
92 II. GROUPS

II.N. “Not-Burnside’s” counting lemma

Indeed, Burnside himself (1897) attributed it to Frobenius (1887),
though it was known much earlier to Cauchy as well. And of course,
it is known to you by HW #3. We begin by reviewing the statement
and proof.

II.N.1. NOTATION. Throughout, G denotes a finite group acting
on a finite set X, with:

• G(x) ⊂ X the G-orbit of x ∈ X (= {g.x | g ∈ G});
• X/G := the set of G-orbits;
• Xg := the fixed-point set of g ∈ G (= {x ∈ X | g.x = x}); and
• Gx ≤ G the stabilizer of x ∈ X (= {g ∈ G | g.x = x}).

II.N.2. THEOREM (Burnside’s Lemma). |X/G| = 1
|G| ∑g∈G |Xg|.

PROOF. Consider the subset of G× X

S := {(g, x) | g.x = x} ∼=
set ä

g∈G
Xg ∼=

set ä
x∈X

Gx.

By the orbit-stabilizer theorem, |Gx||G(x)| = |G|; hence

(II.N.3) ∑
g∈G
|Xg| = |S| = ∑

x∈X
|Gx| = |G| ∑

x∈X

1
|G(x)| .

Taking {xi}r
i=1 to be a system of representatives of the orbits, so that

X = qr
i=1G(xi), we get (II.N.3) =

|G|
r

∑
i=1

|G(xi)|
|G(xi)|

= |G|r = |G||X/G|.
�

II.N.4. REMARK. This can be extended to an infinite group G (act-
ing on a finite set) by noticing that the homomorphism ϕ : G → SX

factors through ϕ̄ : G → SX where G := G/ ker(ϕ) is finite. One has
that |X/G| = |X/G|, while the RHS of Burnside is replaced by an
“integral” over G.

Though the applications we shall give are indeed about counting
things, there are numerous theoretical corollaries and extensions of
this result:
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• In combinatorics, a refinement called Pólya’s enumeration theorem
breaks the single number |X/G| out by “weights” that one at-
tributes to elements of X. That is, there is a weight function w : X→
N (or even Nk) constant on G-orbits and one wants to count orbits
by weight.
• In topology, if f : T → S is a finite (connected, nonisomorphic)

covering of a topological space S , then there is a continuous map
from a circle into S that does not lift to (i.e. factor through) T .
(Here G is the “fundamental group” π1(S ) and X is f−1(s) for
some s ∈ S .)
• In number theory, if a polynomial F with integer coefficients (de-

gree ≥ 2, irreducible over Q) has Np roots mod p, the density of
primes for which Np = 0 is at least 1

n . (Here G is the “Galois
group” of the polynomial, and X is the set of roots of F in the al-
gebraic closure Q̄. We will meet these notions in Algebra II.)

Before proceeding to the examples, here is an immediate theoret-
ical consequence for group actions (which is in fact related to the last
two bullet-points):

II.N.5. COROLLARY. Given a finite group G acting transitively on a
finite set X (with at least 2 elements), there exists an element g ∈ G which
acts without fixed points.32 In fact, there are at least |G||X| such elements.

PROOF. We can consider the actions of G on X, and also on X×X
by g.(x, x′) := (g.x, g.x′). Write χ(g) := |Xg|, so that also χ2(g) =

|(X × X)g|; and for any function f on G and subset S ⊂ G, write∫
S f := 1

|G| ∑g∈S f (g). We want to show that the subset of fixed-

point-free elements G0 := {g ∈ G | χ(g) = 0} ⊂ G has C := |G0|
|G| =∫

G0
1 ≥ 1

|X| .
Burnside plus transitivity tell us that

(II.N.6) 1 = |X/G| =
∫

G
χ and 2 ≤ |(X× X)/G| =

∫
G

χ2 ,

32Up to this point, this Corollary is a theorem of Jordan from 1872. The last sen-
tence is due to Cameron-Cohen (1992) and its proof to Serre (2003).
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as the “diagonal” ∆X := {(x, x) | x ∈ X} ⊂ X× X is an orbit. If g /∈
G0, then 1 ≤ χ(g) ≤ |X|; and so

∫
G\G0

(χ(g) − 1)(χ(g) − |X|) ≤ 0,
which can be rewritten as∫

G
(χ(g)− 1)(χ(g)− |X|) ≤

∫
G0

(χ(g)− 1)(χ(g)− |X|) = C|X|.

By (II.N.6), the LHS becomes∫
G

χ2 − (1 + |X|)
∫

G
χ + |X|

∫
G

1 ≥ 2− (1 + |X|) + |X| = 1.

Conclude that C ≥ 1
|X| as desired. �

Here is a straightforward application of Burnside to a counting
problem.

II.N.7. EXAMPLE. How many inequivalent bracelets with five beads
can you make with only black and white beads?

Here two bracelets are equivalent if they are the same after rotat-
ing and flipping them, i.e. if they belong to the same orbit under D5.
So we take X to be the set of B/W colorings of the sides of a regular
5-gon, and G := D5 (acting in the obvious way). We arrive at the
table

type of
element of D5

# of
such

# of fixed
points |Xg|

1 (identity) 1 25 (= |X|)

hrk (flip) 5
23 (edges flipped into each other must be

same color in order to be fixed)

rk (rotation) 4
2 (all edges must be same color to yield

a “fixed point”)

The number of bracelets (i.e. orbits) is then simply

|X/G| = 1
|D5| ∑

g∈D5

|Xg| = 1
10{1 · 2

5 + 5 · 23 + 4 · 2} = 8.

In the HW, you will determine (up to rotational symmetry) how
many different ways one can paint the edges of a tetrahedron red, green, or
blue.
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Crystallographic groups. We now turn to a much more interest-
ing example. By a lattice in R3, we mean a subgroup of (R3,+, 0)
isomorphic to Z3. Denote by O(3) the orthogonal group comprising
3× 3 matrices A with real entries and t AA = I3. The determinant
defines a surjective homomorphism det : O(3)� {±1}, with kernel
the special orthogonal group SO(3). Heuristically, this is the group of
rotations about the origin in R3, while O(3) also includes reflections
and −I3.

II.N.8. DEFINITION. A crystallographic group is a (nontrivial) finite
subgroup G ≤ SO(3) or O(3) that preserves a lattice in R3.

The mathematical determination (Hessel 1830) of the existence of
exactly 32 geometric crystal classes, essentially via such groups, pre-
dated the actual ability to look inside crystals with X-rays by some-
thing like 80 years. We shall restrict ourselves here to the rotational
case, so that we can obtain a complete classification using Burnside.

So let G ≤ SO(3) be a finite subgroup. Each g ∈ G\{1} is a
rotation about some axis `g, and we set {pg, p′g} := `g ∩ S2, where S2

is the unit 2-sphere centered at the origin. Let

X :=
⋃

g∈G\{1}
{pg, p′g}.

II.N.9. CLAIM. G acts on X.

PROOF. We first clarify what we mean by this. Since SO(3) acts
(by matrix multiplication) on R3, and in fact on S2,33 we need only
check that X is closed under the action of G. Given x ∈ X, x = pg0 (or
p′g0

) for some g0 ∈ G. That is, g0x = x.
Consider g.x = gx (where the RHS means the matrix g ∈ G times

the vector x). This is in X ⇐⇒ it is pg1 (or p′g1
) for some g1 ∈ G. But

gg0g−1.gx = gg0.x = g.g0x = g.x = gx,

and so g1 := gg0g−1 works. �

33Given a vector~v ∈ R3 and matrix A ∈ SO(3), we have that A~v · A~v = t~v t AA~v =
t~v~v = ~v ·~v =⇒ A preserves the length of ~v. Thus S2 is closed under the action of
SO(3) on R3.
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Now let n = |G| and r = |X/G|. Choose representatives x1, . . . , xr

in each orbit and put ni := |Gxi | (≤ n). By the orbit-stabilizer theo-
rem, the orbit sizes are |G(xi)| = n

ni
, so that

|X| =
r

∑
i=1

n
ni

.

Burnside yields |X/G| = 1
|G| ∑g∈G |Xg| =⇒

r = 1
n

(
|X|+ ∑g∈G\{1}|{pg, p′g}|

)
= 1

n

(
∑r

i=1
n
ni
+ (n− 1)2

)
= ∑r

i=1
1
ni

+ 2− 2
n .

For each x ∈ X, |Gx| ≥ 2 by definition (there is some non-identity
element stabilizing it)

=⇒ each ni ≥ 2

=⇒ r ≤ r
2 + 2− 2

n

=⇒ r
2 ≤ 2− 2

n < 2,

so r < 4. If r = 1 then 2
n = 1

n1
+ 1 ≥ 1

n + 1 =⇒ 1
n ≥ 1, which is

absurd.
=⇒ r = 2 or 3.

Case r = 2: 2 = 1
n1

+ 1
n2

+ 2− 2
n

=⇒ 2
n = 1

n1
+ 1

n2
≥ 2

n

=⇒ 2
n = 1

n1
+ 1

n2
(and n1, n2 ≤ n)

=⇒ n1 = n = n2

=⇒ every g ∈ G stabilizes every x ∈ X.

The only way that even one non-identity element of G stabilizes ev-
ery x ∈ X, is if there are only 2 points p, p′ ∈ X; and then the elements
of G are rotations about the axis they span (by multiples of 2π

n )

=⇒ G ∼= Zn.
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Case r = 3: (1 <) 2
n + 1

(∗)
= 1

n1
+ 1

n2
+ 1

n3
. We may assume 2 ≤

n1 ≤ n2 ≤ n3 ≤ n. Now

• if n1 > 2 then RHS(∗) ≤ 1, which is impossible; so n1 = 2.
• if n2 ≥ 4 then RHS(∗) ≤ 1, again impossible; so n2 = 2 or 3.
• if n2 = 3 then for the same reason, n3 < 6.

Thus our options are confined to the left-hand column of the follow-
ing table:

(n1, n2, n3) n (= |G|) G
geometric realization:

rotational symmetries of . . .

(2, 2, k)k≥2 2k Dk · · · prism on
regular k-gon

(2, 3, 3) 12 A4 tetrahedron

(2, 3, 4) 24 S4 cube

(2, 3, 5) 60 A5 icosahedron

Fix an orbit G(xi) ⊂ X (i = 1, 2, or 3). The stabilizer Gxi of the
representative xi comprises all the elements of G which are rotations
about xi (viewed as a vector in R3). So ni = |Gxi | is the order of
this axis of rotation, and also of the other axes of rotation in G(xi), of
which there are 1

2 |G(xi)| = n
2ni

. Two examples:34

• (2, 2, 6) corresponds to the prism on the regular hexagon shown.
The orbits have sizes 6, 6, 2, corresponding to 3 axes (with 180◦

rotation, through the vertical edges), 3 axes (through the vertical
faces, again with 180◦ rotation), and 1 vertical axis (with 60◦ rota-
tion).
• (2, 3, 3) corresponds to the tetrahedron. The orbits have sizes 6, 4, 4,

so there are 3 axes (through pairs of nonintersecting edges) of
180◦-rotation, and 2 + 2 = 4 axes (through each vertex and the
opposite face) of 120◦-rotation.

34For the cube, see II.F.4(v).
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This gives a flavor of how one derives the table.
We have at this point finished the classification of finite rotational

symmetry groups in space.
Next, impose the condition that we are not just stabilizing a sin-

gle “crystal unit” but a pattern which may be continued infinitely to
fill up R3. So we ask for G to act on a lattice Λ ⊂ R3, comprising all
Z-linear combinations of three linearly independent vectors ~u,~v, ~w.
Now:

• If we think of g ∈ G as a 3× 3 matrix written with respect to the
basis ~u,~v, ~w, then the trace tr(g) ∈ Z since g will have integer
entries.
• If we write g instead with respect to an orthonormal basis includ-

ing pg (a vector along the axis of rotation), it takes the form1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)


and so tr(g) = 2 cos(θ) + 1.
• From matrix algebra, you know that the trace of g is independent

of the choice of basis. Hence, we must have 2 cos(θ) ∈ Z. Since g
is a finite-order rotation, θ = 2π

k , for some k ∈ Z. But 2 cos(2π
k ) ∈

Z only for k = 1, 2, 3, 4, 6.

Therefore, for a crystallographic group G ≤ SO(3), we must have that
all of the ni belong to {1, 2, 3, 4, 6}. Throwing out all other groups in
our list, we are left with 10 nontrivial rotational crystallographic groups:

Z2, Z3, Z4, Z6, D2(∼= V4) , D3(∼= S3) , D4, D6, A4, and S4.


