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II.K. Generators and relations

The abelian case. Let G be an abelian group. We will write the
group operation as “+”. Note that for g ∈ G and a ∈ Z, the nota-
tion ag means adding g to itself a times (or, if a < 0, its inverse −g
to itself |a| times). So it is the equivalent of exponentiation in the
multiplicative notation.

II.K.1. PROPOSITION. The following are equivalent:
(i) G = {a1g1 + · · ·+ angn | ai ∈ Z} for some g1, . . . , gn ∈ G, called a
generating set for G.
(ii) G ∼= Zn/K for some n ∈N, K ≤ Zn.

PROOF. If (i) holds, define ϕ : Zn � G to send a := (a1, . . . , an) 7→
∑i aigi. By the Fundamental Theorem, G ∼= Zn/ ker(ϕ).

Conversely, assuming (ii), write η for the composition

Zn ν
� Zn/K

∼=→ G,

and set gi := η(ei) (where ei is the ith standard basis vector). Every
element of Zn is of the form ∑i aiei, and η is surjective; thus, every
element of G is of the form η(∑i aiei) = ∑i aiη(ei) = ∑i aigi. �

II.K.2. DEFINITION. (i) If the equivalent conditions of II.K.1 hold,
G is finitely generated (f.g.).
(ii) K is called the relations subgroup for G.
(iii) If G ∼= Zm (for some m), G is (f.g.) free abelian of rank m. The
image of the standard basis {ei}m

i=1 ⊂ Zm under the isomorphism is
called a basis of G.

II.K.3. EXAMPLES. (i) Zn is f.g. (with one generator: 1̄), and iso-
morphic to Z/nZ.

(ii) Q is not f.g.: if you pick r1
s1

, . . . , rn
sn

then any ∑n
i=1 ai

ri
si

can be repre-
sented with denominator ∏i si — clearly not possible for an arbitrary
rational number.
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(iii) Suppose G ∼= Z3/K, and K ∼= Z2 with basis (11,−21,−10),
(1,−6,−5). Then we can write G in terms of “generators and rela-
tions”:21

G ∼=
Z〈X, Y, Z〉

〈11X− 21Y− 10Z, X− 6Y− 5Z〉 .

The key here is using the fact that K is free, and further, having a
basis for K. The next result and its proof generalize this:

II.K.4. THEOREM. Every subgroup of a free f.g. abelian group is free
f.g.; more precisely, any K ≤ Zn is ∼= Zm for some m ≤ n.

PROOF. If n = 1, let a ∈ N ∩ K be as small as possible. If b ∈
K\{0} is not a multiple of a, then gcd(a, b) = `1a + `2b ∈ K, and is
less than a, a contradiction. So K = 〈a〉 ∼= Z.

Now, assuming the statement for n − 1, consider the projection
π : K → Z to the first Z-factor. If π(K) = {0}, we’re done by in-
duction (as ker(π) ≤ Zn−1). Otherwise, π(K) (≤ Z) consists of
multiples of some a = π(α), α ∈ K. Hence any β ∈ K is of the form

(β− π(β)
a α) + π(β)

a α ∈ ker(π) + 〈α〉 ,

and ker(π) ∩ 〈α〉 = {0}. So by (say) II.E.11(iii), K ∼= ker(π)× 〈α〉,
and applying the inductive assumption to ker(π) ≤ Zn−1, we are
done. (Note that the proof also yields a method for constructing a
basis, starting with α.) �

In fact, the group in Ex. II.K.3(iii) is ∼= Z45 ×Z, which inspires
the next statement:

II.K.5. PROPOSITION-DEFINITION. (Let G be abelian.) The subset
Gtor ⊆ G comprising elements of finite order is a subgroup, the torsion
part of G; while G/Gtor is a free abelian group (all nonzero elements are of
infinite order), the free part of G. (If G is f.g., this is ∼= Zm for some m.)

PROOF. Given g1, g2 ∈ Gtor, we have ai ∈ N with aigi = 0. Then
lcm(a1, a2) · (g1 + g2) = 0 =⇒ g1 + g2 ∈ Gtor. (So it’s closed under
addition — the rest is trivial.)
21The notation Z〈X, Y, Z〉 means the free abelian group with basis X, Y, Z; the
denominator means the subgroup generated by those two elements.
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Given g ∈ G\Gtor, if ag ∈ Gtor for some a ∈ N, then there exists
b ∈ N such that 0 = b(ag) = (ba)g, making g ∈ Gtor, a contra-
diction. So g has infinite order in G/Gtor. (I skip the proof of the
parenthetical for now; we will return to f.g. abelian groups in the
context of modules.) �

II.K.6. REMARK. Prop. II.K.5 is false for nonabelian groups. There
is no reason, if g1 and g2 don’t commute, why ga

1 = 1 and gb
2 = 1

should imply that g1g2 has finite order. One example is22 PSL2(Z),
which is generated by R =

( −1 1
−1 0

)
and S =

( 0 −1
1 0

)
. These elements

satisfy R3 =
(

1 0
0 1

)
= S2 (i.e. have finite order), but their product

RS =
(

1 1
0 1

)
has infinite order.

The general (non-abelian) case. We return to multiplicative no-
tation. Given a subset S ⊆ G, we defined the subgroup generated by
S as

〈S〉 := smallest subgroup of G containing S.

For later use, also write

〈〈S〉〉 := smallest normal subgroup of G containing S.

A set of generators for G is a subset S such that 〈S〉 = G (and it
is minimal if for all S′ ( S, we have 〈S′〉 < G). We say that G is
finitely generated iff there exists a finite set S with G = 〈S〉. Having
a (small) generating set is useful because of the following

II.K.7. PROPOSITION. A homomorphism ϕ : G → H is defined by its
behavior on a generating set. That is, if G = 〈S〉 and ϕ, η are homomor-
phisms with ϕ(s) = η(s) (∀s ∈ S), then ϕ = η.

PROOF. Any g ∈ G may be written in the form g = s1 · · · sN with
si ∈ S (and possible repetitions). Hence, ϕ(g) = ϕ(s1) · · · ϕ(sN) =

η(s1) · · · η(sN) = η(g). �

II.K.8. PROPOSITION. Given ϕ : H → G, if ϕ(H) ⊃ S and 〈S〉 = G,
then ϕ is surjective.
22SL2(Z) quotiented by the normal 2-element subgroup generated by

(
−1 0
0 −1

)
.
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PROOF. Since ϕ(H) is a group, 〈S〉 ≤ ϕ(H). �

Now let S be a set, not a subset of a group, just a set. Consider
the set of words on S , by which we mean the set of expressions

sm1
1 sm2

2 · · · s
mk
k (k ≥ 0, si ∈ S , mi ∈ Z)

subject only to the (equivalence) relation sasb = sa+b (for each s ∈ S).
Denote this set by23 〈S〉, and introduce the binary operation of “con-
catenating words” together with the obvious inverses s−mk

k · · · s−m1
1

to put a group structure on it. (Clearly the subset S generates the
resulting group 〈S〉!!) More intrinsically, we have the

II.K.9. PROPOSITION-DEFINITION. There exists a unique group

FS ⊃ S

with the (universal) property that: for all groups G and maps f : S →
G, there exists a unique homomorphism ϕ : FS → G making the
diagram

S

f ��

� � // FS

ϕ~~
G

commute. In fact, FS ∼= 〈S〉. It is called the free group on S .

PROOF. First we prove existence by showing that 〈S〉 has this
property. Define ϕ : 〈S〉 → G by ϕ(sm1

1 · · · s
mk
k ) = f (s1)

m1 · · · f (sk)
mk .

This is clearly well-defined and a homomorphism, and any other
homomorphism η making the diagram commute must have η(s) =
f (s) for all s ∈ S , hence (by II.K.7) η = ϕ.

23This designation is temporary, as — while standard — it is likely to get confused
with the other meaning of 〈S〉 for a subset of a group. After II.K.9 we will be using
FS instead.
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For uniqueness, suppose F and G are two groups containing S
as a subset and satisfying the universal property. Then there are ho-
momorphisms ϕ and η making

F

ϕ

��
S v�

((

( �

66

G

and

F

S v�
((

( �

66

G

η

OO

commute. But then

F

η◦ϕ

��
S v�

((

( �

66

F

and

G

ϕ◦η
��

S u�
((

) 	

66

G

commute as well, and then the uniqueness in the universal property
gives η ◦ ϕ = idF and ϕ ◦ η = idG . So F ∼= G and we are done. �

Henceforth I will drop 〈S〉 for free groups and use it only for
subgroups generated by a subset.

II.K.10. REMARK. A similar characterization exists for the free
abelian group AS on S . In II.K.9, wherever “group(s)” occurs, re-
place it by “abelian group(s)”, and replace 〈S〉 by the group of finite
formal sums m1s1 + · · · + mksk with k ≥ 0, mi ∈ Z and si ∈ S . In
the (modified) first paragraph of the proof, ϕ(m1s1 + · · ·+ mksk) :=
f (s1)

m1 · · · f (sk)
mk is well-defined and a homomorphism precisely

because G is abelian.

Now let S ⊂ G be a finite generating set. We have by II.K.8-II.K.9
a (surjective) homomorphism

ϕ : FS � G

with ϕ(s) = s for each s ∈ S . By the Fundamental Theorem,

G ∼= FS/ ker(ϕ),
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where of course ker(ϕ) is normal; and if ker(ϕ) = 〈〈R〉〉 for some
subsetR ⊂ FS , this becomes

(II.K.11) G ∼= FS/〈〈R〉〉

— a presentation of G in terms of generators S and relations R. If
|R| < ∞, we say that G is finitely presented. We conclude with
some

II.K.12. EXAMPLES. (i) Dn ∼= F{r,h}/〈〈rn, h2, rhrh〉〉.

(ii) PSL2(Z) ∼= F{S,R}/〈〈S2, R3〉〉.

(iii) [HW] AS ∼= FS/[FS , FS ] for any set S .

The next two examples illustrate the role these concepts play in
algebraic topology and complex analysis.

(iv) A compact Riemann surface C of genus g is, topologically, the sur-
face of a sphere with g handles attached, or of a donut with g holes.

1
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1

1

22

1

Choosing a point x ∈ C, its fundamental group π1(C) is the set of
closed curves starting and ending at x modulo the equivalence rela-
tion given by continuous deformation;24 the group operation is con-
catenating loops and inversion is reversing the direction. In fact, it

24More precisely, a closed curve is a continuous map γ : [0, 1] → C with γ(0) =
γ(1); and γ0 and γ1 are equivalent if there is a continuous map Γ : [0, 1]× [0, 1]→
C with γ0(t) = Γ(0, t) and γ1(t) = Γ(1, t).
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is the quotient of a free group on certain loops (shown for g = 1, 2)
modulo a single relation:

π1(C) ∼= F{α1,β1,...,αg,βg}/〈〈∏
g
i=1[αi, βi]〉〉.

The relation arises from cutting open the surface as shown, then ob-
serving that the boundary can be continuously deformed to a point.
(To see that the boundary curve is the product of commutators shown,
start at the red dot with β resp. β2.)

(v) Let N ≥ 3, and set κ := N2

2 ∏p|N(1− 1
p2 ) (where p is prime) and

g := 1 + N−6
12 κ. Recall the congruence subgroups

Γ(N) := ker{SL2(Z)→ SL2(Z/NZ)}.

Let H := {x + iy | x ∈ R, y ∈ R>0} denote the upper half-plane in
C. We let Γ(N) act on H by fractional linear transformations, with(

a b
c d

)
sending z 7→ az+b

cz+d . The “quotient set”

Y(N) := H/Γ(N)

obtained25 by identifying all points related by Γ(N), is a genus g Rie-
mann surface with κ points removed. Moreover, writing γ1, . . . , γκ

for loops around these points, we have

Γ(N) ∼= π1(Y(N)) ∼= F{α1,β1,...,αg,βg,γ1,...,γκ}/〈〈∏
g
i=1[αi, βi]∏κ

j=1 γj〉〉.

In particular, Γ(N) is finitely presentable (in fact, it is also torsion-
free).

25That is, Y(N) is the set of orbits of the group action on H.


