IV. Modules

IV.A. Definition and examples

Modules over a ring arose from algebraic number theory and rep-
resentation theory. The definition we use now, a simultaneous gen-
eralization of vector spaces over a field and the action of a group on
a set, is another contribution of E. Noether. The main immediate ap-
plications will be to the structure theory of finitely generated abelian
groups and to the canonical forms of a linear transformation on a

vector space.

IV.A.1. DEFINITION. Let R be a ring.
A left (resp. right) R-module is

e an abelian group M
together with a “scalar multiplication” map

e RxM— Mresp. MXR—M

(rm) — rm (mpr) — mr

satisfying the axioms (V m,m' € M and r,r’ € R)

i) r(m+m)=rm+rm (m+m')r =mr+m'r
) (r+r"Yym=rm+r'm m(r+7r") = mr+mr'
(i) (rr')ym =r(r'm) Fesp- m(rr") = (mr)r’

(iv) 1gm=m mlg = m.

If R is commutative, then we use the terminology “R-module” as left
vs. right turn out to yield equivalent structures.

IV.A.2. EXAMPLES. (a) Given a field FF, an F-module is the same
thing as an [F-vector space (we can take this as the definition).

(b) A Z-module is the same thing as an abelian group.
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(c) Any ring R is a (left and right) module over itself. Any left [resp.
right] ideal I C R is a left [resp. right] R-module.

(c") Given any subring Rg C R, R is a (left and right) Rp-module, and
any R-module M has the structure of an Ro-module.

(c”) Given a ring homomorphism 6: S — R, an R-module M has the
structure of an S-module via sm := 0(s)m.

(d) Given a ring R, the map R x R" — R" sending (7, (1,...,74)) —
(rr1,...,rry) makes R" into a (left) R-module. This is the prototype
for free R-modules. (“Direct summands” of R" will be the prototype
for projective R-modules, and “quotients” of R" for finitely gener-
ated R-modules.)

(e) For those who are familiar with manifolds, a finitely generated
projective C*°(M)-module is the same thing as a smooth vector bun-

dle over M.
(f) R" is a left M,,(R)-module.

(g) Let G be a finite group. A representation of G on an [F-vector
space V is a map

Gxvhyv
(8,v) = p(g)v (or “g.v”)

g(v+7)=gv+g0
satisfying ¢ ¢.(fv) = f(g.v) (f € F)

(¢¢")v=g.(¢v), 1lgv="0.
We can “linearize” this action to get a left-module: let IF[G] be the
ring consisting of elements )_; f;[g;] with multiplication law gener-
ated by [¢][¢] := [g¢’], the so-called group ring of G over F. Then
we define

(Xifilgil)v == Lifi(gi-0)

and check axioms (i)-(iv). So a representation of G has the structure
of an F[G]-module.
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(h) Given an F-vector space V, an endomorphism

T-V—=V

is an F-linear homomorphism of abelian groups; that is, we have
T(fv) = fT(v) and T(v+7') = T(v) +T(V') (V f € F, v,v' €
V). Denoting the collection of all such by Endp(V), we consider the

evaluation map

F[A] -2 Endg(V)
P(A) — P(T),

where A is an indeterminate.

Now, we can add and compose endomorphisms, making Endp (V)
into a ring and V into an Endg(V)-module. It also makes 6 a ring
homomorphism, with image

im(6) =: F[T].

By (c”), this gives V the structure of an IF[A]-module, which leads to
the theory of canonical forms for T.

(i) Let F be a number field, and a C F be a fractional ideal. Then a
has the structure of Op-module. Indeed, F is also an Op-module; but
it is not finitely generated as an abelian group (why?), whereas a is.

Conversely, we claim that any finitely generated abelian subgroup
of F with Op-module structure is a fractional ideal. Let a < F be f.g.
and closed under multiplication by Opf; then we ask: does there exist
an element f € F such that fa C Or? If this is true, then fa =: I is an
ideal of Op,and a = f —1T a fractional ideal.

To see this, let ay,...,a; be a generating set for a (as abelian
group), and write a; = %, a;,b; € Op, using the fact that F is the
fraction field of Op. Then 1(]—[]' bj)a; € Op (Vi) = ([1jbj)a C OF.

Now consider the

IV.A.3. DEFINITION. A module M over a ring R is finitely gener-
ated (as an R-module) if there exists a finite subset S C M such that

M = {Y cs1ss | s € R}.
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Since OF is f.g. as an abelian group, a is f.g. as an abelian group
iff a is f.g. as an Or-module, and so we have the

IV.A.4. PROPOSITION. The fractional ideals of F are precisely the finitely
generated Op-submodules of F.

(I'll discuss submodules at greater length later.)

The similarities between Defn. IV.A.1 ((iii) and (iv) in particular)
and the definition of a monoid G acting on a set X, suggest recasting
the definition of module as a homomorphism of rings — just as we
can recast the monoid action as a homomorphism of monoids G —
Tx (Where Ty is the monoid of transformations). In the remainder of
the section we work this out.

IV.A.5. DEFINITION. Given an abelian group (M, +,0), the set of
endomorphisms End(M) is the set of homomorphisms 77: M — M.
(The defining properties are 77(x +y) = #(x) +1(y) and (0) = 0,
consequences of which include n7(—x) = —#(x), y(nx) = ny(x), and
the determination of 7 by its behavior on a generating set for M.)

IV.A.6. PROPOSITION. End (M) is a ring under addition and compo-
sition of endomorphisms.

SKETCH. I'll summarize some key points:

o 1End(M) - ldM
® Opng(m) = zero-map (sending everything to 0)
e End(M) is closed under addition since

m+0x+y)=nlx+y)+l(x+y)
=n(x) +1(y) +2(x) + ()
[M abelian = | = 77(x) + {(x) +7(y) + {(y)
=+ )+ 7+ )

ISame as Defn. ILE1, with G only taken to be a monoid.
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e Distributivity properties hold, e.g.

(1 +20)p)(x) =+ (px)) =n(p(x)) +{(o(x))
= (np)(x) + (Cp)(x) = (mp + §p)(x). O

What is the group of units (End(M))*? These are, naturally,
the invertible endomorphisms — the automorphisms Aut(M). Note
that this is a subgroup of the multiplicative monoid of End (M) and is not
usually closed under addition.

IV.A.7.EXAMPLE. (i) Let M = (Z,+,0). Then we have End(M) =
(Z,+,,0,1). Why? M is generated by 1, so any endomorphism is
determined by where 1 is sent. Of course, Aut(M) = {£1} = Z; (as
a ring).

(i) Let M = (Z,,+,0). Again (for the same reason) End(M) =
(Zn,+,0,0,1), but Aut(M) = Z;.

(iii) Let M = Z". 1 claim that End (M) = M, (Z):

PROOF. Write ey, ..., e, for the standard basis (column) vectors
in Z". We define ¢: End(Z") — M,(Z) by ¢p(u) := (u(er) | --- |
u(en)),so¢p(idzn) =1, and ¢(0) = 0,; ¢ clearly respects “+”. As for
“e”: for any y € End(Z") and v € Z", matrix-vector multiplication
yields

o0 = (u(er) | -+ | plen)) ( ) - ”1 vip(er) = (T vrey)

Un =

So for 77, € End(Z"), we have ¢(17){(e;) = n{(e;) hence

¢(ng) = (ng(er) | -+ [ n¢(en)) = @(17) - (C(e1) | --- | L(en))
= ¢(17) - 9(0),

where the dot is matrix multiplication. Injectivity and surjectivity
are clear, since the {e;} freely generate Z". O



196 IV. MODULES

One should compare the following to “Cayley for monoids”:?

IV.A.8. THEOREM. Any ring R is isomorphic to a ring of endomor-
phisms of an abelian group, i.e. to a subring of End(M) for some abelian
group M.

PROOF. Let M = (R, +,0), and denote by ¢,: M — M the group

m——rm
homomorphism given by left-multiplication by an element r € R.

We obtain a homomorphism of rings by
¢: R — End(M)
v Ay
(since 15+ lps = {1l
and r+s+> lops =4+ 0s).

We only need to show that /(R) = R, i.e. that ¢ presents R as a sub-
ring of End(R). That is, we must check injectivity. If £, = Ognq(m),
thenrm =0(Vm € M) — r =r1 =0, done. O

If we try the same thing for right multiplication, we run into the
problem

tys () = m(rs) = (mr)s = (5, (m))s = vs(t,(m)) = (xst,) (m).

IV.A.9. DEFINITION. The opposite ring of R is (R, +, e°P,0,1) =:
R°P, where r -°P s := sr.

So t gives a homomorphism t: R°°? — End(M), where M con-
tinues to denote the abelian group (R,+,0). We can write (with
[Jacobson])

Ry :=im(v) CEnd(M), R;:=im(¢) C End(M).
Recalling that C4(B) denotes the centralizer of B in A, we have

IV.A.10. PROPOSITION. Ri = Cgng(m)(Re), and Ry = Cgng(an) (Re)-

%i.e. the statement that every monoid G is a submonoid of a monoid of transfor-

mations of a set (in particular, G itself).
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PROOF. /,ts = ts/, is clear, so R, C CEnd( M)(Rg) etc. Conversely,
suppose 17 € End(M) is such that #¢, = ¢,y for every r € R. Then

i(m) = n(ml) =n(ln(1)) = ln(n(1)) = m-7(1) = vyq)(m) (Vm)

= 11 = t,(1) € Ri. (Note that 77(1) need not be 1 since 7 is merely
a homomorphism of abelian groups.) O

The basis of the discussion above is viewing R as left and right
R-module. If we instead let M be an arbitrary left R-module, we see
that

£: R — End(M)

r— {m— rm}

yields a ring homomorphism. Conversely, given a ring homomor-
phism
6: R — End(M),
with M an abelian group, one verifies IV.A.1(i)-(iv) as follows:
e flands in End(M) = (i): r(m+m') = rm +rm’;
e Osendsr+stof(r)+0(s) = (ii): (r +s)m =rm+sm;
e Osendsrstof(r)ob(s) = (iii): (rs)m = r(sm); and
e 0 sends 1g to 1gpg(py = (iv): 1Igrm = m.
Similarly, if M is a right R-module, then

%: R — End(M)
r— {m— mr}

produces a ring homomorphism; and the converse is left to the reader.
This proves the

IV.A.11. THEOREM. Let R be a ring, M an abelian group. A left
R-module structure on M is equivalent to a ring homomorphism R —
End(M). A right R-module structure on M is equivalent to a ring homo-
morphism R — End(M).

From this point of view, the two notions are “the same” for a
commutative ring R because R = R°P.
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For representations of G (cf. IV.A.2(g)), the homomorphism in
IV.A.11 takes the specific form of a ring homomorphism

F[G] — Endg(V)
which is induced by linearizing a group homomorphism
G— Aut]p(V).

The right-hand sides here denote IF-linear endo/auto-morphisms;
this constraint on the F[G]-module structure/G-action comes from
the assumption that g.(fv) = f(g.v) in IV.A.2(g). If V is finite (say,
n) dimensional, then Autg(V) = GL(n, F).



