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II.L. The Sylow theorems

Recall that a group of prime power order is called a p-group.

II.L.1. DEFINITION. Let G be a finite group with |G| = pkm, p
prime and p - m. A Sylow p-subgroup of G is a subgroup of order
pk, the maximum possible power of p.

We already know that these exist when k = 1, by Cauchy’s theo-
rem (which in fact guarantees an element of order p in G if k ≥ 1). To
attack the general case, we briefly recall what we will need on group
actions: if {xi} are representatives of the G-orbits in X with more
than one element, and XG denotes the fixed points (i.e. the union of
1-element orbits), then

|X| = |XG|+ ∑
i
|G(xi)|

= |XG|+ ∑
i
[G:Gxi ]

by the orbit-stabilizer theorem. Further, if X = G and G acts on itself
by conjugation, this becomes the class equation

(II.L.2) |G| = |C(G)|+ ∑
i
[G:CG(xi)]

in which {xi} are representatives of ccl’s with > 1 element.26 The
main points here are that

• [G:CG(xi)]
∣∣|G|, and

• [G:CG(xi)] 6= 1 (otherwise xi ∈ C(G)).

We are now ready for

II.L.3. FIRST SYLOW THEOREM. Every finite group has a Sylow p-
subgroup for each prime p dividing its order:

|G| = pkm =⇒ ∃H ≤ G with |H| = pk.

PROOF. Assume the theorem holds for all groups of order less
than |G|. (The base case is just the one-element group {1}.) Here is
the inductive step.

26So if G is abelian, there are no xi’s (and one is in case (2) in the next proof).
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Clearly one of the following must be true: either

(1) pk
∣∣|CG(xi)| for some i; or

(2) pk does not divide |CG(xi)| for any i.

In case (1), |CG(xi)| = pkn is less than |G|. By the inductive hypoth-
esis, there exists H ≤ CG(xi) with |H| = pk. Since CG(xi) ≤ G,
H ≤ G.

In case (2), since |CG(xi)| · [G:CG(xi)] = |G| = pkm, p divides
[G:CG(xi)] for every i. Hence, in the class equation (II.L.2), p di-
vides everything but |C(G)|, and thus must also divide |C(G)|. By
Cauchy’s theorem, there is a subgroup K ≤ C(G) of order p. Since
conjugation affects no element in C(G), K E G. We can thus speak of
the quotient group G/K with order pk−1m, which by the inductive
hypothesis contains a subgroup H0 of order pk−1. Let

ϕ : G� G/K

be the quotient map. Since this map is p-to-1,27 the preimage ϕ−1(H0) ≤
G — which is a subgroup by II.I.25(iii) — has order pk as desired. �

Recall that the normalizer of a subgroup H ≤ G is the largest
subgroup of G in which H is normal:

NG(H) := {g ∈ G | gHg−1 = H}.

If K ≤ NG(H), then KH = HK =⇒ KH is a group. We’ll need a
lemma for the proofs of the remaining Sylow theorems.

II.L.4. LEMMA. Let P1, P2 ≤ G be Sylow p-subgroups, and suppose
P1 ≤ NG(P2). Then P1 = P2.

PROOF. Write |G| = pkm, so |P1| = |P2| = pk and (since the
intersection of subgroups is a subgroup of each) |P1 ∩ P2| = ps (for
some s ≤ k). Moreover,

P1 ≤ NG(P2) =⇒ P1P2 ≤ G =⇒ |P1P2|
∣∣|G|

27The quotient (natural map) ν : G � G/H by a normal subgroup H E G of order
r is always an r-to-1 map: each coset of H has r elements, and you are collapsing
each coset to a single element.
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and since P2 ≤ P1P2,

pk = |P2|
∣∣|P1P2| =⇒ |P1P2| = pkn

where n | m. Now use the product formula |P1P2||P1 ∩ P2| = |P1||P2|
(from HW 4 #2), which gives pkn · ps = pk · pk. Since n was a factor of
m which was relatively prime to p, this yields a contradiction unless
n = 1. Conclude that |P1P2| = pk. But now P1 and P2 are subgroups
of P1P2 and all three have the same order; hence all three are equal.

�

Let X denote the set of all Sylow p-subgroups of G, which is
non- empty by Sylow I. Write X = {P1, P2, . . . , PN}, so that N = |X|.

II.L.5. SECOND SYLOW THEOREM. N ≡
(p)

1.

PROOF. We let P1 act by conjugation on X. This makes sense be-
cause the conjugate gPig−1 of a group of order pk still has order pk

(because conjugation is an isomorphism). This group action decom-
poses X into orbits; taking a system of representatives {Pj} of the
orbits of order > 1, we have

(II.L.6) N = |X| = | XP1︸︷︷︸
fixed

pts.

|+ ∑
j
|P1(Pj)︸ ︷︷ ︸
> 1 elt.

orbits

|.

By the orbit-stabilizer theorem, 1 < |P1(Pj)|
∣∣|P1| = pk. So p divides

all the terms in the RHS of (II.L.6) except possibly |XP1 |.
Now consider the fixed points: to have Pi ∈ XP1 means that

gPig−1 = Pi (∀g ∈ P1); and so by the definition of the normal-
izer, P1 ≤ NG(Pi). Lemma II.L.4 then tells us that P1 = Pi: that
is, i = 1 and P1 ∈ X is the only fixed point. So (II.L.6) reads N =

1 + {multiple of p} and we are done. �

II.L.7. THIRD SYLOW THEOREM. All Sylow p-subgroups are conju-
gate. (That is, if P1, P2 ≤ G are two such, then there exists g ∈ G such that
gP1g−1 = P2.)
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PROOF. Let Γ denote the set of left cosets of P2, and consider
the action of P1 on Γ by left-multiplication. Suppose that the set of
fixed “points” ΓP1 is nonempty, and let gP2 be one of them: that is,
hgP2 = gP2 (∀h ∈ P1). Then

g−1hgP2 = P2 =⇒ g−1hg ∈ P2 =⇒ hg ∈ gP2

=⇒ h ∈ gP2g−1 (∀h ∈ P1) =⇒ P1 ≤ gP2g−1

=⇒ P1 = gP2g−1, since P1 and P2 have the same order. So we just
need to show |ΓP1 | 6= 0.

As before, we have (by counting orbits)

|Γ| = |ΓP1 |+ ∑
j
{ size of

jth orbit
}

with the sum terms divisble by p (by the orbit-stabilizer theorem
and the fact that a p-group is acting). So on the one hand, we have
|ΓP1 | ≡

(p)
|Γ|. On the other, by Lagrange we have

|Γ| = # of cosets of P2 = [G:P2] =
|G|
|P2|

=
pkm
pk = m 6≡

(p)
0.

Hence, |ΓP1 | 6= 0. �

Here are two more important results on p-groups and p-subgroups
(really, a refinement of Sylow I).

II.L.8. PROPOSITION. Suppose |G| = pe. Then for any k ≤ e, there
exists a normal subgroup H E G of order pk.

PROOF. (Assume true for pe−1; this is the inductive step.) We
know C(G) 6= {1} by II.H.8; so p

∣∣|C(G)| and by Cauchy, there exists
a ξ ∈ C(G) of order p. Since any subgroup of its center is normal
in G, 〈ξ〉 E G; we may therefore consider G/〈ξ〉 a group of order
pe−1. Applying the inductive hypothesis yields K E G/〈ξ〉 of order
pk−1. We claim that its preimage under η : G� G/〈ξ〉, namely H :=
η−1(K), is the desired subgroup of G: indeed, H E G by II.I.25(iv);
and |H| = p · pe−1 since η is p-to-1. �
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II.L.9. COROLLARY. Suppose |G| = pem, where p - m. Then for any
1 ≤ k ≤ e, there exists a subgroup H ≤ G of order |H| = pk.

PROOF. By Sylow I, G has a Sylow p-subgroup P ≤ G (of order
pe). Applying II.L.8 to P yields H ≤ P of the correct order. �

How might one use Sylow III, with its characterization of set of
Sylow p-subgroups of G as one big orbit under conjugation? The
orbit-stabilizer theorem says that the size of any orbit must divide
the order of G; so we get immediately that

(II.L.10)
the number N of Sylow p-subgroups

divides the order |G| of the group.

Together with Sylow II this frequently gives enough information to
determine N.

II.L.11. EXAMPLE. S5 has six 5-Sylow subgroups.

PROOF. N
∣∣|S5| = 5! and N ≡

(5)
1 =⇒ N = 6 or 1. But there’s

more than one, as 〈(12345)〉 and 〈(12354)〉 are distinct. �

In fact, we can use this to show that S6 has an outer automor-
phism, thereby finishing off Theorem II.J.5:

PROOF. The action of S5 (by conjugation) on its six 5-subgroups
is transitive by Sylow III, hence gives a map

ϕ : S5 → S6

with |ϕ(S5)| ≥ 6 =⇒ | ker(ϕ)| = |S5|
ϕ(S5)

≤ 20. But by HW 3, A5 (of
order 60) is the only nontrivial normal subgroup of S5; hence ker(ϕ),
being normal in S5, must be trivial, and ϕ injective.

Now we claim that ϕ preserves parity (i.e. σ odd =⇒ ϕ(σ) odd).
Suppose first of all that ϕ(S5) was contained in A6; then it has index
3 and the action of A6 (by left translation) on its cosets maps A6 →
S3 nontrivially hence (since A6 is simple and kernels are normal)
injectively. But this contradicts |A6| > |S3|, and so ϕ(S5) 6⊂ A6,
making the composition S5

ϕ→ S6
sgn→ Z2 surjective. Again, A5 is
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the only nontrivial proper normal subgroup of S5, so it must be the
kernel of the composition. Thus the composition is sgn : S5 → Z2,
proving the claim.

Consider the homomorphism from S6 to itself obtained by let-
ting S6 act on the six cosets of ϕ(S5) (∼= S5) by left translation. This
map

α : S6 → S6

has image of order ≥ 6, hence (by arguing as above) is injective, and
thus an isomorphism. That is, α ∈ Aut(S6).

Recall that to prove α is not inner, we only have to show that it
sends a transposition to a non-transposition.28 Suppose α((12)) =

(ab). Then α((12)) is swapping two cosets of ϕ(S5) and fixing the
other four. Let xϕ(S5) be one of the fixed cosets, so that (12)xϕ(S5) =

xϕ(S5) =⇒ x−1(12)x ∈ ϕ(S5). Define σ ∈ S5 by ϕ(σ) = x−1(12)x.
Since x−1(12)x is odd, and ϕ preserves parity, σ is odd; it is also of
order 2 in S5, and hence must be a transposition.

Since ϕ(σ) is a transposition, σ’s action on the 5-Sylow subgroups
of S5 swaps two and normalizes four. Let P = 〈(12345)〉 be one of
the latter (relabeling if needed). We may assume σ(1) = 1, and so

σ(12345)σ−1 = (1 σ(2) σ(3) σ(4) σ(5))

∈ P = {(12345), (13524), (14253), (15432), 1S5} ,

which is visibly impossible if σ is a transposition. (No element of P
results from swapping two numbers in (12345).)

So α((12)) cannot be a transposition and we are done. �

28In fact, this “non-transposition” had to be a product of three disjoint transpo-
sitions: in the notation of the proof of II.J.5(ii), a non-inner α (assuming it exists)
must exchange C1 and C3. Notice that its square will then fix C1 and is thus in-
ner. In fact, its composition with any β exchanging C1 and C3 also fixes C1, which
shows that Out(S6) ∼= Z2.


