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II.M. Some results on finite groups

Low order. Let’s review what we already know about classifying
these. By Lagrange’s theorem, if a group has prime order = p, then
any element 6= 1G has order p, hence generates the group. So

(II.M.1) (a) groups of prime order are cyclic (∼= Zp).

This covers orders 2, 3, 5, 7, 11, 13, . . .. Next,

(b) groups of order 2p are either cyclic (∼= Z2p) or dihedral (∼= Dp).

This takes care of orders 6, 10, 14, . . .. Finally,

(c) groups of order p2 (p prime) are abelian and ∼= Zp ×Zp or Zp2 .

This finishes off orders 4, 9, . . .. Between 1 and 16 this leaves orders

8 , 12 , and 15.

II.M.2. THEOREM. The groups of order 8 are (up to ∼=)

Z8, Z4 ×Z2, Z2 ×Z2 ×Z2, Q, and D4.

PROOF. We begin with the abelian case. By II.L.8 there is a sub-
group H of order 4. Any g ∈ G\H, together with H (∼= Z2 ×Z2 or
Z4) generates G.

If |〈g〉| = 2, G is Z2 ×Z2 ×Z2 or Z2 ×Z4. (Use II.E.11(iv).)
If |〈g〉| = 8, G ∼= Z8 (and H ∼= Z4).
If |〈g〉| = 4: we need to show that there is an element g′ ∈ G

of order 2 and different from 2g. (Then II.E.11(iv) implies that G ∼=
〈g〉 × 〈g′〉 ∼= Z4×Z2.) Under G� G/H ∼= Z2, we have g 7→ 1̄ =⇒
2g 7→ 0̄ =⇒ 2g ∈ H (of order 2). If H = 〈h〉 ∼= Z4, then 2g = 2h
and we can take g′ := g− h. If H ∼= Z2 ×Z2, then we take g′ to be
an element of H other than 1 and 2g.

Turning to the nonabelian case: clearly, we can’t have an element
of order 8. Also, were every non-identity element of order 2, we’d
have

1 = (ab)2 = abab =⇒ ab = b−1a−1 = ba =⇒ G abelian.
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So there exists an element a ∈ G of order 4.
Since subgroups of index 2 are normal (cf. II.I.8), 〈a〉 E G. Pick

b ∈ G\〈a〉; then G = 〈a, b〉, with b2 ∈ 〈a〉. So b2 = aµ, where µ 6= 1
or 3 (otherwise |〈b〉| = 8); that is,

(II.M.3) b2 = a2 or 1.

By the normality, bab−1 ∈ 〈a〉. Since bab−1 has the same order as
a, bab−1 = a±1. But if bab−1 = a, then b and a commute and G is
abelian. So

(II.M.4) bab−1 = a−1,

i.e. ba = a−1b.
Now (II.M.3) and (II.M.4) completely describe the multiplication

in a group of order 8 with elements 1, a, a2, a3, b, ba, ba2, ba3:

b2 = a2 or 1, b−1 = a2b or b, ab = ba3, a2b = ba2, etc.

There are two cases: first, if b2 = 1, then we clearly get an isomor-

phism from D4
∼=→ G by sending r 7→ a and h 7→ b. Second, if b2 = a2,

there is an isomorphism from the quaternions Q
∼=→ G sending i 7→ a

and j 7→ b (and −1 7→ a2 = b2); the reader should check the remain-
ing details. �

Next up would be 12, but this is harder — we’ll just list those:
D6, A4, Z2 ×Z6, Z12, and the “third29 dicyclic group”

T := 〈a, b | a6 = 1, b2 = a3 = (ab)2〉.

There is only one group of order 15, namely Z15; this will follow
from results below on groups of order pq. But there are 14 non-
isomorphic groups of order 16, so that’s a good place to stop this initial
mini-foray into group classification.

29This is a series of groups of order 4n: for n = 1, Z2 ×Z2; for n = 2, Q; for n = 3,
T; etc.
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High(er) order. Here we can really get going with the Sylow the-
orems, but first we require a few “counting” results. The first is im-
mediate from HW 4 #2:

II.M.5. LEMMA. H, K ≤ G =⇒ |H||K|
|H∩K| ≤ |G|.

For n = ∏t
i=1 pei

i , recall that

Aut(Zn) ∼= Z∗n
∼= Z∗

p
e1
1
× · · · ×Z∗

pet
t

has order φ(n) := {k ∈ Z>0 | k < n, (k, n) = 1}; e.g., φ(p) = p− 1,
φ(p2) = p(p− 1), φ(p3) = p2(p− 1) etc. for p prime. (One can also
prove that Z∗p

∼= Zp−1 — i.e. it is actually cyclic — which we’ll do
later on but won’t need here.) I will also use without proof

(II.M.6) Aut(Zp × · · · ×Zp︸ ︷︷ ︸
k times

) ∼= GL(k, Zp),

where the RHS means k× k invertible matrices with entries30 mod p.
For k = 1, this just says Aut(Zp) ∼= Z∗p (with order p− 1). For k = 2
it reads

Aut(Zp ×Zp) ∼= GL(2, Zp)

with order (p− 1)2p(p + 1); you will prove this case in the next HW.
We don’t actually need much of this for our first result, on groups

of order pq:

II.M.7. THEOREM. Let p and q be distinct primes, with p > q and
q - p− 1. Then the only group of order pq is Zpq.

PROOF. Let |G| = pq and H, K be the subgroups of order p resp.
q guaranteed by Cauchy. By Lagrange’s theorem, (i) H ∩ K = {1};
and clearly (ii) |H||K| = |G|.

30For this to make sense, you need to multiply and add in Zp, which means to
consider it as a ring. Since we’re about to start that part of the course, it seems
fair to mention it! Of course, the automorphisms on the left of (II.M.6) are as an
abelian group, and GL(k, Zp) itself is a (nonabelian) mutliplicative group. This
generalizes our earlier example Aut(Z2 ×Z2) ∼= S3 from II.J.4(i) of the group of
automorphisms of an abelian group being nonabelian, since S3 ∼= GL(2, Z2).
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Moreover, we claim that H E G. Otherwise, a distinct conjugate
H′ would be of the same order p, and (again by Lagrange) H ∩ H′ =
{1}. Lemma II.M.5 then gives |G| ≥ |H||H′| =⇒ pq ≥ p2 =⇒
q ≥ p, a contradiction.

Now, consider the composition

(II.M.8) Zq
∼= //

µ

55K
ı(·)
// Aut(H)

∼= // Aut(Zp)
∼= // Z∗p

induced by conjugating elements of H by elements of K (since H E
G). By the Fundamental Theorem,

|im(µ)|
∣∣|Z∗p|, |Zq|.

If q - p − 1, this is impossible unless |im(µ)| = 1. Hence, the map
(II.M.8) is trivial, and ık = idH (∀k ∈ K); i.e. khk−1 = h (∀h ∈ H, k ∈
K) or (iii) kh = hk (∀h, k).

The three hypothesis (i),(ii),(iii) imply (by the Direct Product The-
orem II.E.11(iv)) that G ∼= H × K ∼= Zp ×Zq, which is ∼= Zpq since
(p, q) = 1. �

Here is another instance of this type of argument:

II.M.9. EXAMPLE. We classify the groups G of order 52 · 372. First,
there exist

• a Sylow 37-subgroup H (of order 372), and
• a Sylow 5-subgroup K (of order 52).

Clearly |H||K| = |G|, and H ∩ K = {1}.
Moreover, H E G: if it had a distinct conjugate H′, then |H ∩ H′|

is either 37 or 1, so that

52 · 372 = |G| ≥ |H||H
′|

|H ∩ H′| =
372 · 372

37 or 1
= 373 or 374

yields a contradiction.
Thus K acts on H by conjugation, yielding a homomorphism

ϕ : K → Aut(H).
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Being a group of order p2, p = 37 prime, H is one of the following
(cf. II.H.9):

• H ∼= Zp2 =⇒ Aut(H) ∼= Z∗p2 has order p(p− 1) = 37 · 36; or
• H ∼= Zp ×Zp =⇒ Aut(H) ∼= GL(2, Zp) has order p(p + 1)(p−

1)2 = 37 · 38(36)2.

But for ϕ to be compatible with the Fundamental Theorem, we must
have |im(ϕ)|

∣∣|K|, |Aut(H)|; and 25 is relatively prime to 37, 36, and
38. We conclude that im(ϕ) = {1Aut(H)}, so that kh = hk (∀k, h)
as in the last proof. Once again, G ∼= H × K which yields the four
possibilities:

• G ∼= Z372 ×Z52 ∼= Z52372 ;
• G ∼= (Z37 ×Z37)×Z52 ∼= Z37 ×Z37·52 ;
• G ∼= Z372 × (Z5 ×Z5) ∼= Z372·5 ×Z5; and
• G ∼= (Z37 ×Z37)× (Z5 ×Z5) ∼= Z5·37 ×Z5·37.

In particular, G is abelian!

Recall that A5 was a simple group, i.e. had no normal subgroups
apart from itself and {1}. Also, |A5| = 5!

2 = 60. Here is a beautiful
application of Sylow theory which attests to the “specialness” of A5.

II.M.10. THEOREM. There is no nonabelian simple group of order less
than 60.

PROOF. We know that

• groups of prime order are simple but abelian, and
• groups of prime power order are not simple (cf. II.L.8).

Suppose that there exists a nonabelian group G, simple of order

(II.M.11) |G| = pem, m > 1, p prime, p - m, pe - (m− 1)!.

By Sylow I, G has a subgroup H of order pe and index m. Letting G
act on left cosets G/H by left-multiplication gives a homomorphism
ϕ : G → Sm which must be injective or trivial (so that ker(ϕ) doesn’t
furnish a normal subgroup other than {1} or G). In fact, it can’t be
trivial, as G acts transitively on H’s cosets. So ϕ is injective, and
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ϕ(G) ≤ Sm has order pem. By Lagrange, pem|m! =⇒ pe | (m− 1)!
in contradiction to our assumption.

Now the only positive integers less than 60 and not of the form
(II.M.11), and not a prime or prime power, are 30, 40, and 56.
We shall systematically rule these out as possible orders of simple
groups.

Suppose |G| = 30 = 2 · 3 · 5, and take P to be a Sylow 5-subgroup.
By Sylow II, the number of conjugates of P satisfies NP ≡

(5)
1; while

by (II.L.10) NP | 30. Moreover, if G is to be simple, then P can’t be
normal, so NP > 1; and we deduce that NP = 6. Next, a 3-Sylow
subgroup Q has NQ ≡

(3)
1, NQ|30, and NQ 6= 1, hence NQ = 10. By

Lagrange, none of the six conjugates of P and 10 conjugates of Q can
intersect outside of {1}. This requires G to have at least

(5− 1) · 6 + (3− 1) · 10 + 1 = 45 elements,

which, well, it doesn’t.
How about |G| = 40 = 23 · 5? Let P be a Sylow 5-subgroup. If N

is its number of conjugates, then N ≡
(5)

1, N 6= 1, and N | 40. There’s

no such number N.
Finally, there’s |G| = 56 = 23 · 7 to take out. Write P for a Sylow 7-

subgroup, with N7 conjugates. We have N7 ≡
(7)

1, N7 6= 1, and N7 | 56

=⇒ N7 = 8. Playing the same game with a Sylow 2-subgroup Q
gives N2 ≥ 3 conjugates. Now the conjugates of P can’t intersect
each other or those of Q outside of the identity element; not counting
the identity, this furnishes N7 · (7− 1) = 8 · 6 = 48 distinct elements
of G. On the other hand, the conjugates of Q (which, remember, have
order 8) can intersect in order-4 subgroups. Without thinking too
hard, we at least get (counting the identity) 12 additional elements
of G by considering just Q and one conjugate. This again produces a
contradiction since 12 + 48 = 60 > 56, concluding the proof. �
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Miscellany. Before we leave the realm of finite group classifica-
tion, I would be remiss not to mention the famous classification of all
finite simple groups (completed in 2004) into:

• cyclic groups of prime order Zp

• alternating groups An, n ≥ 5 (Galois, 1832)
• simple groups of Lie type:

– This starts from É. Cartan’s classification (1894) of complex
simple Lie algebras into the Cartan types An (sln+1), Bn (so2n+1),
Cn (sp2n), Dn (so2n), G2, F4, E6, E7, E8.

– C. Chevalley (1955) constructed integral bases for these, al-
lowing him to define the corresponding simple Lie groups
as algebraic groups over the integers, hence also over finite
fields (e.g. Zp, by reducing modulo p).

– e.g. PSLm(Zp) is obvious; not so with G2(Zp).
– Steinberg, Suzuki, Ree filled in gaps (e.g. unitary groups).

• 26 sporadic simple groups
– the “Monster” is the largest, of order ' 8× 1053

– Mathieu groups are the most approachable, as automorphism
groups of “Steiner systems”: e.g., S(4, 5, 11) denotes a set P

of 11 points, together with a set B of “blocks” of 5 points
each, such that each 4-point subset of P belongs to a unique
block; and M11 ≤ SP

∼=S11 is the subgroup preserving blocks.

Another two topics oddly missing from [Jacobson] are group exten-
sions and semidirect products. They deserve a brief mention now, as
interesting constructions of (non-simple) finite groups.

We start with group extensions (of a group H by a group K).
These are short-exact sequences of groups

(II.M.12) ε := {1→ K α→ G
β→ H → 1}.

That is, α is an injective homomorphism, β is a surjective homomor-
phism, and ker(β) = im(α). Hence,31 H ∼= G/α(K) and α(K) E G.

31Note that since α is injective, α(K) ∼= K. The “1” on each end of the sequence
is a formality, which can be read as saying the kernel of α is the image of “1” (i.e.
trivial), and the image of β is the kernel of H → 1 (i.e. all of H).
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II.M.13. EXAMPLE. The nth dicyclic group

Dicn := 〈a, b | a2n = 1, b2 = an, b−1ab = a−1〉

sits in a short-exact sequence

1 // Z2n // Dicn // Z2 // 1

b � // 1̄

1̄ � // a � // 0̄

.

Referring to (II.M.12), one says that

ε splits ⇐⇒ ∃ homomorphism γ : H → G with βγ = idH.

This displays H ∼= γ(H) as a (not necessarily normal) subgroup of
G, since such a homomorphism is necessarily injective (why?). One
easy example: G = H × K is a split extension of H by K. Here is
another:

II.M.14. EXAMPLE. Recall the presentation

Dn = 〈a, b | an = 1, b2 = 1, b−1ab = a−1〉

of the nth dihedral group. We have

b 1̄�
γ

oo

1 // Zn // Dn // Z2 // 1

b � β
// 1̄

1̄ � // a � // 0̄

so in this case the extension is split: γ yields a homomorphism be-
cause 1Dn = γ(0̄) = γ(1̄ + 1̄) = γ(1̄)2 = y2 does indeed hold. (This
won’t work in example II.M.13 since there’s no element of order 2 in
β−1(1̄) ⊂ Dicn.)

So split extensions are more general than direct products, though
they are nicer than general group extensions. Can we characterize
them in some useful way?

II.M.15. DEFINITION. Let θ : H → Aut(K) be a homomorphism,
sending h 7→ θh. The semidirect product Koθ H is the group with



II.M. SOME RESULTS ON FINITE GROUPS 91

underlying set K× H and product

(k, h) · (k′, h′) := (k · θh(k′), h · h′).

II.M.16. PROPOSITION. The extension ε splits ⇐⇒ G is a semidirect
product of K and H.

PROOF. ( =⇒ ): Write H = γ(H) and K = α(K) as subgroups
of G. Define θ : H → Aut(K) by h 7→ ıh; this works since K E G.
(That is, θh := ıh is conjugation by h.) As H ∼= G/K, the map of sets
µ : K× H → G sending (k, h) 7→ kh is bijective. Now compute:

µ(k, h)µ(k′, h′) = khk′h′ = khk′h−1hh′

= µ(kθh(k′), hh′).

The reverse direction (⇐= ) is HW. �

II.M.17. EXAMPLE. The mod 3 Heisenberg group consists of matri-
ces 1 0 0

a 1 0
c b 1


with entries mod 3 (i.e. in Z3). While non-abelian, it has the same
number of elements of each order as Z3×Z3×Z3. There is a natural
way to write this as an extension of Z3 ×Z3 by Z3. Does it split?
(This is a useful question to ask when looking at HW 5 #1.)


