II.I. Normal subgroups and quotient groups

In our discussion of conjugation, we defined the centralizer of an element $x \in G$: its elements are just those $g \in G$ with $g x g^{-1}=x$.

Suppose we replace x by a subgroup $H \leq G$. The new feature which arises is that $\imath_{g}(H)=g H g^{-1}\left(:=\left\{g h g^{-1} \mid h \in H\right\}\right)$ can equal H without our having $g h g^{-1}=h$ for each $h \in H$. So there are two natural generalizations of $C_{G}(x)$: the centralizer (of H in G)

$$
\begin{equation*}
C_{G}(H):=\left\{g \in G \mid g h g^{-1}=h \quad \forall h \in H\right\} \tag{II.I.1}
\end{equation*}
$$

which we already encountered, and the normalizer (of H in G)

$$
\begin{equation*}
N_{G}(H):=\left\{g \in G \mid g H g^{-1}=H\right\} \tag{II.I.2}
\end{equation*}
$$

Given $h \in H$ and $g \in N_{G}(H)$, we have only that $g h g^{-1} \in H$.
The orbit-stabilizer theorem (for conjugation) for an element $x \in$ G said that the number of conjugates ($=$ size of orbit) of x equals the index of $C_{G}(x)$ in G. Similarly, recalling that the image of H under v_{g} (also a subgroup of G) is called a conjugate of H, we have the
II.I.3. Proposition. The number of (distinct) conjugates of H in G is $\left[G: N_{G}(H)\right]$.

Proof. Let G act by conjugation on the set X of subgroups of G. We are interested in $|G(H)|$, where $G(H)$ means the orbit of H as an element in the set X . By the general orbit-stabilizer theorem, this is related to the stabilizer $G_{H}=N_{G}(H)$ of H in X by

$$
|G(H)|\left|N_{G}(H)\right|=|G|
$$

or equivalently $|G(H)|=|G| /\left|N_{G}(H)\right|=\left[G: N_{G}(H)\right]$.
II.I.4. Definition. If $N_{G}(H)=G, H$ is normalized by all of G and we say H is a normal subgroup of G. We write $H \unlhd G$ (or $H \triangleleft G$ if H is proper in G).
III.I. . Proposition. For a subgroup $H \leq G$, the following properties are equivalent:
(i) $N_{G}(H)=G$;
(ii) ${ }^{16} g^{\prime} \mathrm{Hg}^{-1}=H(\forall g \in G)$;
(iii) $g H=H g(\forall g \in G)$; and
(iv) H is a union of (entire) conjugacy classes.

Proof. (i) \Longleftrightarrow (ii) is obvious, as $N_{G}(H)$ is just those g for which $g H^{-1}=H$.
(ii) \Longleftrightarrow (iii) looks clear, but let's write out the details for one direction: assume (ii), and let $g h \in g H$. We have $h^{\prime}:=g h g^{-1} \in H$, so that $g h=g h g^{-1} g=h^{\prime} g \in H g$. So $g H \subset H g$; the reverse inclusion is similar.
(ii) \Longrightarrow (iv): If H is not a union of conjugacy classes, then H contains some but not all of a conjugacy class; i.e. there exist $y \notin H$ and $x \in H$ with $y \in \operatorname{cll}(x)$. But then for some $g \in G, g x g^{-1}=y \notin H \Longrightarrow$ $g H^{-1} \not \subset H$.
(iv) \Longrightarrow (ii): Let $g \in G$ and $h \in H$. Since H is a union of conjugacy classes, $h \in H \Longrightarrow \operatorname{cll}(h) \subset H \Longrightarrow \mathrm{ghg}^{-1} \in H$. We conclude that $g H g^{-1} \subseteq H$; moreover, every $h \in H$ is $g\left(g^{-1} h g\right) g^{-1}$ with $g^{-1} h g \in$ $\operatorname{ccl}(h) \subset H$, so the " \subseteq " is in fact an equality.

Note that if G is abelian, all its subgroups are normal. Here are some more interesting
II.I.6. Examples. (a) In $G=\mathfrak{S}_{4}$: The Klein 4 -group V_{4} is the union of two conjugacy classes of \mathfrak{S}_{3} : the identity $\{1\}$, and the set of all elements with cycle structure $(\cdot \cdot)(\cdot \cdot)$. Hence $V_{4} \triangleleft \mathfrak{S}_{4}$.

Consider next the cyclic subgroup $\langle(123)\rangle=\{1,(123),(132)\}$. Since $(34)(123)(34)^{-1}=(124) \notin\langle(123)\rangle$, we find that $\langle(123)\rangle \notin \mathfrak{S}_{4}$. (b) In $G=D_{5}$: We have $\langle(h)\rangle=\{1, h\} \not D_{5}$, as $r h r^{-1}=r^{2} h \notin\langle(h)\rangle$. But $\langle r\rangle=\left\{1, r, r^{2}, r^{3}, r^{4}\right\} \triangleleft D_{5}$ since $h r^{k} h^{-1}=r^{-k} \in\langle(r)\rangle$.

[^0](c) $\mathfrak{A}_{n} \triangleleft \mathfrak{S}_{n}$ for $n \geq 3$: Conjugacy classes in \mathfrak{S}_{n} consist of all permutations with a given cycle-structure. \mathfrak{A}_{n} consists of all permutations with "even" cycle-structures (i.e., $n-\#\{$ disjoint cycles $\}$ is even). So \mathfrak{A}_{n} is a union of ccl's in \mathfrak{S}_{n}, hence normal.
(d) $C(G) \unlhd G$ for any group $G: x \in C(G) \Longrightarrow g x g^{-1}=x \forall g \in G$, so $g C(G) g^{-1}=C(G)(\forall g \in G)$. Alternatively: the center consists of all 1-element ccl's.
(e) $[H W][G, G] \unlhd G$ for any G : here $[G, G]$ is the commutator subgroup generated by all commutators $\left[g_{1}, g_{2}\right]=g_{1}^{-1} g_{2}^{-1} g_{1} g_{2}$ of elements $g_{1}, g_{2} \in G$.

II.I.7. EXAMPLE. Find

(a) all normal subgroups of \mathfrak{S}_{4} other than $\{1\}$ and \mathfrak{S}_{4}, and
(b) all the normal subgroups of each such H.
(a) We know the conjugacy clases correspond to the cycle-structures:
(i) $(\cdots \cdot)$, (ii) $(\cdots)(\cdot)$, (iii) $(\cdot \cdot)(\cdot \cdot)$, (iv) $(\cdot \cdot)(\cdot)(\cdot)$, and (v) $(\cdot)(\cdot)(\cdot)(\cdot)$ [identity]. All subgroups contain the identity. If H contains ccl (iv), then $H=\mathfrak{S}_{4}$: transpositions generate \mathfrak{S}_{4} by II.B.5. If H contains ccl (ii) then $H=\mathfrak{A}_{4}$ or \mathfrak{S}_{4} : 3 -cycles generate \mathfrak{A}_{4} by II.C.6. If H contains ccl (i), then $H \ni(1234)$ hence $(1234)^{2}=(13)(24)$; since it is normal, H then contains ccl (iii), and the element (1234) $\cdot(14)(23)=(24)$ $\Longrightarrow H$ contains ccl (iv) $H=\mathfrak{S}_{4}$. (We are not saying that there is no proper subgroup of \mathfrak{S}_{4} containing a 4-cycle, just that there are no proper normal subgroups!) Finally, if $H \supseteq \mathrm{ccl}$ (iii), there are 2 options: contain also ccl (i), (ii), and / or (iv) (in which case we already know the outcome); or don't contain any of these. In the latter case, $H=$ V_{4}. So the (proper) normal subgroups of \mathfrak{S}_{4} are \mathfrak{A}_{4} and V_{4}.
(b) In V_{4}, the order-2 cyclic subgroups (e.g. $\{1,(12)(34)\}$) are normal simply because V_{4} is abelian. Note that these are not normal in \mathfrak{S}_{4} since non-identity elements of V_{4} can be conjugated into one another.

In $\mathfrak{A}_{4}=\{1\} \cup \operatorname{ccl}($ ii $) \cup \operatorname{ccl}($ (iii), "ccl (ii)" [3-cycles] splits into 2 ccl 's (with respect to conjugation by \mathfrak{A}_{4}) while " ccl (iii)" $[(\cdot \cdot)(\cdot \cdot)]$ does not.
(Why? See II.G.19.) The 2 ccl's into which the 3 -cycles split are

$$
\{(123),(142),(134),(243)\} \text { and }\{(132),(124),(143),(234)\} .
$$

Obviously, including one in a subgroup forces inclusion of the other, since squaring the first set of elements gives the second set and viceversa! But then you have included all 3-cycles and get all of \mathfrak{A}_{4}. The only option for a normal subgroup of \mathfrak{A}_{4} (other than itself and $\{1\}$) is thus $V_{4}=\{1\} \cup \operatorname{ccl}($ iii $)$.

Here are two more ways to produce normal subgroups. The second is more important, and in fact characterizes all normal subgroups, as we will see.
II.I.8. Proposition. Any subgroup $H \leq G$ of index 2 is normal. (Here we need not assume G finite.)

Proof. For any $a \in G \backslash H, G=H \amalg a H$. Let $h \in H$ and $g \in G$; we must show that $g h g^{-1} \in H$ (cf. II.I.5(ii)). If $g \in H$, this is clear; so take $g=a x \in a H$.

Suppose $g h g^{-1} \notin H$. Then $g h g^{-1} \in a H$ and (for some $y \in H$) we have

$$
a y=(a x) h(a x)^{-1}=a(\underbrace{x h x^{-1}}_{\in H}) a^{-1}=a h^{\prime} a^{-1}
$$

$\Longrightarrow y=h^{\prime} a^{-1} \Longrightarrow a=y^{-1} h^{\prime} \in H$, contradicting the choice of a. So $g h g^{-1} \in H$ and we are done.
II.I.9. Proposition. Let $\varphi: G \rightarrow H$ be a homomorphism. Then $\operatorname{ker}(\varphi) \unlhd G$.

Proof. Let $k \in \operatorname{ker}(\varphi)$, i.e. $\varphi(k)=1_{H}$. Then for $g \in G$

$$
\varphi\left(g k g^{-1}\right)=\varphi(g) \varphi(k) \varphi(g)^{-1}=\varphi(g) 1_{H} \varphi(g)^{-1}=1_{H}
$$

$\Longrightarrow g \mathrm{~kg}^{-1} \in \operatorname{ker}(\varphi)$, done .

II.I.10. ExAmples.

(a) Both II.I. 8 and II.I. 9 give quick proofs that $\mathfrak{A}_{n} \unlhd \mathfrak{S}_{n}$:

- $\mathfrak{A}_{n}=\operatorname{ker}\left\{\operatorname{sgn}: \mathfrak{S}_{n} \rightarrow \mathbb{Z}_{2}\right\}$ (identifying $(\{1,-1\}, \bullet)$ with $\left(\mathbb{Z}_{2},+\right)$)
- $\left[\mathfrak{S}_{n}: \mathfrak{A}_{n}\right]=2$.
(b) $\operatorname{SL}_{n}(\mathbb{F})=\operatorname{ker}\left\{\operatorname{det}: \mathrm{GL}_{n}(\mathbb{F}) \rightarrow \mathbb{F}^{*}\right\} \triangleleft \mathrm{GL}_{n}(\mathbb{F})$, where $\mathbb{F}=$ $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
(c) $\langle r\rangle \triangleleft D_{n}$ (index $=2$).

As an application of normality we get a useful complement to our earlier result on decomposing a group into a direct product of subgroups II.E.11(iv). (Note that in (ii) below it isn't enough to have one of H or K normal in G - we need both.)
II.I.11. THEOREM. Let $H, K \leq G$ (G finite) with $H \cap K=\{1\}$.
(i) $|H||K| \leq|G|$.
(ii) If also $H, K \unlhd G$ and equality holds in (i), then $G \cong H \times K$.

Proof. (i) Define a map of sets

$$
\begin{gathered}
\varphi: H \times K \rightarrow G \\
(h, k) \mapsto h k
\end{gathered}
$$

This is 1-to-1: $\varphi(h, k)=\varphi\left(h^{\prime}, k^{\prime}\right) \Longrightarrow h k=h^{\prime} k^{\prime} \Longrightarrow\left(h^{\prime}\right)^{-1} h=$ $k^{\prime} k^{-1} \in H \cap K=\{1\} \Longrightarrow\left(h^{\prime}\right)^{-1} h=1=k^{\prime} k^{-1} \Longrightarrow(h, k)=\left(h^{\prime}, k^{\prime}\right)$. Hence (by the pigeonhole principle) $|H||K|=|H \times K| \leq|G|$.
(ii) By II.E.11(iv) we are done if $(\forall h \in H, k \in K) h k=k h$. (Recall in the proof of II.E. 11 that this makes φ a homomorphism hence an isomorphism.) Now $K \unlhd G \Longrightarrow\left(h k h^{-1}\right) k^{-1} \in K$, while $H \unlhd G$ $\Longrightarrow h\left(k h^{-1} k^{-1}\right) \in H$. Hence $h k h^{-1} k^{-1} \in H \cap K=\{1\} \Longrightarrow$ $h k(k h)^{-1}=1 \Longrightarrow h k=k h$.
II.I.12. Definition. A group G is called simple if it contains no normal subgroups apart from $\{1\}$ and G.
II.I.13. EXAMPLE. Though we know that \mathfrak{A}_{4} contains V_{4} as a normal subgroup (hence is not simple), I claim that $\mathfrak{A}_{\mathrm{n}}$ is simple for $n \geq 5$.

PROOF FOR \mathfrak{A}_{5}. (This gives an alternative approach to the method of II.I. 7 used in your HW to see this.) Let $\{1\} \neq H \unlhd \mathfrak{A}_{5}$, and
$\sigma \in H \backslash\{1\}$. Write

$$
\sigma=\underset{\text { III }}{(123)}, \underset{\text { II }}{(12)}(34), \underset{\mathrm{I}}{(12345)}
$$

for the three non-identity cycle-types in \mathfrak{A}_{5}.
Case I: Set $\rho:=(132)$. Since $H \unlhd \mathfrak{A}_{5}, H$ contains

$$
\left(\rho \sigma \rho^{-1}\right) \sigma^{-1}=(31245)(15432)=(134)
$$

Case II: Set $\tau:=(12)(35)$. Since $H \unlhd \mathfrak{A}_{5}, H$ contains

$$
\left(\tau \sigma \tau^{-1}\right) \sigma^{-1}=(12)(54)(12)(34)=(354)
$$

So in all cases (I, II, and III) H contains a 3-cycle. Since $H \unlhd \mathfrak{A}_{5}$ and the 3 -cycles form a ccl ${ }^{17}$ in \mathfrak{A}_{5}, H contains all 3-cycles. But 3-cycles generate \mathfrak{A}_{5}, and so $H=\mathfrak{A}_{5}$.

In light of this example and II.I.8, \mathfrak{A}_{n} can have no subgroups of index 2 for $n \geq 5$ even though $2\left|\left|\mathfrak{A}_{n}\right|\left(=\frac{n!}{2}\right)\right.$. This furnishes another example of how the "converse of Lagrange" fails.

Now recall that for $H \leq G$

$$
\begin{aligned}
G / H:= & \text { set of left cosets of } H \text { in } G \\
& (\text { with elements written } g H) .
\end{aligned}
$$

We have $|G / H|=|G| /|H|=[G: H]$.
If $H \unlhd G$, then left cosets equal right cosets, and we can make G / H into a group, called a quotient group (or "factor group" in some texts). Set

$$
(a H)(b H):=\text { all elements of the form } a h b h^{\prime}, \quad h, h^{\prime} \in H
$$

II.I.14. PROPOSITION. $H \unlhd G \Longleftrightarrow(a H)(b H)=a b H(\forall a, b \in G)$.

Proof. (\Longrightarrow) : Using $g H=H g$, one could write

$$
(a H)(b H)=H a b H=a b H H=a b H .
$$

[^1]Alternatively, and more explicitly,

$$
a h b h^{\prime}=a b \underbrace{b-1}_{\in H} h b h^{\prime}=a b h^{\prime \prime} h^{\prime} \in a b H
$$

yields $a H b H \subset a b H ;$ and conversely, $a b H=a 1 b H \subset a H b H$ yields $a H b H \supset a b H$.
$(\Longleftarrow):(g H)\left(g^{-1} H\right)=g g^{-1} H=H$ implies $g h g^{-1}=(g h)\left(g^{-1} 1\right) \in$ H for all $h \in H$, so that $g H^{-1} \subset H$ (hence $=H$, by replacing g with g^{-1}).
III.I.15. REMARK. This last Proposition is equivalent to [Jacobson, Thm. 1.6], which states that the equivalence relation $a \equiv b \stackrel{\text { def }}{\equiv} a^{-1} b \in$ H being compatible with multiplication is equivalent to normality of H in G. Specifically, the "compatibility" requirement is that the pairing and inversion be well-defined on equivalence classes (i.e. the partition), and then " \equiv " is called a congruence.
II.I.16. COROLLARY. If $H \unlhd G$, then G / H, together with coset multiplication, $(a H)^{-1}:=a^{-1} H$, and $1_{G / H}:=(1) H$, forms a group. (The order of this group is $[G: H]$, and $\frac{|G|}{|H|}$ if G is finite.)

Proof. By II.I.14, the set of cosets is closed under multiplication; associativity is automatic from associativity of the product on G. Also, $(a H)(1 H)=a H$ and $(a H)\left(a^{-1} H\right)=a a^{-1} H=1 H$.
II.I.17. EXAMPLES. (a) We have $n \mathbb{Z} \triangleleft \mathbb{Z}$ (since \mathbb{Z} is abelian), and $\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$. (The elements of $\mathbb{Z} / n \mathbb{Z}$ are of the form $a+n \mathbb{Z}$, i.e. cosets written additively.)
(b) The quotient group associated to $\mathfrak{A}_{n} \triangleleft \mathfrak{S}_{n}$ is just $\mathfrak{S}_{n} / \mathfrak{A}_{n} \cong \mathbb{Z}_{2}$, with elements \mathfrak{A}_{n} and $\tau \mathfrak{A}_{n}$, where τ is any transposition.
(c) $H \times\{1\}$ and $\{1\} \times K$ are both normal in $H \times K$. The quotient groups are K and H respectively.
(d) $[H W] G /[G, G]$ yields an abelian group, called the "abelianization" of G.
II.I.18. DEFINITION. Given $H \unlhd G$, the natural map

$$
v: G \rightarrow G / H
$$

is the homomorphism obtained by sending $g \mapsto g H$. [To check that it is actually a homomorphism, write $v(g) v\left(g^{\prime}\right)=g H g^{\prime} H=g g^{\prime} H=$ $v\left(g g^{\prime}\right)$.]

Here is the "converse" of II.I.9:
II.I.19. COROLLARY. Every normal subgroup of a group G is the kernel of a homomorphism.

Proof. Given $H \unlhd G$, we have the natural map $v: G \rightarrow G / H$. I claim that $H=\operatorname{ker}(v)$:

- $h \in H \Longrightarrow v(h)=h H=H=1_{G / H} \Longrightarrow h \in \operatorname{ker}(v)$;
- $k \in \operatorname{ker}(v) \Longrightarrow k H=v(k)=1_{G / H}(=H) \Longrightarrow k \in H$.

II.I.20. Fundamental Theorem of Group Homomorphisms.

 Let $\varphi: G \rightarrow H$ be a group homomorphism, and write $K:=\operatorname{ker}(\varphi)$. Then $K \unlhd G$, and the map$$
\begin{gathered}
\bar{\varphi}: G / K \rightarrow \varphi(G)(\leq H) \\
g K \stackrel{(*)}{\longmapsto} \varphi(g)
\end{gathered}
$$

is an isomorphism of groups. (In particular, $\frac{|G|}{|K|}=|\varphi(G)|$.)
Proof. We only need to check that $\bar{\varphi}$ is an isomorphism.

- $\bar{\varphi}$ is well-defined (as a map): Suppose $g K=g^{\prime} K$. (We must show that $\bar{\varphi}(g K)=\bar{\varphi}\left(g^{\prime} K\right)$.) Then $g^{\prime}=g k$ for some $k \in K$, and $\bar{\varphi}\left(g^{\prime} K\right) \stackrel{(*)}{=}$ $\varphi\left(g^{\prime}\right)=\varphi(g k)=\varphi(g) \varphi(k)=\varphi(g) \stackrel{(*)}{=} \bar{\varphi}(g K)$.
- $\bar{\varphi}$ is a homomorphism: Since φ is one, $\bar{\varphi}((a K)(b K))=\bar{\varphi}(a b K) \stackrel{(*)}{=}$ $\varphi(a b)=\varphi(a) \varphi(b) \stackrel{(*)}{=} \bar{\varphi}(a K) \bar{\varphi}(b K)$.
- $\bar{\varphi}$ surjects onto $\varphi(G)$: Any $\varphi(g)=\bar{\varphi}(g K)$.
- $\bar{\varphi}$ is injective: $\bar{\varphi}(a K)=1_{H} \Longrightarrow \varphi(a)=1_{H} \Longrightarrow a \in \operatorname{ker}(\varphi)=K$ $\Longrightarrow a K=K=1_{G / H}$.

The following diagram nicely describes the situation, namely that " φ factors through G / K ":

It commutes (see the end of §I.A) in the sense that $\bar{\varphi} \circ v=\varphi$:

$$
\bar{\varphi}(v(g))=\bar{\varphi}(g K) \stackrel{(*)}{=} \varphi(g)
$$

II.I.21. COROLLARY. If $\varphi: G \rightarrow H$ is a surjective homomorphism, then $G / \operatorname{ker}(\varphi) \cong H$. (In particular, $\frac{|G|}{|\operatorname{ker}(\varphi)|}=|H|$.)
II.I.22. EXAMPLES. (a) We obtain $\mathfrak{S}_{n} / \mathfrak{A}_{n} \cong \mathbb{Z}_{2}$ again by using sgn: $\mathfrak{S}_{n} \rightarrow \mathbb{Z}_{2}$ with kernel \mathfrak{A}_{n}.
(b) The map $\psi: \mathbb{C}^{*} \rightarrow S^{1}:=\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\}$ sending $z \mapsto \frac{z}{|z|}$ has $\operatorname{ker}(\psi)=\mathbb{R}_{>0}$. So $\mathbb{C}^{*} / \mathbb{R}_{>0} \cong S^{1}$.
(c) Defining $\varphi: \mathbb{R} \rightarrow S^{1}$ by $\varphi(r):=e^{2 \pi \mathrm{i} r}$, we have $\operatorname{ker}(\varphi)=\mathbb{Z}$, so that $\mathbb{R} / \mathbb{Z} \cong S^{1}$.
(d) There is a homomorphism $\Phi: Q \rightarrow V_{4}$ with $\operatorname{kernel} \operatorname{ker}(\Phi)=$ $C(Q)=\{ \pm 1\}$; thus $Q /\{ \pm 1\} \cong V_{4}$. [HW]
(e) We construct a homomorphism $\phi: \mathfrak{S}_{4} \rightarrow \mathfrak{S}_{3}$ as follows: let \mathfrak{S}_{4} act by conjugation on the ccl $\{(12)(34),(13)(24),(14)(23)\}$. Numbering its elements $1,2,3$ in the order shown, we obtain ϕ, and calculate that $\phi((12))=(23)$ and $\phi((123))=(132)$. Since $\phi\left(\mathfrak{S}_{4}\right) \leq \mathfrak{S}_{3}$ and $\langle(23),(132)\rangle=\mathfrak{S}_{3}$, we get surjectivity. By II.I. 20 (or II.I.21),

$$
\frac{\left|\mathfrak{S}_{4}\right|}{|\operatorname{ker}(\phi)|}=\left|\mathfrak{S}_{3}\right| \quad \Longrightarrow \quad \frac{24}{|\operatorname{ker}(\phi)|}=6 \quad \Longrightarrow \quad|\operatorname{ker}(\phi)|=4
$$

As $\operatorname{ker}(\phi) \unlhd \mathfrak{S}_{4}$, the only possibility is now $\operatorname{ker}(\phi)=V_{4}$. Conclude that

$$
\begin{equation*}
\mathfrak{S}_{4} / V_{4} \cong \mathfrak{S}_{3} \tag{II.I.23}
\end{equation*}
$$

The following is immediate from II.I. 20 and Lagrange, and is useful for ruling out homomorphisms between groups:
II.I.24. COROLLARY. Let $\varphi: G \rightarrow H$ be a homomorphism, and $|G|,|H|$ finite. Then $|\varphi(G)|||G|,|H|$.

For a more serious application of the Fundamental Theorem, we turn to the two isomorphism theorems for groups.
II.I.25. FIRST ISOMORPHISM THEOREM. Let $K \unlhd G, K \leq H \leq G$.

Then:

(i) $K \unlhd H$
(ii) $H / K \leq G / K$
(iii) $H \stackrel{(+)}{\mapsto} H / K$ induces a bijection: $\left\{\begin{array}{c}\text { subgroups of } G \\ \text { containing } K\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}\text { subgroups } \\ \text { of } G / K\end{array}\right\}$
(iv) $H \unlhd G \Longleftrightarrow H / K \unlhd G / K$.
(v) In case of (iv), $G / H \cong \frac{G / K}{H / K}$.

Proof. (i) is clear, and (ii) follows from II.I.20, viz.

(iii) injectivity of (\dagger) : Given $H_{1} / K=H_{2} / K$. Then for each $h_{1} \in H_{1}$, there exists $h_{2} \in H_{2}$ such that $h_{1} K=h_{2} K$. But then $h_{2}^{-1} h_{1} \in K$, and so $h_{1}=h_{2} k \in H_{2}$. That is, we have shown that $H_{1} \subset H_{2}$. Similarly, one has $H_{2} \subset H_{1}$; and so $H_{1}=H_{2}$.
surjectivity of (\dagger) : Given $\bar{H} \leq G / K, \bar{H}$ is a collection of cosets. Define H to be the union of these cosets (hence $H \supset K$), so that

$$
h_{1}, h_{2} \in H \Longrightarrow h_{1} K, h_{2} K \in \bar{H} \Longrightarrow h_{1} h_{2} K=\left(h_{1} K\right)\left(h_{2} K\right) \in \bar{H}
$$

$\Longrightarrow h_{1} h_{2} \in H$ (and similarly with inverses) $\Longrightarrow H \leq G$.
(iv) If $H \unlhd G$ (and $K \unlhd H, G$), then

$$
(g K)(h K)\left(g^{-1} K\right) \underset{K \unlhd G}{=} g h g^{-1} K \underset{H \unlhd G}{=} h^{\prime} K \in H / K .
$$

The converse is similar.
(v) The composition

$$
g \longmapsto g K \longmapsto(g K)(H / K)
$$

has $\operatorname{ker}(\mu)=\{g \in G \mid g K \in H / K\}=H$. [Check: $g K \in H / K$ means $g K=h K$ for some $h \in H$, hence $h^{-1} g K=K \Longrightarrow h^{-1} g \in K \Longrightarrow$ $g=h k \in H$.$] Now apply II.I.21: in a diagram,$

since $H=\operatorname{ker}(\mu)$.
II.I.26. Corollary. Given a homomorphism $\eta: G \rightarrow \mathfrak{G}$ with kernel K, let

$$
\Lambda:=\{H \leq G \mid H \geq K\} \supseteq \Lambda^{\prime}:=\{H \unlhd G \mid H \geq K\} .
$$

Then
(i) Sending $H \mapsto \eta(H)$ induces 1-to-1 correspondences

(ii) For $H \in \Lambda^{\prime}$, sending $g H \mapsto \eta(g) \eta(H)$ induces

$$
G / H \stackrel{\cong}{\cong} \mathfrak{G} / \eta(H)
$$

Proof. By II.I.21, $\mathfrak{G} \cong G / K$. Hence this is just parts (iii-iv) resp. (v) of II.I.25.
II.I.27. SECOND ISOMORPHISM THEOREM. Let $H \leq G, K \unlhd G$. Then
(i) $(K \unlhd) H K \leq G$.
(ii) $H \cap K \unlhd H$.
(iii) $h(K \cap H) \mapsto h K$ induces $H /(K \cap H) \xlongequal{\cong} H K / K$.

Proof. (i) $H K=\cup_{h \in H} h K=\cup_{h \in H} K h=K H$ implies that $(H K)^{2}=$ $H^{2} K^{2}=H K$, and also that (the set of all inverses of elements of $H K$) $(H K)^{-1}=K^{-1} H^{-1}=K H=H K$. So $H K$ is a subgroup of G.
(ii) Under $v: G \rightarrow G / K$,

$$
v(H)=\{h K \mid h \in H\}=\{h k K \mid h k \in H K\}=H K / K .
$$

This image is a subgroup of G / K. So we get by restriction a homomorphism of groups $\left.v\right|_{H}: H \rightarrow H K / K$, with $\operatorname{ker}\left(\left.v\right|_{H}\right)=\{h \in H \mid$ $h K=K\}=H \cap K$.
(iii) The diagram

provides the desired isomorphism, courtesy of II.I.21.
As an application, we finish off Example II.I.13: ${ }^{18}$
Proof that \mathfrak{A}_{n} IS SIMPLE FOR $n \geq 5$. Having done $n=5$ (the base case) above, we induce on n (taking $n \geq 6$). Suppose $K \unlhd$ \mathfrak{A}_{n}, and consider (for each $i \in\{1, \ldots, n\}$) the subgroup $H_{i} \leq \mathfrak{A}_{n}$ of even permutations fixing i; clearly $H_{i} \cong \mathfrak{A}_{n-1}$, which is simple. By II.I.27(ii), we have $H_{i} \cap K \unlhd H_{i}$, hence $H_{i} \cap K=\{1\}$ or H_{i}. If it is H_{i} for some i, then $H_{i} \leq K$ and so K contains a 3-cycle. But 3-cycles are a ccl in \mathfrak{A}_{n} (since $n>4$, by II.G.19), and these generate \mathfrak{A}_{n}, forcing $K=\mathfrak{A}_{n}$.

So suppose $K \cap H_{i}=\{1\}$ for all i. Then any $\sigma \in K \backslash\{1\}$ must be a product of r disjoint cycles of the same length k, with $r k=n$. (If there were cycles of different lengths $j<k$ in the decomposition of σ, then $\sigma^{j} \neq 1$ but fixes some i, so that $H_{i} \cap K \neq\{1\}$, a contradiction.)

[^2]Since $n \geq 6$, we can choose $\tau=(a b)(c d) \in \mathfrak{A}_{n}$ and i so that $i, \sigma(i)$ are distinct from a, b, c, d, and so that τ and σ do not commute. ${ }^{19}$ Then $\sigma^{-1}\left(\tau \sigma \tau^{-1}\right) \in K$ since $K \unlhd \mathfrak{A}_{n}$; but it also fixes i (hence belongs to $H_{i} \cap K$) and isn't the identity, a contradiction. Thus there is no $\sigma \in K \backslash\{1\}$ and $K=\{1\}$.

[^3]
[^0]: ${ }^{16}$ This is usually given as the definition of a normal subgroup.

[^1]: ${ }^{17}$ Recall that this is false for \mathfrak{A}_{4}, and is true for \mathfrak{A}_{5} because the stabilizer of a 3-cycle contains a transposition.

[^2]: ${ }^{18}$ There are also direct (but lengthier) arguments in the style of that example or your HW.

[^3]: ${ }^{19}$ This is easy, and left to you. Consider separately the cases $k=2$ (which doesn't occur for $n=6$) and $k>2$.

