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IL.I. Normal subgroups and quotient groups

In our discussion of conjugation, we defined the centralizer of an
element x € G: its elements are just those ¢ € G with gxg™! = x.

Suppose we replace x by a subgroup H < G. The new feature
which arises is that 1,(H) = gHg ! (:= {ghg™! | h € H}) can equal
H without our having ghg™! = h for each h € H. So there are two
natural generalizations of C;(x): the centralizer (of H in G)

(ILL1) Co(H):={g€G|ghg™'=h Vhe H}
which we already encountered, and the normalizer (of H in G)
(I1.1.2) Ng(H):={g€ G|gHg ' = H}.

Given h € H and g € Ng(H), we have only that ghg™! € H.

The orbit-stabilizer theorem (for conjugation) for an element x €
G said that the number of conjugates (= size of orbit) of x equals the
index of C;(x) in G. Similarly, recalling that the image of H under ¢,
(also a subgroup of G) is called a conjugate of H, we have the

I1.I.3. PROPOSITION. The number of (distinct) conjugates of H in G
is [GNG(H)]

PROOF. Let G act by conjugation on the set X of subgroups of G.
We are interested in |G(H)|, where G(H) means the orbit of H as an
element in the set X. By the general orbit-stabilizer theorem, this is
related to the stabilizer Gy = Ng(H) of H in X by

|G(H)|[Nc(H)| =[G,
or equivalently |G(H)| = |G|/|Ng(H)| = [G:Ng(H)]. O

ILL4. DEFINITION. If Ng(H) = G, H is normalized by all of G and
we say H is a normal subgroup of G. We write H < G (or H < G if
H is proper in G).
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I1.I.5. PROPOSITION. For a subgroup H < G, the following properties
are equivalent:
(i) No(H) = G;
(i)' gHg ™' = H (Vg € G);
(iii) gH = Hg (Vg € G); and
(iv) H is a union of (entire) conjugacy classes.

PROOF. (i) <= (ii)is obvious, as Ng(H) isjust those g for which
gHg ' =H.
(ii) <= (iii) looks clear, but let’s write out the details for one di-
rection: assume (ii), and let ¢h € ¢H. We have i’ := ¢hg™! € H, so
that gh = ¢hg~'¢ = h'g € Hg. So gH C Hg; the reverse inclusion is
similar.
(i) = (iv): If H is not a union of conjugacy classes, then H contains
some but not all of a conjugacy class; i.e. thereexisty ¢ Hand x € H
with y € ccl(x). But then forsome ¢ € G, gxg ! =y ¢ H =
gHg ' ¢ H.
(iv) = (ii): Let g € Gand h € H. Since H is a union of conjugacy
classes, h € H = ccl(h) C H = ghg~! € H. We conclude that
gHg™! C H; moreover, every h € His g(¢ 'hg)g~! with ¢~ 'hg €
ccl(h) C H, so the “C” is in fact an equality. O

Note that if G is abelian, all its subgroups are normal. Here are
some more interesting

ILL.6. EXAMPLES. (a) In G = &,4: The Klein 4-group Vj is the union
of two conjugacy classes of G3: the identity {1}, and the set of all el-
ements with cycle structure (--)(--). Hence V3 < &4.

Consider next the cyclic subgroup ((123)) = {1, (123), (132)}.
Since (34)(123)(34)~! = (124) ¢ ((123)), we find that ((123)) 4 &,.

(b) In G = Ds: We have ((h)) = {1,h} <A Ds, as rhr—! = r?h ¢ ((h)).
But (r) = {1,7,7%,73,r*} < Ds since hr*h ™1 = r=F € ((r)).

16This is usually given as the definition of a normal subgroup.
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(c) A, < &, for n > 3: Conjugacy classes in &, consist of all permu-

tations with a given cycle-structure. 2(,, consists of all permutations
with “even” cycle-structures (i.e., n — #{disjoint cycles} is even). So
2, is a union of ccl’s in &,,, hence normal.

(d) C(G) < G forany group G: x € C(G) = gxg ! = xVg € G,
s0 ¢C(G)g~! = C(G) (Vg € G). Alternatively: the center consists of
all 1-element ccl’s.

(e) [HW] [G, G| < G for any G: here [G, G] is the commutator sub-
group generated by all commutators [g1,82] = g;'g, '§182 of ele-

ments g1, ¢ € G.

II.I.7. EXAMPLE. Find

(a) all normal subgroups of &4 other than {1} and &4, and
(b) all the normal subgroups of each such H.

(a) We know the conjugacy clases correspond to the cycle-structures:
@) (), @) () (), Gii) () (), (¥) ()()(), and ) ()()()()
[identity]. All subgroups contain the identity. If H contains ccl (iv),
then H = &,: transpositions generate &4 by IL.B.5. If H contains ccl
(ii) then H = l4 or &4: 3-cycles generate 24 by IL.C.6. If H contains
ccl (i), then H > (1234) hence (1234)% = (13)(24); since it is normal,
H then contains ccl (iii), and the element (1234) - (14)(23) = (24)
= H contains ccl (iv) H = &4. (We are not saying that there is
no proper subgroup of &4 containing a 4-cycle, just that there are no
proper normal subgroups!) Finally, if H D ccl (iii), there are 2 options:
contain also ccl (i), (ii), and/or (iv) (in which case we already know
the outcome); or don’t contain any of these. In the latter case, H =
V}. So the (proper) normal subgroups of G4 are 24 and Vj.

(b) In V4, the order-2 cyclic subgroups (e.g. {1, (12)(34)}) are normal
simply because Vj is abelian. Note that these are not normal in &4
since non-identity elements of V; can be conjugated into one another.

In 2y = {1} U ccl(ii) U ccl(iii), “ccl (ii)” [3-cycles] splits into 2 ccl’s
(with respect to conjugation by 24) while “ccl (iii)” [(--)(--)] does not.
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(Why? See I1.G.19.) The 2 ccl’s into which the 3-cycles split are
{(123), (142), (134), (243)} and {(132),(124), (143), (234)}.

Obviously, including one in a subgroup forces inclusion of the other,
since squaring the first set of elements gives the second set and vice-
versa! But then you have included all 3-cycles and get all of 4. The
only option for a normal subgroup of 2, (other than itself and {1})
is thus V; = {1} U ccl(iii).

Here are two more ways to produce normal subgroups. The
second is more important, and in fact characterizes all normal sub-
groups, as we will see.

IL.L.8. PROPOSITION. Any subgroup H < G of index 2 is normal.
(Here we need not assume G finite.)

PROOF. Foranya € G\H, G = HIlaH. Leth € Hand g € G;
we must show that ghg_1 € H (cf. IL.L5(ii)). If g € H, this is clear; so
take ¢ = ax € aH.

Suppose ¢hg~! ¢ H. Then ghg™' € aH and (for some y € H) we

have
_ -1 _ 1y, -1 _ g —1
ay = (ax)h(ax)™" = a(ﬁi\{_/)a =al'a
€H
= y=ha'! = a=y ' € H, contradicting the choice of a.
So ghg~! € H and we are done. [

IL.I.9. PROPOSITION. Let ¢: G — H be a homomorphism. Then
ker(p) < G.

PROOF. Letk € ker(¢), i.e. (k) = 1g. Then for g € G
p(gkg ™) = 9(9)o(K)9(g) " = ¢(&)1lug(g) ' =1n
= g¢kg™! € ker(g), done. ]

ILI1.10. EXAMPLES.
(a) Both ILL.8 and IL.1.9 give quick proofs that 2, < &,;:

o 2, = ker{sgn: &, — Z,} (identifying ({1, —1}, o) with (Z,, +))
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o [5G,y =2.

(b) SL,(F) = ker{det: GL,(F) — F*} < GL,(F), where F =
QR,C.

(c) (r) < D, (index = 2).

As an application of normality we get a useful complement to
our earlier result on decomposing a group into a direct product of
subgroups IL.E.11(iv). (Note that in (ii) below it isn’t enough to have
one of H or K normal in G — we need both.)

IL1.11. THEOREM. Let H,K < G (G finite) with HN K = {1}.
() [H[[K] < |G].
(ii) If also H,K < G and equality holds in (i), then G = H x K.

PROOF. (i) Define a map of sets

p: HxK—= G
(h, k) — hk

This is 1-to-1: @(h,k) = @(h', k') = hk = W'k = (I)"'h =
Kk le HNK={1} = (W) '"h=1=kk ' = (hk) = (I,K).
Hence (by the pigeonhole principle) |H||K| = |H x K| < |G].

(ii) By ILE.11(iv) we are done if (Vi € H, k € K) hk = kh. (Recall
in the proof of IL.LE.11 that this makes ¢ a homomorphism hence an
isomorphism.) Now K < G = (hkh~Yk=! € K, while H < G
= h(kh k') € H. Hence hkh k™! € HNK = {1} =
hk(kh)~' =1 = hk = kh. O

IL.1.12. DEFINITION. A group G is called simple if it contains no
normal subgroups apart from {1} and G.

ILL.13. EXAMPLE. Though we know that 2{4 contains Vj as a nor-
mal subgroup (hence is not simple), I claim that %, is simple for
n > 5.

PROOF FOR 2s. (This gives an alternative approach to the method
of ILI.7 used in your HW to see this.) Let {1} # H < s, and
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o € H\{1}. Write

o= (123), (12)(34), (12345)
III 1I 1

for the three non-identity cycle-types in 2s.
Case I: Set p := (132). Since H < 25, H contains

(pop1)o1 = (31245)(15432) = (134).
Case II: Set T := (12)(35). Since H < s, H contains
(tot 1o~ = (12)(54)(12)(34) = (354).

So in all cases (I, II, and III) H contains a 3-cycle. Since H < 25 and
the 3-cycles form a ccl'” in 25, H contains all 3-cycles. But 3-cycles
generate s, and so H = As. 0

In light of this example and ILL8, 2, can have no subgroups of
index 2 for n > 5 even though 2||2,| (= 2). This furnishes another
example of how the “converse of Lagrange” fails.

Now recall that for H < G

G/H := set of left cosets of H in G

(with elements written gH).

We have |G/H| = |G|/|H| = [G:H].

If H < G, then left cosets equal right cosets, and we can make
G/H into a group, called a quotient group (or “factor group” in
some texts). Set

(aH)(bH) := all elements of the form ahbh’, h,h’ € H.
IL.I.14. PROPOSITION. H I G <= (aH)(bH)=abH (Va,b € G).
PROOF. ( = ) : Using ¢H = Hg, one could write

(aH)(bH) = HabH = abHH = abH.

17Recall that this is false for 20y, and is true for 25 because the stabilizer of a 3-cycle
contains a transposition.
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Alternatively, and more explicitly,

ahbh' = abp”'hbh' = abh"h' € abH
——
€H
yields aHbH C abH; and conversely, abH = albH C aHbH yields
aHbH D abH.

(<):(gH)(g"'H) = gg~'H = H implies ghg™" = (gh)(g™'1) €

Hforallh € H, so that gHg~! C H (hence = H, by replacing ¢ with
-1

) 0

ILI.15. REMARK. This last Proposition is equivalent to [Jacobson,

Thm. 1.6], which states that the equivalence relationa = b e €
H being compatible with multiplication is equivalent to normality
of H in G. Specifically, the “compatibility” requirement is that the
pairing and inversion be well-defined on equivalence classes (i.e. the
partition), and then “=" is called a congruence.

I1.I.16. COROLLARY. If H < G, then G/ H, together with coset mul-
tiplication, (aH)™! := a~'H, and 15, := (1)H, forms a group. (The

order of this group is |G:H|, and % if G is finite.)

PROOF. By II.I1.14, the set of cosets is closed under multiplica-
tion; associativity is automatic from associativity of the product on
G. Also, (aH)(1H) = aH and (aH)(a 'H) = aa 'H = 1H. O

ILI1.17. EXAMPLES. (a) We have nZ <1 Z (since Z is abelian), and
Z/nZ = Z,. (The elements of Z/nZ are of the form a + nZ, i.e.
cosets written additively.)

(b) The quotient group associated to 2, < &, is just &, /A, = Z,,
with elements 2(,, and T2, where T is any transposition.

(c) H x {1} and {1} x K are both normal in H x K. The quotient
groups are K and H respectively.

(d) [HW] G/[G, G] yields an abelian group, called the “abelianiza-
tion” of G.
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I1.1.18. DEFINITION. Given H < G, the natural map
v:G—- G/H

is the homomorphism obtained by sending ¢ — gH. [To check that
it is actually a homomorphism, write v(¢)v(g') = ¢H¢'H = g¢'H =
v(gg) ]

Here is the “converse” of 11.1.9:

I1.1.19. COROLLARY. Every normal subgroup of a group G is the kernel
of a homomorphism.

PROOF. Given H < G, we have the natural map v: G — G/H. 1
claim that H = ker(v):

eheH = v(h)=hH=H =15,y = h € ker(v);
o keker(v) = kH=v(k) =1g/y(=H) = k€ H. ]

I1.1.20. FUNDAMENTAL THEOREM OF GROUP HOMOMORPHISMS.
Let 9: G — H be a group homomorphism, and write K := ker(¢). Then
K < G, and the map

@: G/K— ¢(G) (< H)
gk o(g)

is an isomorphism of groups. (In particular, % = |p(G)].)

PROOF. We only need to check that ¢ is an isomorphism.
e ¢ is well-defined (as a map): Suppose ¢gK = ¢’K. (We must show

that ¢(gK) = @(¢'K).) Then ¢’ = gk for some k € K, and $(¢'K) ®)

9(8) = p(sk) = p(8)p(k) = 9(8) ¥ p(3K).

e ¢ is a homomorphism: Since ¢ is one, ¢((aK)(bK)) = ¢(abK) =

p(ab) = p(a)p(b) Y ¢(ak)p(bK). _

e ¢ surjects onto ¢(G): Any ¢(g) = ¢(gK).
e ¢ isinjective: ¢(aK) = 1y = ¢(a) =1y = a € ker(¢) = K
— aK =K = 1G/H' O

—
~
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The following diagram nicely describes the situation, namely that
“¢ factors through G/K”:

Gx /q;H

G/K

It commutes (see the end of §1.A) in the sense that g ov = ¢:

p(v(3)) = p(sK) 2 9(g).

ILI.21. COROLLARY. If ¢: G — H is a surjective homomorphism,

then G/ ker(¢) = H. (In particular, |kirc(|¢)| = |H|.)

IL.I.22. EXAMPLES. (a) We obtain &, /%, = Z, again by using
sgn: G, — Z with kernel 2,,.

(b) The map ¢: C* — S := {z € C* | |z| = 1} sending z é—‘ has
ker(¢) = R-g. So C*/R+g = St

(c) Defining ¢: R — S! by ¢(r) := €*™, we have ker(¢) = Z, so
that R/Z = S'.

(d) There is a homomorphism ®: Q — V, with kernel ker(®) =
C(Q) = {£1}; thus Q/{+1} = V. [HW]

(e) We construct a homomorphism ¢: S5 — &3 as follows: let G4 act
by conjugation on the ccl {(12)(34), (13)(24), (14)(23)}. Number-
ing its elements 1, 2,3 in the order shown, we obtain ¢, and calculate
that ¢((12)) = (23) and ¢((123)) = (132). Since ¢p(S4) < &3 and

((23),(132)) = &3, we get surjectivity. By I1.1.20 (or I1.1.21),
24
S e 26 ker() =4

| ker(¢)] | ker(¢)]

As ker(¢) < &4, the only possibility is now ker(¢) = V;. Conclude
that

(IL1.23) G4/ V, & Gs.
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The following is immediate from II.1.20 and Lagrange, and is use-
tul for ruling out homomorphisms between groups:

I1.1.24. COROLLARY. Let ¢: G — H be a homomorphism, and |G|, |H|
finite. Then |¢(G)|||G|, [H|.

For a more serious application of the Fundamental Theorem, we
turn to the two isomorphism theorems for groups.

I1.I1.25. FIRST ISOMORPHISM THEOREM. Let K I G, K < H < G.
Then:
(i)K<H
(i) H/K < G/K

(iii) H »@ H /K induces a bijection: subgro?,tp' sof G — subgroups
containing K of G/K

(ivyH< G < H/K<G/K

(v) In case of (iv), G/H = %

PROOF. (i) is clear, and (ii) follows from II.1.20, viz.

hi hK

H Y G/K
\ %

H/K

(iii) injectivity of (t): Given H;/K = H,/K. Then for each h; € Hy,
there exists 1, € H» such that 11K = hyK. But then h; h € K, and
so h; = hpok € Hj. That is, we have shown that H; C Hp. Similarly,
one has H, C Hy; and so Hy = H,.

surjectivity of (1): Given H < G/K, H is a collection of cosets.
Define H to be the union of these cosets (hence H D K), so that

hi,h, e H = K, K € H — hih,K = (th)(th) €H

= hihy € H (and similarly with inverses) = H < G.
(iv)If H < G (and K < H, G), then

-1 _ -1 I
(¢K)(hK) (g™ K) e ghg K e h'K € H/K.
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The converse is similar.

(v) The composition

14

v v G/K

g = gK——— (gK)(H/K)
has ker(y) = {g € G | gK € H/K} = H. [Check: gK € H/K means

g¢K = hK forsome h € H,hence h"1¢K = K = hlg € K =
g = hk € H.] Now apply IL.1.21: in a diagram,

G ¢ G/K

\ H/K

G/H

since H = ker(y). O

I.1.26. COROLLARY. Given a homomorphism 1n: G — & with kernel
K, let

A={H<G|H>K} 2 A':={H<G|H>K}.

Then
(i) Sending H — n(H) induces 1-to-1 correspondences

AN —  {subgroups of &}
U U
N <— {normal sgps. of &}.
(ii) For H € A/, sending gH — n(g)n(H) induces
G/H —» &/y(H).

PROOF. By IL.1.21, & = G/K. Hence this is just parts (iii-iv) resp.
(v) of ILL25. O

II.I.27. SECOND ISOMORPHISM THEOREM. Let H < G, K < G.
Then
(i) (K Q) HK < G.
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(i) HNK < H.
(iii) (KN H) — hK induces H/ (KN H) = HK/K.

PROOF. (i) HK = UpcyhK = UycyKh = KH implies that (HK)? =
H?K? = HK, and also that (the set of all inverses of elements of HK)
(HK)~! = K-'H™! = KH = HK. So HK is a subgroup of G.

(i) Under v: G — G/K,

v(H) = {hK | h € H} = {hkK | hk € HK} = HK/K.

This image is a subgroup of G/K. So we get by restriction a homo-
morphism of groups v|g : H - HK/K, with ker(v|g) = {h € H |
hK =K} = HNK.

(iii) The diagram

vlg

H HK/K

o~ A

H/(HNK)

provides the desired isomorphism, courtesy of I11.1.21. [
As an application, we finish off Example 11.1.13:'8

PROOF THAT £, IS SIMPLE FOR n > 5. Having done n = 5 (the
base case) above, we induce on n (taking n > 6). Suppose K <
2l,, and consider (for each i € {1,...,n}) the subgroup H; < 2, of
even permutations fixing i; clearly H; = 2(,,_;, which is simple. By
I1.1.27(ii), we have H; N K < H;, hence H; N K = {1} or H;. If itis H;
for some i, then H; < K and so K contains a 3-cycle. But 3-cycles are
a cclin A, (since n > 4, by I1.G.19), and these generate ,,, forcing
K =2A,.

So suppose KN H; = {1} for all i. Then any ¢ € K\ {1} must be
a product of r disjoint cycles of the same length k, with rk = n. (If
there were cycles of different lengths j < k in the decomposition of o,
then ¢/ # 1 but fixes some i, so that H; N K # {1}, a contradiction.)

18There are also direct (but lengthier) arguments in the style of that example or
your HW.
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Since n > 6, we can choose T = (ab)(cd) € A, and i so thati, o (i) are
distinct from 4, b, ¢,d, and so that T and ¢ do not commute.'’ Then
o Y(rot™!) € K since K < 2A,; but it also fixes i (hence belongs
to H; N K) and isn’t the identity, a contradiction. Thus there is no
o€ K\{1} and K = {1}. O

OThis is easy, and left to you. Consider separately the cases k = 2 (which doesn’t
occur for n = 6) and k > 2.



