus \{0\}$  is not a multiple of a, then  $gcd(a, b) = \ell_1 a + \ell_2 b \in K$ , and is less than a, a contradiction. So  $K = \langle a \rangle \cong \mathbb{Z}$ .

Now, assuming the statement for n - 1, consider the projection  $\pi: K \to \mathbb{Z}$  to the first  $\mathbb{Z}$ -factor. If  $\pi(K) = \{0\}$ , we're done by induction (as ker( $\pi$ )  $\leq \mathbb{Z}^{n-1}$ ). Otherwise,  $\pi(K) (\leq \mathbb{Z})$  consists of multiples of some  $a = \pi(\alpha)$ ,  $\alpha \in K$ . Hence any  $\beta \in K$  is of the form

$$(\beta - \frac{\pi(\beta)}{a}\alpha) + \frac{\pi(\beta)}{a}\alpha \in ker(\pi) + \langle \alpha \rangle$$

and ker( $\pi$ )  $\cap \langle \alpha \rangle = \{0\}$ . So by (say) II.E.11(iii),  $K \cong \text{ker}(\pi) \times \langle \alpha \rangle$ , and applying the inductive assumption to ker( $\pi$ )  $\leq \mathbb{Z}^{n-1}$ , we are done. (Note that the proof also yields a method for constructing a basis, starting with  $\alpha$ .)

In fact, the group in Ex. II.K.3(iii) is  $\cong \mathbb{Z}_{45} \times \mathbb{Z}$ , which inspires the next statement:

II.K.5. PROPOSITION-DEFINITION. (Let G be abelian.) The subset  $G_{tor} \subseteq G$  comprising elements of finite order is a subgroup, the **torsion** part of G; while  $G/G_{tor}$  is a free abelian group (all nonzero elements are of infinite order), the **free part** of G. (If G is f.g., this is  $\cong \mathbb{Z}^m$  for some m.)

PROOF. Given  $g_1, g_2 \in G_{tor}$ , we have  $a_i \in \mathbb{N}$  with  $a_i g_i = 0$ . Then  $lcm(a_1, a_2) \cdot (g_1 + g_2) = 0 \implies g_1 + g_2 \in G_{tor}$ . (So it's closed under addition — the rest is trivial.)

<sup>&</sup>lt;sup>21</sup>The notation  $\mathbb{Z}\langle X, Y, Z \rangle$  means the free abelian group with basis *X*, *Y*, *Z*; the denominator means the subgroup generated by those two elements.

## II. GROUPS

Given  $g \in G \setminus G_{\text{tor}}$ , if  $ag \in G_{\text{tor}}$  for some  $a \in \mathbb{N}$ , then there exists  $b \in \mathbb{N}$  such that 0 = b(ag) = (ba)g, making  $g \in G_{\text{tor}}$ , a contradiction. So g has infinite order in  $G/G_{\text{tor}}$ . (I skip the proof of the parenthetical for now; we will return to f.g. abelian groups in the context of modules.)

II.K.6. REMARK. Prop. II.K.5 is false for nonabelian groups. There is no reason, if  $g_1$  and  $g_2$  don't commute, why  $g_1^a = 1$  and  $g_2^b = 1$  should imply that  $g_1g_2$  has finite order. One example is<sup>22</sup> PSL<sub>2</sub>( $\mathbb{Z}$ ), which is generated by  $R = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$  and  $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ . These elements satisfy  $R^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = S^2$  (i.e. have finite order), but their product  $RS = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$  has infinite order.

The general (non-abelian) case. We return to multiplicative notation. Given a subset  $S \subseteq G$ , we defined the subgroup generated by *S* as

 $\langle S \rangle$  := smallest subgroup of *G* containing *S*.

For later use, also write

 $\langle\!\langle S \rangle\!\rangle :=$  smallest *normal* subgroup of *G* containing *S*.

A set of **generators** for *G* is a subset *S* such that  $\langle S \rangle = G$  (and it is **minimal** if for all  $S' \subsetneq S$ , we have  $\langle S' \rangle < G$ ). We say that *G* is **finitely generated** iff there exists a finite set *S* with  $G = \langle S \rangle$ . Having a (small) generating set is useful because of the following

II.K.7. PROPOSITION. A homomorphism  $\varphi \colon G \to H$  is defined by its behavior on a generating set. That is, if  $G = \langle S \rangle$  and  $\varphi, \eta$  are homomorphisms with  $\varphi(s) = \eta(s)$  ( $\forall s \in S$ ), then  $\varphi = \eta$ .

PROOF. Any  $g \in G$  may be written in the form  $g = s_1 \cdots s_N$  with  $s_i \in S$  (and possible repetitions). Hence,  $\varphi(g) = \varphi(s_1) \cdots \varphi(s_N) = \eta(s_1) \cdots \eta(s_N) = \eta(g)$ .

II.K.8. PROPOSITION. Given  $\varphi \colon H \to G$ , if  $\varphi(H) \supset S$  and  $\langle S \rangle = G$ , then  $\varphi$  is surjective.

<sup>22</sup>SL<sub>2</sub>( $\mathbb{Z}$ ) quotiented by the normal 2-element subgroup generated by  $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ .

72

PROOF. Since 
$$\varphi(H)$$
 is a group,  $\langle S \rangle \leq \varphi(H)$ .

73

Now let S be a set, not a subset of a group, just a set. Consider the set of *words* on S, by which we mean the set of expressions

$$s_1^{m_1}s_2^{m_2}\cdots s_k^{m_k} \quad (k \ge 0, \, s_i \in \mathcal{S}, \, m_i \in \mathbb{Z})$$

subject only to the (equivalence) relation  $s^a s^b = s^{a+b}$  (for each  $s \in S$ ). Denote this set by<sup>23</sup>  $\langle S \rangle$ , and introduce the binary operation of "concatenating words" together with the obvious inverses  $s_k^{-m_k} \cdots s_1^{-m_1}$  to put a group structure on it. (Clearly the subset S generates the resulting group  $\langle S \rangle$ !!) More intrinsically, we have the

II.K.9. PROPOSITION-DEFINITION. There exists a unique group

 $\mathscr{F}_{\mathcal{S}} \supset \mathcal{S}$ 

with the (universal) property that: for all groups *G* and maps  $f: S \to G$ , there exists a unique homomorphism  $\varphi: \mathscr{F}_S \to G$  making the diagram



commute. In fact,  $\mathscr{F}_{\mathcal{S}} \cong \langle \mathcal{S} \rangle$ . It is called the **free group** on  $\mathcal{S}$ .

PROOF. First we prove existence by showing that  $\langle S \rangle$  has this property. Define  $\varphi : \langle S \rangle \to G$  by  $\varphi(s_1^{m_1} \cdots s_k^{m_k}) = f(s_1)^{m_1} \cdots f(s_k)^{m_k}$ . This is clearly well-defined and a homomorphism, and any other homomorphism  $\eta$  making the diagram commute must have  $\eta(s) = f(s)$  for all  $s \in S$ , hence (by II.K.7)  $\eta = \varphi$ .

<sup>&</sup>lt;sup>23</sup>This designation is temporary, as — while standard — it is likely to get confused with the other meaning of  $\langle S \rangle$  for a subset of a group. After II.K.9 we will be using  $\mathscr{F}_S$  instead.

For uniqueness, suppose  $\mathscr{F}$  and  $\mathscr{G}$  are two groups containing  $\mathcal{S}$  as a subset and satisfying the universal property. Then there are homomorphisms  $\varphi$  and  $\eta$  making



commute as well, and then the uniqueness in the universal property gives  $\eta \circ \varphi = id_{\mathscr{F}}$  and  $\varphi \circ \eta = id_{\mathscr{G}}$ . So  $\mathscr{F} \cong \mathscr{G}$  and we are done.  $\Box$ 

Henceforth I will drop  $\langle S \rangle$  for free groups and use it only for subgroups generated by a subset.

II.K.10. REMARK. A similar characterization exists for the free abelian group  $\mathscr{A}_S$  on S. In II.K.9, wherever "group(s)" occurs, replace it by "abelian group(s)", and replace  $\langle S \rangle$  by the group of finite formal sums  $m_1s_1 + \cdots + m_ks_k$  with  $k \ge 0$ ,  $m_i \in \mathbb{Z}$  and  $s_i \in S$ . In the (modified) first paragraph of the proof,  $\varphi(m_1s_1 + \cdots + m_ks_k) := f(s_1)^{m_1} \cdots f(s_k)^{m_k}$  is well-defined and a homomorphism precisely because G is abelian.

Now let  $S \subset G$  be a *finite* generating set. We have by II.K.8-II.K.9 a (surjective) homomorphism

$$\varphi\colon \mathscr{F}_{\mathcal{S}} \twoheadrightarrow G$$

with  $\varphi(s) = s$  for each  $s \in S$ . By the Fundamental Theorem,

$$G \cong \mathscr{F}_{\mathcal{S}} / \ker(\varphi),$$

74

where of course ker( $\varphi$ ) is normal; and if ker( $\varphi$ ) =  $\langle\!\langle \mathcal{R} \rangle\!\rangle$  for some subset  $\mathcal{R} \subset \mathscr{F}_{\mathcal{S}}$ , this becomes

(II.K.11) 
$$G \cong \mathscr{F}_{\mathcal{S}} / \langle\!\langle \mathcal{R} \rangle\!\rangle$$

— a **presentation** of *G* in terms of generators *S* and relations  $\mathcal{R}$ . If  $|\mathcal{R}| < \infty$ , we say that *G* is **finitely presented**. We conclude with some

- II.K.12. EXAMPLES. (i)  $D_n \cong \mathscr{F}_{\{r,h\}} / \langle\!\langle r^n, h^2, rhrh \rangle\!\rangle$ . (ii)  $\mathrm{PSL}_2(\mathbb{Z}) \cong \mathscr{F}_{\{S,R\}} / \langle\!\langle S^2, R^3 \rangle\!\rangle$ .
- (iii) [HW]  $\mathscr{A}_{\mathcal{S}} \cong \mathscr{F}_{\mathcal{S}} / [\mathscr{F}_{\mathcal{S}}, \mathscr{F}_{\mathcal{S}}]$  for any set  $\mathcal{S}$ .

The next two examples illustrate the role these concepts play in algebraic topology and complex analysis.

(iv) A *compact Riemann surface C of genus g* is, topologically, the surface of a sphere with *g* handles attached, or of a donut with *g* holes.



Choosing a point  $x \in C$ , its *fundamental group*  $\pi_1(C)$  is the set of closed curves starting and ending at x modulo the equivalence relation given by continuous deformation;<sup>24</sup> the group operation is concatenating loops and inversion is reversing the direction. In fact, it

<sup>&</sup>lt;sup>24</sup>More precisely, a closed curve is a continuous map  $\gamma : [0,1] \to C$  with  $\gamma(0) = \gamma(1)$ ; and  $\gamma_0$  and  $\gamma_1$  are equivalent if there is a continuous map  $\Gamma : [0,1] \times [0,1] \to C$  with  $\gamma_0(t) = \Gamma(0,t)$  and  $\gamma_1(t) = \Gamma(1,t)$ .

is the quotient of a free group on certain loops (shown for g = 1, 2) modulo a single relation:

$$\pi_1(C) \cong \mathscr{F}_{\{\alpha_1,\beta_1,\ldots,\alpha_g,\beta_g\}} / \langle \langle \prod_{i=1}^g [\alpha_i,\beta_i] \rangle \rangle.$$

The relation arises from cutting open the surface as shown, then observing that the boundary can be continuously deformed to a point. (To see that the boundary curve is the product of commutators shown, start at the red dot with  $\beta$  resp.  $\beta_2$ .)

(v) Let  $N \ge 3$ , and set  $\kappa := \frac{N^2}{2} \prod_{p|N} (1 - \frac{1}{p^2})$  (where *p* is prime) and  $g := 1 + \frac{N-6}{12}\kappa$ . Recall the *congruence subgroups* 

$$\Gamma(N) := \ker \{ \operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z}) \}.$$

Let  $\mathfrak{H} := \{x + \mathbf{i}y \mid x \in \mathbb{R}, y \in \mathbb{R}_{>0}\}$  denote the upper half-plane in  $\mathbb{C}$ . We let  $\Gamma(N)$  act on  $\mathfrak{H}$  by fractional linear transformations, with  $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$  sending  $z \mapsto \frac{az+b}{cz+d}$ . The "quotient set"

$$Y(N) := \mathfrak{H}/\Gamma(N)$$

obtained<sup>25</sup> by identifying all points related by  $\Gamma(N)$ , is a genus *g* Riemann surface with  $\kappa$  points removed. Moreover, writing  $\gamma_1, \ldots, \gamma_{\kappa}$  for loops around these points, we have

$$\Gamma(N) \cong \pi_1(\Upsilon(N)) \cong \mathscr{F}_{\{\alpha_1,\beta_1,\dots,\alpha_g,\beta_g,\gamma_1,\dots,\gamma_\kappa\}} / \langle\!\langle \prod_{i=1}^g [\alpha_i,\beta_i] \prod_{j=1}^\kappa \gamma_j \rangle\!\rangle.$$

In particular,  $\Gamma(N)$  is finitely presentable (in fact, it is also torsion-free).

<sup>&</sup>lt;sup>25</sup>That is, Y(N) is the set of orbits of the group action on  $\mathfrak{H}$ .