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ILL. The Sylow theorems

Recall that a group of prime power order is called a p-group.

IL.L.1. DEFINITION. Let G be a finite group with |G| = p*m, p
prime and p { m. A Sylow p-subgroup of G is a subgroup of order
pk, the maximum possible power of p.

We already know that these exist when k = 1, by Cauchy’s theo-
rem (which in fact guarantees an element of order p in G if k > 1). To
attack the general case, we briefly recall what we will need on group
actions: if {x;} are representatives of the G-orbits in X with more
than one element, and X® denotes the fixed points (i.e. the union of
1-element orbits), then

X| = XS] + Y |G(x)]
= XC| + L[G:Gy,

by the orbit-stabilizer theorem. Further, if X = G and G acts on itself
by conjugation, this becomes the class equation

(ILL.2) G =[C(G)] + YL_[G:Co(xi)]

in which {x;} are representatives of ccl’s with > 1 element.?® The
main points here are that

° [G:CG(xi)] ‘ |G|, and
o [G:Cg(x;)] # 1 (otherwise x; € C(G)).

We are now ready for

I.L.3. FIRST SYLOW THEOREM. Every finite group has a Sylow p-
subgroup for each prime p dividing its order:

G| = p'm = 3H < G with |H| = p*.

PROOF. Assume the theorem holds for all groups of order less
than |G|. (The base case is just the one-element group {1}.) Here is
the inductive step.

2654 if G is abelian, there are no x;’s (and one is in case (2) in the next proof).
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Clearly one of the following must be true: either
(1) p¥||Cg(x;)| for some i; or
(2) p* does not divide |Cg(x;)| for any i.
In case (1), |Cg(x;)| = p*n is less than |G|. By the inductive hypoth-
esis, there exists H < Cg(x;) with |H| = p*. Since Cg(x;) < G,
H<G.

In case (2), since |Cq(x;)| - [G:Cs(x;)] = |G| = p*m, p divides
[G:Cg(x;)] for every i. Hence, in the class equation (ILL.2), p di-
vides everything but |C(G)|, and thus must also divide |C(G)|. By
Cauchy’s theorem, there is a subgroup K < C(G) of order p. Since
conjugation affects no element in C(G), K < G. We can thus speak of
the quotient group G/K with order p*~'m, which by the inductive
hypothesis contains a subgroup Hy of order p*~1. Let

p: G—- G/K
be the quotient map. Since this map is p-to-1,% the preimage ¢~ (Hy)
G — which is a subgroup by IL.1.25(iii) — has order p* as desired. [

Recall that the normalizer of a subgroup H < G is the largest
subgroup of G in which H is normal:
No(H) :={g € G |gHg™" = H}.

If K < Ng(H), then KH = HK = KH is a group. We'll need a
lemma for the proofs of the remaining Sylow theorems.

II.L.4. LEMMA. Let P;, P, < G be Sylow p-subgroups, and suppose
P1 < NG(Pz). Then P1 = Pz.

PROOF. Write |G| = pfm, so |Pi| = |P;| = p* and (since the
intersection of subgroups is a subgroup of each) |P; N P»| = p® (for
some s < k). Moreover,

P < Ng(P) = PP, <G = |PDP||G|

2/ The quotient (natural map) v: G - G/H by a normal subgroup H < G of order
r is always an r-to-1 map: each coset of H has r elements, and you are collapsing
each coset to a single element.

<
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and since P2 < P1P2/
p* = [Po||[P\Ps] = |P1Py| = pFn

where n | m. Now use the product formula |Py P, ||Py N P,| = | Py || P,|
(from HW 4 #2), which gives p*n - p* = p* - p*. Since n was a factor of
m which was relatively prime to p, this yields a contradiction unless
n = 1. Conclude that |P; ;| = p*. But now P; and P, are subgroups
of P1 P, and all three have the same order; hence all three are equal.

O

Let X denote the set of all Sylow p-subgroups of G, which is
non- empty by Sylow I. Write X = {Py, P,,..., Py}, so that N = |X].

II.L.5. SECOND SYLOW THEOREM. N (Ep) 1.

PROOF. We let P; act by conjugation on X. This makes sense be-
cause the conjugate ¢P;¢~! of a group of order p* still has order p*
(because conjugation is an isomorphism). This group action decom-
poses X into orbits; taking a system of representatives {P;} of the
orbits of order > 1, we have

(ILL.6) N =|X| =X |+ Y |P(P)].
~~ Z N
fixed > lelt
pts. orbits

By the orbit-stabilizer theorem, 1 < |Py(P})|||P;| = p*. So p divides
all the terms in the RHS of (IL.L.6) except possibly [X"1|.

Now consider the fixed points: to have P; € X" means that
gP.¢™! = P; (Vg € Py); and so by the definition of the normal-
izer, P; < Ng(P;). Lemma II.L.4 then tells us that P; = P;: that
is, 1 = 1 and P; € X is the only fixed point. So (ILL.6) reads N =
1+ {multiple of p} and we are done. O

ILL.7. THIRD SYLOW THEOREM. All Sylow p-subgroups are conju-
gate. (That is, if P;, P, < G are two such, then there exists § € G such that

ghigl=P)
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PROOEF. Let I' denote the set of left cosets of P, and consider
the action of P; on I' by left-multiplication. Suppose that the set of
fixed “points” T is nonempty, and let g¢P, be one of them: that is,
hgP, = ¢P, (Vh € P;). Then

gilhgpz =P = gilhg cep = hg cgh
= he gng_l (Vh € Pl) — P < gng_l
= P =gbP g_l, since P; and P, have the same order. So we just

need to show |T"1| # 0.
As before, we have (by counting orbits)

o P size of
|r’ - |r 1| +Z{]th orbit}
]

with the sum terms divisble by p (by the orbit-stabilizer theorem
and the fact that a p-group is acting). So on the one hand, we have
Ingd = IT'|. On the other, by Lagrange we have
P
|G|

pm
IT| = # of cosets of P, = [G:P,] = B~ r =m % 0.

Hence, [T™1| # 0. O

Here are two more important results on p-groups and p-subgroups
(really, a refinement of Sylow I).

II.L.8. PROPOSITION. Suppose |G| = p°. Then for any k < e, there
exists a normal subgroup H <\ G of order p*.

PROOF. (Assume true for p®~!; this is the inductive step.) We
know C(G) # {1} by ILH.8; so p||C(G)| and by Cauchy, there exists
a ¢ € C(G) of order p. Since any subgroup of its center is normal
in G, (¢) < G; we may therefore consider G/(¢) a group of order
p¢~L. Applying the inductive hypothesis yields K < G/(¢) of order
pF=1. We claim that its preimage under 77: G — G/(¢), namely H :=
7~ 1(K), is the desired subgroup of G: indeed, H < G by IL.L.25(iv);
and |H| = p - p*~! since 7 is p-to-1. O
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ILL.9. COROLLARY. Suppose |G| = p°m, where p t m. Then for any
1 <k <'e, there exists a subgroup H < G of order |H| = pk.

PROOF. By Sylow I, G has a Sylow p-subgroup P < G (of order
p°). Applying IL.L.8 to P yields H < P of the correct order. O

How might one use Sylow III, with its characterization of set of
Sylow p-subgroups of G as one big orbit under conjugation? The
orbit-stabilizer theorem says that the size of any orbit must divide
the order of G; so we get immediately that

(ILL.10) the number N of Sylow p-subgroups
L. divides the order |G| of the group.

Together with Sylow II this frequently gives enough information to
determine N.

II.L.11. EXAMPLE. &5 has six 5-Sylow subgroups.

PROOF. N||&s| = 5! and N (55) 1 = N = 6 or 1. But there’s
more than one, as ((12345)) and ((12354)) are distinct. O

In fact, we can use this to show that G4 has an outer automor-
phism, thereby finishing off Theorem II.].5:

PROOF. The action of &5 (by conjugation) on its six 5-subgroups
is transitive by Sylow III, hence gives a map

Q: G5 — G
with |@(&5)] > 6 = |ker(¢)| = qj("g) < 20. But by HW 3, 25 (of

order 60) is the only nontrivial normal subgroup of &5; hence ker(¢),
being normal in &5, must be trivial, and ¢ injective.

Now we claim that ¢ preserves parity (i.e. c odd = ¢(0) odd).
Suppose first of all that ¢(S5) was contained in 2g; then it has index
3 and the action of g (by left translation) on its cosets maps s —
S3 nontrivially hence (since 2g is simple and kernels are normal)
injectively. But this contradicts |2s| > |S3|, and so ¢(S5) ¢ U,
making the composition G5 AN Ge = 7, surjective. Again, 25 is
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the only nontrivial proper normal subgroup of &5, so it must be the
kernel of the composition. Thus the composition is sgn: &5 — Z,
proving the claim.

Consider the homomorphism from &g to itself obtained by let-
ting & act on the six cosets of ¢(S5) (= Ss) by left translation. This
map

n: S — Gg

has image of order > 6, hence (by arguing as above) is injective, and
thus an isomorphism. That is, « € Aut(Sg).

Recall that to prove « is not inner, we only have to show that it
sends a transposition to a non-transposition.?® Suppose «((12)) =
(ab). Then «((12)) is swapping two cosets of ¢(Ss) and fixing the
other four. Let x¢(GSs5) be one of the fixed cosets, so that (12)x¢(S5) =
xp(65) = x71(12)x € ¢(Ss). Define o € G5by ¢(0) = x~1(12)x.
Since x1(12)x is odd, and ¢ preserves parity, o is odd; it is also of
order 2 in &5, and hence must be a transposition.

Since ¢(0) is a transposition, ¢’s action on the 5-Sylow subgroups
of &5 swaps two and normalizes four. Let P = ((12345)) be one of
the latter (relabeling if needed). We may assume (1) = 1, and so

0(12345)0 ! = (10(2) o(3) o(4) ¢(5))
€ P = {(12345), (13524), (14253), (15432), 1g,},

which is visibly impossible if ¢ is a transposition. (No element of P
results from swapping two numbers in (12345).)
So «((12)) cannot be a transposition and we are done. O

28In fact, this “non-transposition” had to be a product of three disjoint transpo-
sitions: in the notation of the proof of II.].5(ii), a non-inner a (assuming it exists)
must exchange C; and C3. Notice that its square will then fix C; and is thus in-
ner. In fact, its composition with any  exchanging C; and Cj3 also fixes C;, which
shows that Out(&¢) = Z,.



