II.I. Normal subgroups and quotient groups

In our discussion of conjugation, we defined the centralizer of an *element* $x \in G$: its elements are just those $g \in G$ with $gxg^{-1} = x$.

Suppose we replace *x* by a *subgroup* $H \leq G$. The new feature which arises is that $\iota_g(H) = gHg^{-1}$ (:= { $ghg^{-1} | h \in H$ }) can equal *H* without our having $ghg^{-1} = h$ for each $h \in H$. So there are *two* natural generalizations of $C_G(x)$: the **centralizer** (of *H* in *G*)

(II.I.1)
$$C_G(H) := \{g \in G \mid ghg^{-1} = h \ \forall h \in H\}$$

which we already encountered, and the **normalizer** (of *H* in *G*)

(II.I.2)
$$N_G(H) := \{g \in G \mid gHg^{-1} = H\}.$$

Given $h \in H$ and $g \in N_G(H)$, we have only that $ghg^{-1} \in H$.

The orbit-stabilizer theorem (for conjugation) for an *element* $x \in G$ said that the number of conjugates (= size of orbit) of x equals the index of $C_G(x)$ in G. Similarly, recalling that the image of H under ι_g (also a subgroup of G) is called a *conjugate* of H, we have the

II.I.3. PROPOSITION. The number of (distinct) conjugates of H in G is $[G:N_G(H)]$.

PROOF. Let *G* act by conjugation *on the set* X *of subgroups of G*. We are interested in |G(H)|, where G(H) means the orbit of *H* as an element in the set X. By the general orbit-stabilizer theorem, this is related to the stabilizer $G_H = N_G(H)$ of *H* in X by

$$|G(H)||N_G(H)| = |G|,$$
 or equivalently $|G(H)| = |G|/|N_G(H)| = [G:N_G(H)].$

II.I.4. DEFINITION. If $N_G(H) = G$, H is *normalized* by all of G and we say H is a **normal subgroup** of G. We write $H \leq G$ (or $H \triangleleft G$ if H is proper in G).

II.I.5. PROPOSITION. For a subgroup $H \leq G$, the following properties are equivalent:

(i) N_G(H) = G;
(ii)¹⁶ gHg⁻¹ = H (∀g ∈ G);
(iii) gH = Hg (∀g ∈ G); and
(iv) H is a union of (entire) conjugacy classes.

PROOF. (i) \iff (ii) is obvious, as $N_G(H)$ is just those g for which $gHg^{-1} = H$.

(ii) \iff (iii) looks clear, but let's write out the details for one direction: assume (ii), and let $gh \in gH$. We have $h' := ghg^{-1} \in H$, so that $gh = ghg^{-1}g = h'g \in Hg$. So $gH \subset Hg$; the reverse inclusion is similar.

(ii) \implies (iv): If *H* is not a union of conjugacy classes, then *H* contains some but not all of a conjugacy class; i.e. there exist $y \notin H$ and $x \in H$ with $y \in \operatorname{ccl}(x)$. But then for some $g \in G$, $gxg^{-1} = y \notin H \implies$ $gHg^{-1} \notin H$.

(iv) \implies (ii): Let $g \in G$ and $h \in H$. Since H is a union of conjugacy classes, $h \in H \implies \operatorname{ccl}(h) \subset H \implies ghg^{-1} \in H$. We conclude that $gHg^{-1} \subseteq H$; moreover, every $h \in H$ is $g(g^{-1}hg)g^{-1}$ with $g^{-1}hg \in \operatorname{ccl}(h) \subset H$, so the " \subseteq " is in fact an equality. \Box

Note that if *G* is abelian, all its subgroups are normal. Here are some more interesting

II.I.6. EXAMPLES. (a) In $G = \mathfrak{S}_4$: The Klein 4-group V_4 is the union of two conjugacy classes of \mathfrak{S}_3 : the identity $\{1\}$, and the set of all elements with cycle structure $(\cdots)(\cdots)$. Hence $V_4 \triangleleft \mathfrak{S}_4$.

Consider next the cyclic subgroup $\langle (123) \rangle = \{1, (123), (132)\}$. Since $(34)(123)(34)^{-1} = (124) \notin \langle (123) \rangle$, we find that $\langle (123) \rangle \not \lhd \mathfrak{S}_4$. (b) In $G = D_5$: We have $\langle (h) \rangle = \{1, h\} \not \lhd D_5$, as $rhr^{-1} = r^2h \notin \langle (h) \rangle$. But $\langle r \rangle = \{1, r, r^2, r^3, r^4\} \lhd D_5$ since $hr^k h^{-1} = r^{-k} \in \langle (r) \rangle$.

 $[\]overline{}^{16}$ This is usually given as the definition of a normal subgroup.

(c) $\underline{\mathfrak{A}_n \triangleleft \mathfrak{S}_n \text{ for } n \ge 3}$: Conjugacy classes in \mathfrak{S}_n consist of all permutations with a given cycle-structure. \mathfrak{A}_n consists of all permutations with "even" cycle-structures (i.e., $n - \#\{\text{disjoint cycles}\}$ is even). So \mathfrak{A}_n is a union of ccl's in \mathfrak{S}_n , hence normal.

(d) $C(G) \leq G$ for any group $G: x \in C(G) \implies gxg^{-1} = x \forall g \in G$, so $gC(G)g^{-1} = C(G) \ (\forall g \in G)$. Alternatively: the center consists of all 1-element ccl's.

(e) [HW] $[G,G] \leq G$ for any G: here [G,G] is the **commutator subgroup** generated by all *commutators* $[g_1,g_2] = g_1^{-1}g_2^{-1}g_1g_2$ of elements $g_1,g_2 \in G$.

II.I.7. EXAMPLE. Find

- (a) all normal subgroups of \mathfrak{S}_4 other than $\{1\}$ and \mathfrak{S}_4 , and
- (b) all the normal subgroups of each such *H*.

(a) We know the conjugacy clases correspond to the cycle-structures: (i) (\cdots) , (ii) $(\cdots)(\cdot)$, (iii) $(\cdots)(\cdots)$, (iv) $(\cdots)(\cdot)(\cdot)$, and (v) $(\cdot)(\cdot)(\cdot)(\cdot)(\cdot)(\cdot)(\cdot)$ [identity]. All subgroups contain the identity. If *H* contains ccl (iv), then $H = \mathfrak{S}_4$: transpositions *generate* \mathfrak{S}_4 by II.B.5. If *H* contains ccl (ii) then $H = \mathfrak{A}_4$ or \mathfrak{S}_4 : 3-cycles generate \mathfrak{A}_4 by II.C.6. If *H* contains ccl (i), then $H \ni (1234)$ hence $(1234)^2 = (13)(24)$; since it is normal, *H* then contains ccl (iii), and the element $(1234) \cdot (14)(23) = (24)$ \implies *H* contains ccl (iv) $H = \mathfrak{S}_4$. (We are *not* saying that there is no proper subgroup of \mathfrak{S}_4 containing a 4-cycle, just that there are no proper *normal* subgroups!) Finally, if $H \supseteq$ ccl (iii), there are 2 options: contain also ccl (i), (ii), and/or (iv) (in which case we already know the outcome); or don't contain any of these. In the latter case, $H = V_4$. So the (proper) normal subgroups of \mathfrak{S}_4 are \mathfrak{A}_4 and V_4 .

(b) In V_4 , the order-2 cyclic subgroups (e.g. $\{1, (12)(34)\}$) are normal simply because V_4 is abelian. Note that these are *not* normal in \mathfrak{S}_4 since non-identity elements of V_4 can be conjugated into one another.

In $\mathfrak{A}_4 = \{1\} \cup \operatorname{ccl}(ii) \cup \operatorname{ccl}(ii)$, "ccl (ii)" [3-cycles] splits into 2 ccl's (with respect to conjugation by \mathfrak{A}_4) while "ccl (iii)" [(\cdots)(\cdots)] does not.

(Why? See II.G.19.) The 2 ccl's into which the 3-cycles split are

 $\{(123), (142), (134), (243)\}$ and $\{(132), (124), (143), (234)\}.$

Obviously, including one in a sub*group* forces inclusion of the other, since squaring the first set of elements gives the second set and vice-versa! But then you have included all 3-cycles and get all of \mathfrak{A}_4 . The only option for a normal subgroup of \mathfrak{A}_4 (other than itself and $\{1\}$) is thus $V_4 = \{1\} \cup \text{ccl}(\text{iii})$.

Here are two more ways to produce normal subgroups. The second is more important, and in fact characterizes *all* normal subgroups, as we will see.

II.I.8. PROPOSITION. Any subgroup $H \leq G$ of index 2 is normal. (Here we need not assume G finite.)

PROOF. For any $a \in G \setminus H$, $G = H \amalg aH$. Let $h \in H$ and $g \in G$; we must show that $ghg^{-1} \in H$ (cf. II.I.5(ii)). If $g \in H$, this is clear; so take $g = ax \in aH$.

Suppose $ghg^{-1} \notin H$. Then $ghg^{-1} \in aH$ and (for some $y \in H$) we have

$$ay = (ax)h(ax)^{-1} = a(\underbrace{xhx^{-1}}_{\in H})a^{-1} = ah'a^{-1}$$

 $\implies y = h'a^{-1} \implies a = y^{-1}h' \in H$, contradicting the choice of *a*. So $ghg^{-1} \in H$ and we are done.

II.I.9. PROPOSITION. Let $\varphi: G \to H$ be a homomorphism. Then $\ker(\varphi) \trianglelefteq G$.

PROOF. Let
$$k \in \ker(\varphi)$$
, i.e. $\varphi(k) = 1_H$. Then for $g \in G$
 $\varphi(gkg^{-1}) = \varphi(g)\varphi(k)\varphi(g)^{-1} = \varphi(g)1_H\varphi(g)^{-1} = 1_H$

 $\implies gkg^{-1} \in \ker(\varphi)$, done.

II.I.10. EXAMPLES.

(a) Both II.I.8 and II.I.9 give quick proofs that $\mathfrak{A}_n \trianglelefteq \mathfrak{S}_n$:

• $\mathfrak{A}_n = \ker{\{\operatorname{sgn}: \mathfrak{S}_n \to \mathbb{Z}_2\}}$ (identifying $(\{1, -1\}, \bullet)$ with $(\mathbb{Z}_2, +)$)

•
$$[\mathfrak{S}_n:\mathfrak{A}_n]=2.$$

(b) $SL_n(\mathbb{F}) = ker\{det: GL_n(\mathbb{F}) \to \mathbb{F}^*\} \triangleleft GL_n(\mathbb{F}), where \mathbb{F} = \mathbb{Q}, \mathbb{R}, \mathbb{C}.$

(c)
$$\langle r \rangle \lhd D_n$$
 (index = 2).

As an application of normality we get a useful complement to our earlier result on decomposing a group into a direct product of subgroups II.E.11(iv). (Note that in (ii) below it isn't enough to have *one* of H or K normal in G — we need both.)

II.I.11. THEOREM. Let $H, K \leq G$ (G finite) with $H \cap K = \{1\}$. (i) $|H||K| \leq |G|$.

(ii) If also $H, K \leq G$ and equality holds in (i), then $G \cong H \times K$.

PROOF. (i) Define a map of sets

$$\varphi \colon H \times K \to G$$
$$(h,k) \mapsto hk$$

This is 1-to-1: $\varphi(h,k) = \varphi(h',k') \implies hk = h'k' \implies (h')^{-1}h = k'k^{-1} \in H \cap K = \{1\} \implies (h')^{-1}h = 1 = k'k^{-1} \implies (h,k) = (h',k').$ Hence (by the pigeonhole principle) $|H||K| = |H \times K| \le |G|.$

(ii) By II.E.11(iv) we are done if $(\forall h \in H, k \in K) hk = kh$. (Recall in the proof of II.E.11 that this makes φ a homomorphism hence an isomorphism.) Now $K \trianglelefteq G \implies (hkh^{-1})k^{-1} \in K$, while $H \trianglelefteq G$ $\implies h(kh^{-1}k^{-1}) \in H$. Hence $hkh^{-1}k^{-1} \in H \cap K = \{1\} \implies$ $hk(kh)^{-1} = 1 \implies hk = kh$.

II.I.12. DEFINITION. A group *G* is called **simple** if it contains no *normal* subgroups apart from $\{1\}$ and *G*.

II.I.13. EXAMPLE. Though we know that \mathfrak{A}_4 contains V_4 as a normal subgroup (hence is not simple), I claim that \mathfrak{A}_n is simple for $n \geq 5$.

PROOF FOR \mathfrak{A}_5 . (This gives an alternative approach to the method of II.I.7 used in your HW to see this.) Let $\{1\} \neq H \leq \mathfrak{A}_5$, and

 $\sigma \in H \setminus \{1\}$. Write

 $\sigma = (123)$, (12)(34) , (12345) III III II

for the three non-identity cycle-types in \mathfrak{A}_5 .

<u>Case I</u>: Set $\rho := (132)$. Since $H \leq \mathfrak{A}_5$, H contains

$$(\rho\sigma\rho^{-1})\sigma^{-1} = (31245)(15432) = (134).$$

<u>Case II</u>: Set $\tau := (12)(35)$. Since $H \leq \mathfrak{A}_5$, H contains

$$(\tau\sigma\tau^{-1})\sigma^{-1} = (12)(54)(12)(34) = (354).$$

So in all cases (I, II, and III) *H* contains a 3-cycle. Since $H \leq \mathfrak{A}_5$ and the 3-cycles form a ccl¹⁷ in \mathfrak{A}_5 , *H* contains all 3-cycles. But 3-cycles generate \mathfrak{A}_5 , and so $H = \mathfrak{A}_5$.

In light of this example and II.I.8, \mathfrak{A}_n can have no subgroups of index 2 for $n \ge 5$ even though $2||\mathfrak{A}_n| (= \frac{n!}{2})$. This furnishes another example of how the "converse of Lagrange" fails.

Now recall that for $H \leq G$

G/H := set of left cosets of H in G (with elements written gH).

We have |G/H| = |G|/|H| = [G:H].

If $H \leq G$, then left cosets equal right cosets, and we can make G/H into a group, called a **quotient group** (or "factor group" in some texts). Set

(aH)(bH) := all elements of the form *ahbh'*, $h, h' \in H$.

II.I.14. PROPOSITION. $H \trianglelefteq G \iff (aH)(bH) = abH \ (\forall a, b \in G).$

PROOF. (\implies): Using gH = Hg, one could write

(aH)(bH) = HabH = abHH = abH.

 $^{^{17}}$ Recall that this is false for \mathfrak{A}_4 , and is true for \mathfrak{A}_5 because the stabilizer of a 3-cycle contains a transposition.

Alternatively, and more explicitly,

$$ahbh' = ab\underbrace{b^{-1}hb}_{\in H}h' = abh''h' \in abH$$

yields $aHbH \subset abH$; and conversely, $abH = a1bH \subset aHbH$ yields $aHbH \supset abH$.

 $(\Leftarrow): (gH)(g^{-1}H) = gg^{-1}H = H$ implies $ghg^{-1} = (gh)(g^{-1}1) \in H$ for all $h \in H$, so that $gHg^{-1} \subset H$ (hence = H, by replacing g with g^{-1}).

II.I.15. REMARK. This last Proposition is equivalent to [**Jacobson**, Thm. 1.6], which states that the equivalence relation $a \equiv b \stackrel{\text{def}}{\equiv} a^{-1}b \in H$ being compatible with multiplication is equivalent to normality of *H* in *G*. Specifically, the "compatibility" requirement is that the pairing and inversion be well-defined on equivalence classes (i.e. the partition), and then " \equiv " is called a *congruence*.

II.I.16. COROLLARY. If $H \leq G$, then G/H, together with coset multiplication, $(aH)^{-1} := a^{-1}H$, and $1_{G/H} := (1)H$, forms a group. (The order of this group is [G:H], and $\frac{|G|}{|H|}$ if G is finite.)

PROOF. By II.I.14, the set of cosets is closed under multiplication; associativity is automatic from associativity of the product on *G*. Also, (aH)(1H) = aH and $(aH)(a^{-1}H) = aa^{-1}H = 1H$.

II.I.17. EXAMPLES. (a) We have $n\mathbb{Z} \triangleleft \mathbb{Z}$ (since \mathbb{Z} is abelian), and $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$. (The elements of $\mathbb{Z}/n\mathbb{Z}$ are of the form $a + n\mathbb{Z}$, i.e. cosets written additively.)

(b) The quotient group associated to $\mathfrak{A}_n \triangleleft \mathfrak{S}_n$ is just $\mathfrak{S}_n/\mathfrak{A}_n \cong \mathbb{Z}_2$, with elements \mathfrak{A}_n and $\tau \mathfrak{A}_n$, where τ is any transposition.

(c) $H \times \{1\}$ and $\{1\} \times K$ are both normal in $H \times K$. The quotient groups are *K* and *H* respectively.

(d) [HW] G/[G,G] yields an abelian group, called the "abelianization" of *G*.

II.I.18. DEFINITION. Given $H \trianglelefteq G$, the **natural map**

 $\nu: G \twoheadrightarrow G/H$

is the homomorphism obtained by sending $g \mapsto gH$. [To check that it is actually a homomorphism, write $\nu(g)\nu(g') = gHg'H = gg'H = \nu(gg')$.]

Here is the "converse" of II.I.9:

II.I.19. COROLLARY. Every normal subgroup of a group G is the kernel of a homomorphism.

PROOF. Given $H \trianglelefteq G$, we have the natural map $\nu \colon G \to G/H$. I claim that $H = \ker(\nu)$:

- $h \in H \implies \nu(h) = hH = H = 1_{G/H} \implies h \in \ker(\nu);$
- $k \in \ker(\nu) \implies kH = \nu(k) = 1_{G/H}(=H) \implies k \in H.$

II.I.20. FUNDAMENTAL THEOREM OF GROUP HOMOMORPHISMS. Let $\varphi: G \to H$ be a group homomorphism, and write $K := \text{ker}(\varphi)$. Then $K \trianglelefteq G$, and the map

$$\bar{\varphi} \colon G/K \to \varphi(G) \ (\leq H)$$
$$gK \stackrel{(*)}{\longmapsto} \varphi(g)$$

is an isomorphism of groups. (In particular, $\frac{|G|}{|K|} = |\varphi(G)|$ *.*)

PROOF. We only need to check that $\bar{\varphi}$ is an isomorphism.

• $\overline{\phi}$ is well-defined (as a map): Suppose gK = g'K. (We must show that $\overline{\phi}(gK) = \overline{\phi}(g'K)$.) Then g' = gk for some $k \in K$, and $\overline{\phi}(g'K) \stackrel{(*)}{=} \varphi(g') = \varphi(gk) = \varphi(g)\varphi(k) = \varphi(g)\stackrel{(*)}{=} \overline{\phi}(gK)$. • $\overline{\phi}$ is a homomorphism: Since φ is one, $\overline{\phi}((aK)(bK)) = \overline{\phi}(abK) \stackrel{(*)}{=} \varphi(abK) \stackrel{(*)}{=} \varphi(ab) = \varphi(a)\varphi(b)\stackrel{(*)}{=} \overline{\phi}(aK)\overline{\phi}(bK)$. • $\overline{\phi}$ surjects onto $\varphi(G)$: Any $\varphi(g) = \overline{\phi}(gK)$. • $\overline{\phi}$ is injective: $\overline{\phi}(aK) = 1_H \implies \varphi(a) = 1_H \implies a \in \ker(\varphi) = K$ $\implies aK = K = 1_{G/H}$.

The following diagram nicely describes the situation, namely that " φ factors through G/K'':

It *commutes* (see the end of §I.A) in the sense that $\bar{\varphi} \circ \nu = \varphi$:

$$\bar{\varphi}(\nu(g)) = \bar{\varphi}(gK) \stackrel{(*)}{=} \varphi(g).$$

II.I.21. COROLLARY. If $\varphi: G \to H$ is a surjective homomorphism, then $G / \ker(\varphi) \cong H$. (In particular, $\frac{|G|}{|\ker(\varphi)|} = |H|$.)

II.I.22. EXAMPLES. (a) We obtain $\mathfrak{S}_n/\mathfrak{A}_n \cong \mathbb{Z}_2$ again by using sgn: $\mathfrak{S}_n \twoheadrightarrow \mathbb{Z}_2$ with kernel \mathfrak{A}_n .

(b) The map $\psi \colon \mathbb{C}^* \twoheadrightarrow S^1 := \{z \in \mathbb{C}^* \mid |z| = 1\}$ sending $z \mapsto \frac{z}{|z|}$ has $\ker(\psi) = \mathbb{R}_{>0}$. So $\mathbb{C}^* / \mathbb{R}_{>0} \cong S^1$.

(c) Defining $\varphi \colon \mathbb{R} \twoheadrightarrow S^1$ by $\varphi(r) := e^{2\pi i r}$, we have ker $(\varphi) = \mathbb{Z}$, so that $\mathbb{R}/\mathbb{Z} \cong S^1$.

(d) There is a homomorphism $\Phi: Q \twoheadrightarrow V_4$ with kernel ker $(\Phi) = C(Q) = \{\pm 1\}$; thus $Q/\{\pm 1\} \cong V_4$. [HW]

(e) We construct a homomorphism $\phi \colon \mathfrak{S}_4 \twoheadrightarrow \mathfrak{S}_3$ as follows: let \mathfrak{S}_4 act by conjugation on the ccl {(12)(34), (13)(24), (14)(23)}. Numbering its elements 1, 2, 3 in the order shown, we obtain ϕ , and calculate that $\phi((12)) = (23)$ and $\phi((123)) = (132)$. Since $\phi(\mathfrak{S}_4) \leq \mathfrak{S}_3$ and $\langle (23), (132) \rangle = \mathfrak{S}_3$, we get surjectivity. By II.I.20 (or II.I.21),

$$\frac{|\mathfrak{S}_4|}{|\ker(\phi)|} = |\mathfrak{S}_3| \implies \frac{24}{|\ker(\phi)|} = 6 \implies |\ker(\phi)| = 4.$$

As ker(ϕ) $\trianglelefteq \mathfrak{S}_4$, the only possibility is now ker(ϕ) = V_4 . Conclude that

(II.I.23)
$$\mathfrak{S}_4/V_4 \cong \mathfrak{S}_3.$$

The following is immediate from II.I.20 and Lagrange, and is useful for ruling out homomorphisms between groups:

II.I.24. COROLLARY. Let $\varphi \colon G \to H$ be a homomorphism, and |G|, |H| finite. Then $|\varphi(G)|||G|$, |H|.

For a more serious application of the Fundamental Theorem, we turn to the two isomorphism theorems for groups.

II.I.25. FIRST ISOMORPHISM THEOREM. Let $K \leq G, K \leq H \leq G$. Then: (i) $K \leq H$ (ii) $H/K \leq G/K$ (iii) $H \stackrel{(\dagger)}{\mapsto} H/K$ induces a bijection: $\begin{cases} subgroups \text{ of } G \\ containing \\ K \end{cases} \longleftrightarrow \begin{cases} subgroups \\ of \\ G/K \end{cases}$ (iv) $H \leq G \iff H/K \leq G/K$. (v) In case of (iv), $G/H \cong \frac{G/K}{H/K}$.

PROOF. (i) is clear, and (ii) follows from II.I.20, viz.

(iii) <u>injectivity of (†)</u>: Given $H_1/K = H_2/K$. Then for each $h_1 \in H_1$, there exists $h_2 \in H_2$ such that $h_1K = h_2K$. But then $h_2^{-1}h_1 \in K$, and so $h_1 = h_2k \in H_2$. That is, we have shown that $H_1 \subset H_2$. Similarly, one has $H_2 \subset H_1$; and so $H_1 = H_2$.

surjectivity of (†): Given $\overline{H} \leq G/K$, \overline{H} is a collection of cosets. Define H to be the union of these cosets (hence $H \supset K$), so that

 $h_1, h_2 \in H \implies h_1 K, h_2 K \in \overline{H} \implies h_1 h_2 K = (h_1 K)(h_2 K) \in \overline{H}$

 \implies $h_1h_2 \in H$ (and similarly with inverses) \implies $H \leq G$. (iv) If $H \trianglelefteq G$ (and $K \trianglelefteq H, G$), then

$$(gK)(hK)(g^{-1}K) \underset{K \leq G}{=} ghg^{-1}K \underset{H \leq G}{=} h'K \in H/K.$$

The converse is similar.

(v) The composition

has ker(μ) = { $g \in G \mid gK \in H/K$ } = H. [Check: $gK \in H/K$ means gK = hK for some $h \in H$, hence $h^{-1}gK = K \implies h^{-1}g \in K \implies$ $g = hk \in H$.] Now apply II.I.21: in a diagram,

since $H = \ker(\mu)$.

II.I.26. COROLLARY. Given a homomorphism $\eta: G \twoheadrightarrow \mathfrak{G}$ with kernel *K*, let

$$\Lambda := \{ H \le G \mid H \ge K \} \supseteq \Lambda' := \{ H \trianglelefteq G \mid H \ge K \}.$$

Then

(i) Sending $H \mapsto \eta(H)$ induces 1-to-1 correspondences

$$\begin{array}{rcl} \Lambda & \longleftrightarrow & \{subgroups \ of \ \mathfrak{G}\} \\ \cup & & \cup \\ \Lambda' & \longleftrightarrow & \{normal \ sgps. \ of \ \mathfrak{G}\}. \end{array}$$

(ii) For $H \in \Lambda'$, sending $gH \mapsto \eta(g)\eta(H)$ induces

$$G/H \xrightarrow{\cong} \mathfrak{G}/\eta(H).$$

PROOF. By II.I.21, $\mathfrak{G} \cong G/K$. Hence this is just parts (iii-iv) resp. (v) of II.I.25.

II.I.27. SECOND ISOMORPHISM THEOREM. Let $H \leq G$, $K \leq G$. Then (i) $(K \leq) HK \leq G$.

II. GROUPS

(ii) $H \cap K \leq H$. (iii) $h(K \cap H) \mapsto hK$ induces $H/(K \cap H) \stackrel{\cong}{\to} HK/K$.

PROOF. (i) $HK = \bigcup_{h \in H} hK = \bigcup_{h \in H} Kh = KH$ implies that $(HK)^2 = H^2K^2 = HK$, and also that (the set of all inverses of elements of HK) $(HK)^{-1} = K^{-1}H^{-1} = KH = HK$. So HK is a subgroup of G. (ii) Under $\nu : G \twoheadrightarrow G/K$,

$$\nu(H) = \{hK \mid h \in H\} = \{hkK \mid hk \in HK\} = HK/K.$$

This image is a subgroup of *G*/*K*. So we get by restriction a homomorphism of groups $\nu|_H : H \twoheadrightarrow HK/K$, with $\ker(\nu|_H) = \{h \in H \mid hK = K\} = H \cap K$.

(iii) The diagram

provides the desired isomorphism, courtesy of II.I.21.

As an application, we finish off Example II.I.13:¹⁸

PROOF THAT \mathfrak{A}_n IS SIMPLE FOR $n \ge 5$. Having done n = 5 (the base case) above, we induce on n (taking $n \ge 6$). Suppose $K \trianglelefteq \mathfrak{A}_n$, and consider (for each $i \in \{1, ..., n\}$) the subgroup $H_i \le \mathfrak{A}_n$ of even permutations fixing i; clearly $H_i \cong \mathfrak{A}_{n-1}$, which is simple. By II.I.27(ii), we have $H_i \cap K \trianglelefteq H_i$, hence $H_i \cap K = \{1\}$ or H_i . If it is H_i for some i, then $H_i \le K$ and so K contains a 3-cycle. But 3-cycles are a ccl in \mathfrak{A}_n (since n > 4, by II.G.19), and these generate \mathfrak{A}_n , forcing $K = \mathfrak{A}_n$.

So suppose $K \cap H_i = \{1\}$ for all *i*. Then any $\sigma \in K \setminus \{1\}$ must be a product of *r* disjoint cycles of the same length *k*, with rk = n. (If there were cycles of different lengths j < k in the decomposition of σ , then $\sigma^j \neq 1$ but fixes some *i*, so that $H_i \cap K \neq \{1\}$, a contradiction.)

¹⁸There are also direct (but lengthier) arguments in the style of that example or your HW.

Since $n \ge 6$, we can choose $\tau = (ab)(cd) \in \mathfrak{A}_n$ and i so that $i, \sigma(i)$ are distinct from a, b, c, d, and so that τ and σ do not commute.¹⁹ Then $\sigma^{-1}(\tau \sigma \tau^{-1}) \in K$ since $K \trianglelefteq \mathfrak{A}_n$; but it also fixes i (hence belongs to $H_i \cap K$) and isn't the identity, a contradiction. Thus there is no $\sigma \in K \setminus \{1\}$ and $K = \{1\}$.

¹⁹This is easy, and left to you. Consider separately the cases k = 2 (which doesn't occur for n = 6) and k > 2.