IV. Modules

IV.A. Definition and examples

Modules over a ring arose from algebraic number theory and representation theory. The definition we use now, a simultaneous generalization of vector spaces over a field and the action of a group on a set, is another contribution of E. Noether. The main immediate applications will be to the structure theory of finitely generated abelian groups and to the canonical forms of a linear transformation on a vector space.
IV.A.1. Definition. Let R be a ring.

A left (resp. right) R-module is

- an abelian group M
together with a "scalar multiplication" map
- $R \times M \rightarrow M$ resp. $M \times R \rightarrow M$
$(r, m) \longmapsto r m \quad \underset{(m, r)}{\longmapsto} \longmapsto m r$
satisfying the axioms $\left(\forall m, m^{\prime} \in M\right.$ and $r, r^{\prime} \in R$)
$\left.\begin{array}{ll}\text { (i) } & r\left(m+m^{\prime}\right)=r m+r m^{\prime} \\ \text { (ii) } & \left(r+r^{\prime}\right) m=r m+r^{\prime} m \\ \text { (iii) } & \left(r r^{\prime}\right) m=r\left(r^{\prime} m\right) \\ \text { (iv) } & 1_{R} m=m\end{array}\right\}$ resp. $\left\{\begin{array}{l}\left(m+m^{\prime}\right) r=m r+m^{\prime} r \\ m\left(r+r^{\prime}\right)=m r+m r^{\prime} \\ m\left(r r^{\prime}\right)=(m r) r^{\prime} \\ m 1_{R}=m .\end{array}\right.$
If R is commutative, then we use the terminology " R-module" as left vs. right turn out to yield equivalent structures.
IV.A.2. Examples. (a) Given a field \mathbb{F}, an \mathbb{F}-module is the same thing as an \mathbb{F}-vector space (we can take this as the definition).
(b) A \mathbb{Z}-module is the same thing as an abelian group.
(c) Any ring R is a (left and right) module over itself. Any left [resp. right] ideal $I \subset R$ is a left [resp. right] R-module.
(c') Given any subring $R_{0} \subset R, R$ is a (left and right) R_{0}-module, and any R-module M has the structure of an R_{0}-module.
($c^{\prime \prime}$) Given a ring homomorphism $\theta: S \rightarrow R$, an R-module M has the structure of an S-module via $s m:=\theta(s) m$.
(d) Given a ring R, the map $R \times R^{n} \rightarrow R^{n}$ sending $\left(r,\left(r_{1}, \ldots, r_{n}\right)\right) \mapsto$ $\left(r r_{1}, \ldots, r r_{n}\right)$ makes R^{n} into a (left) R-module. This is the prototype for free R-modules. ("Direct summands" of R^{n} will be the prototype for projective R-modules, and "quotients" of R^{n} for finitely generated R-modules.)
(e) For those who are familiar with manifolds, a finitely generated projective $C^{\infty}(\mathcal{M})$-module is the same thing as a smooth vector bundle over \mathcal{M}.
(f) \mathbb{R}^{n} is a left $M_{n}(\mathbb{R})$-module.
(g) Let G be a finite group. A representation of G on an \mathbb{F}-vector space V is a map

$$
\begin{aligned}
& G \times V \xrightarrow{\rho} V \\
&(g, v) \mapsto \rho(g) v \quad(\text { or " } g . v ")
\end{aligned}
$$

$$
\text { satisfying }\left\{\begin{array}{l}
g \cdot\left(v+v^{\prime}\right)=g \cdot v+g \cdot v^{\prime} \\
g \cdot(f v)=f(g \cdot v)(f \in \mathbb{F}) \\
\left(g g^{\prime}\right) \cdot v=g \cdot\left(g^{\prime} \cdot v\right), \quad 1_{G} \cdot v=v
\end{array}\right.
$$

We can "linearize" this action to get a left-module: let $\mathbb{F}[G]$ be the ring consisting of elements $\sum_{i} f_{i}\left[g_{i}\right]$ with multiplication law generated by $[g]\left[g^{\prime}\right]:=\left[g g^{\prime}\right]$, the so-called group ring of G over \mathbb{F}. Then we define

$$
\left(\sum_{i} f_{i}\left[g_{i}\right]\right) v:=\sum_{i} f_{i}\left(g_{i} \cdot v\right)
$$

and check axioms (i)-(iv). So a representation of G has the structure of an $\mathbb{F}[G]$-module.
(h) Given an \mathbb{F}-vector space V, an endomorphism

$$
T: V \rightarrow V
$$

is an \mathbb{F}-linear homomorphism of abelian groups; that is, we have $T(f v)=f T(v)$ and $T\left(v+v^{\prime}\right)=T(v)+T\left(v^{\prime}\right)\left(\forall f \in \mathbb{F}, v, v^{\prime} \in\right.$ $V)$. Denoting the collection of all such by $\operatorname{End}_{\mathbb{F}}(\mathbf{V})$, we consider the evaluation map

$$
\begin{aligned}
& \mathbb{F}[\lambda] \xrightarrow{\theta} \operatorname{End}_{\mathbb{F}}(V) \\
& P(\lambda) \longmapsto P(T),
\end{aligned}
$$

where λ is an indeterminate.
Now, we can add and compose endomorphisms, making End ${ }_{\mathbb{F}}(V)$ into a ring and V into an $\operatorname{End}_{\mathbb{F}}(V)$-module. It also makes θ a ring homomorphism, with image

$$
\operatorname{im}(\theta)=: \mathbb{F}[T] .
$$

By ($\mathrm{c}^{\prime \prime}$), this gives V the structure of an $\mathbb{F}[\lambda]$-module, which leads to the theory of canonical forms for T.
(i) Let F be a number field, and $\mathfrak{a} \subset F$ be a fractional ideal. Then \mathfrak{a} has the structure of \mathcal{O}_{F}-module. Indeed, F is also an \mathcal{O}_{F}-module; but it is not finitely generated as an abelian group (why?), whereas \mathfrak{a} is.

Conversely, we claim that any finitely generated abelian subgroup of F with \mathcal{O}_{F}-module structure is a fractional ideal. Let $\mathfrak{a} \leq F$ be f.g. and closed under multiplication by \mathcal{O}_{F}; then we ask: does there exist an element $f \in F$ such that $f \mathfrak{a} \subset \mathcal{O}_{F}$? If this is true, then $f \mathfrak{a}=: I$ is an ideal of \mathcal{O}_{F}, and $\mathfrak{a}=f^{-1} I$ a fractional ideal.

To see this, let $\alpha_{1}, \ldots, \alpha_{k}$ be a generating set for \mathfrak{a} (as abelian group), and write $\alpha_{i}=\frac{a_{i}}{b_{i}}, a_{i}, b_{i} \in \mathcal{O}_{F}$, using the fact that F is the fraction field of \mathcal{O}_{F}. Then $\left(\prod_{j} b_{j}\right) \alpha_{i} \in \mathcal{O}_{F}(\forall i) \Longrightarrow\left(\Pi_{j} b_{j}\right) \mathfrak{a} \subset \mathcal{O}_{F}$.

Now consider the
IV.A.3. Definition. A module M over a ring R is finitely generated (as an R-module) if there exists a finite subset $\mathcal{S} \subseteq M$ such that $M=\left\{\sum_{s \in \mathcal{S}} r_{s} s \mid r_{s} \in R\right\}$.

Since \mathcal{O}_{F} is f.g. as an abelian group, \mathfrak{a} is f.g. as an abelian group iff \mathfrak{a} is f.g. as an \mathcal{O}_{F}-module, and so we have the
IV.A.4. Proposition. The fractional ideals of F are precisely the finitely generated \mathcal{O}_{F}-submodules of F .
(I'll discuss submodules at greater length later.)
The similarities between Defn. IV.A. 1 ((iii) and (iv) in particular) and the definition of a monoid G acting on a set $X,{ }^{1}$ suggest recasting the definition of module as a homomorphism of rings - just as we can recast the monoid action as a homomorphism of monoids $G \rightarrow$ \mathfrak{T}_{χ} (where \mathfrak{T}_{χ} is the monoid of transformations). In the remainder of the section we work this out.
IV.A.5. Definition. Given an abelian group $(M,+, 0)$, the set of endomorphisms $\operatorname{End}(M)$ is the set of homomorphisms $\eta: M \rightarrow M$. (The defining properties are $\eta(x+y)=\eta(x)+\eta(y)$ and $\eta(0)=0$, consequences of which include $\eta(-x)=-\eta(x), \eta(n x)=n \eta(x)$, and the determination of η by its behavior on a generating set for M.)
IV.A.6. Proposition. $\operatorname{End}(M)$ is a ring under addition and composition of endomorphisms.

Sкетсн. I'll summarize some key points:

- $1_{\operatorname{End}(M)}=\mathrm{id}_{M}$
- $0_{\text {End }(M)}=$ zero-map (sending everything to 0)
- $\operatorname{End}(M)$ is closed under addition since

$$
\begin{aligned}
(\eta+\zeta)(x+y) & =\eta(x+y)+\zeta(x+y) \\
& =\eta(x)+\eta(y)+\zeta(x)+\zeta(y) \\
{[M \text { abelian } \Longrightarrow] } & =\eta(x)+\zeta(x)+\eta(y)+\zeta(y) \\
& =(\eta+\zeta)(x)+(\eta+\zeta)(y) .
\end{aligned}
$$

[^0]- Distributivity properties hold, e.g.

$$
\begin{aligned}
((\eta+\zeta) \rho)(x) & =(\eta+\zeta)(\rho(x))=\eta(\rho(x))+\zeta(\rho(x)) \\
& =(\eta \rho)(x)+(\zeta \rho)(x)=(\eta \rho+\zeta \rho)(x) .
\end{aligned}
$$

What is the group of units $(\operatorname{End}(M))^{*}$? These are, naturally, the invertible endomorphisms - the automorphisms Aut (M). Note that this is a subgroup of the multiplicative monoid of $\operatorname{End}(M)$ and is not usually closed under addition.
IV.A.7. ExAMPLE. (i) Let $M=(\mathbb{Z},+, 0)$. Then we have $\operatorname{End}(M)=$ $(\mathbb{Z},+, \bullet, 0,1)$. Why? M is generated by 1 , so any endomorphism is determined by where 1 is sent. Of course, $\operatorname{Aut}(M)=\{ \pm 1\} \cong \mathbb{Z}_{2}$ (as a ring).
(ii) Let $M=\left(\mathbb{Z}_{n},+, 0\right)$. Again (for the same reason) $\operatorname{End}(M)=$ $\left(\mathbb{Z}_{n},+, \bullet, 0,1\right)$, but $\operatorname{Aut}(M) \cong \mathbb{Z}_{n}^{*}$.
(iii) Let $M=\mathbb{Z}^{n}$. I claim that $\operatorname{End}(M) \cong M_{n}(\mathbb{Z})$:

Proof. Write $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ for the standard basis (column) vectors in \mathbb{Z}^{n}. We define $\phi: \operatorname{End}\left(\mathbb{Z}^{n}\right) \rightarrow M_{n}(\mathbb{Z})$ by $\phi(\mu):=\left(\mu\left(\mathbf{e}_{1}\right)|\cdots|\right.$ $\left.\mu\left(\mathbf{e}_{n}\right)\right)$, so $\phi\left(\mathrm{id}_{\mathbb{Z}^{n}}\right)=\mathbb{1}_{n}$ and $\phi(0)=\mathbf{0}_{n} ; \phi$ clearly respects " + ". As for " \bullet ": for any $\mu \in \operatorname{End}\left(\mathbb{Z}^{n}\right)$ and $v \in \mathbb{Z}^{n}$, matrix-vector multiplication yields

$$
\begin{aligned}
\phi(\mu) v=\left(\mu\left(\mathbf{e}_{1}\right)|\cdots| \mu\left(\mathbf{e}_{n}\right)\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\sum_{i=1}^{n} v_{i} \mu\left(\mathbf{e}_{i}\right) & =\mu\left(\sum_{i=1}^{n} v_{i} \mathbf{e}_{i}\right) \\
& =\mu(v)
\end{aligned}
$$

So for $\eta, \zeta \in \operatorname{End}\left(\mathbb{Z}^{n}\right)$, we have $\phi(\eta) \zeta\left(\mathbf{e}_{i}\right)=\eta \zeta\left(\mathbf{e}_{i}\right)$ hence

$$
\begin{aligned}
\phi(\eta \zeta)=\left(\eta \zeta\left(\mathbf{e}_{1}\right)|\cdots| \eta \zeta\left(\mathbf{e}_{n}\right)\right) & =\phi(\eta) \cdot\left(\zeta\left(\mathbf{e}_{1}\right)|\cdots| \zeta\left(\mathbf{e}_{n}\right)\right) \\
& =\phi(\eta) \cdot \phi(\zeta)
\end{aligned}
$$

where the dot is matrix multiplication. Injectivity and surjectivity are clear, since the $\left\{\mathbf{e}_{i}\right\}$ freely generate \mathbb{Z}^{n}.

One should compare the following to "Cayley for monoids": ${ }^{2}$
IV.A.8. THEOREM. Any ring R is isomorphic to a ring of endomorphisms of an abelian group, i.e. to a subring of $\operatorname{End}(M)$ for some abelian group M.

Proof. Let $M=(R,+, 0)$, and denote by $\ell_{r}: \underset{m \longmapsto r m}{M} \rightarrow \underset{r m}{M}$ the group homomorphism given by left-multiplication by an element $r \in R$. We obtain a homomorphism of rings by

$$
\begin{aligned}
\ell: R & \rightarrow \operatorname{End}(M) \\
r & \mapsto \ell_{r} \\
\text { (since } r s & \mapsto \ell_{r s}=\ell_{r} \ell_{s} \\
\text { and } r+s & \mapsto \ell_{r+s}=\ell_{r}+\ell_{s} \text {). }
\end{aligned}
$$

We only need to show that $\ell(R) \cong R$, i.e. that ℓ presents R as a subring of $\operatorname{End}(R)$. That is, we must check injectivity. If $\ell_{r}=0_{\operatorname{End}(M)}$, then $r m=0(\forall m \in M) \Longrightarrow r=r 1=0$, done.

If we try the same thing for right multiplication, we run into the problem

$$
\mathfrak{r}_{r s}(m)=m(r s)=(m r) s=\left(\mathfrak{r}_{r}(m)\right) s=\mathfrak{r}_{s}\left(\mathfrak{r}_{r}(m)\right)=\left(\mathfrak{r}_{s} \mathfrak{r}_{r}\right)(m)
$$

IV.A.9. Definition. The opposite ring of R is $(R,+, \bullet \circ p, 0,1)=$: R^{op}, where $r .{ }^{\mathrm{op}} s:=s r$.

So \mathfrak{r} gives a homomorphism $\mathfrak{r}: R^{\mathrm{op}} \rightarrow \operatorname{End}(M)$, where M continues to denote the abelian group $(R,+, 0)$. We can write (with [Jacobson])

$$
R_{\mathfrak{r}}:=\operatorname{im}(\mathfrak{r}) \subseteq \operatorname{End}(M), \quad R_{\ell}:=\operatorname{im}(\ell) \subseteq \operatorname{End}(M)
$$

Recalling that $C_{A}(B)$ denotes the centralizer of B in A, we have
IV.A.10. Proposition. $R_{\mathfrak{r}}=C_{\operatorname{End}(M)}\left(R_{\ell}\right)$, and $R_{\ell}=C_{\operatorname{End}(M)}\left(R_{\mathfrak{r}}\right)$.
${ }^{2}$ i.e. the statement that every monoid G is a submonoid of a monoid of transformations of a set (in particular, G itself).

PROOF. $\ell_{r} \mathfrak{r}_{s}=\mathfrak{r}_{s} \ell_{r}$ is clear, so $R_{\mathfrak{r}} \subset C_{\operatorname{End}(M)}\left(R_{\ell}\right)$ etc. Conversely, suppose $\eta \in \operatorname{End}(M)$ is such that $\eta \ell_{r}=\ell_{r} \eta$ for every $r \in R$. Then

$$
\eta(m)=\eta(m 1)=\eta\left(\ell_{m}(1)\right)=\ell_{m}(\eta(1))=m \cdot \eta(1)=\mathfrak{r}_{\eta(1)}(m)(\forall m)
$$

$\Longrightarrow \eta=\mathfrak{r}_{\eta(1)} \in R_{\mathfrak{r}}$. (Note that $\eta(1)$ need not be 1 since η is merely a homomorphism of abelian groups.)

The basis of the discussion above is viewing R as left and right R-module. If we instead let M be an arbitrary left R-module, we see that

$$
\begin{aligned}
\mathfrak{L}: R & \longrightarrow \operatorname{End}(M) \\
r & \longmapsto\{m \mapsto r m\}
\end{aligned}
$$

yields a ring homomorphism. Conversely, given a ring homomorphism

$$
\theta: R \rightarrow \operatorname{End}(M)
$$

with M an abelian group, one verifies IV.A.1(i)-(iv) as follows:

- θ lands in $\operatorname{End}(M) \Longrightarrow$ (i): $r\left(m+m^{\prime}\right)=r m+r m^{\prime}$;
- θ sends $r+s$ to $\theta(r)+\theta(s) \Longrightarrow$ (ii): $(r+s) m=r m+s m$;
- θ sends $r s$ to $\theta(r) \circ \theta(s) \Longrightarrow$ (iii): $(r s) m=r(s m)$; and
- θ sends 1_{R} to $1_{\operatorname{End}(M)} \Longrightarrow$ (iv): $1_{R} m=m$.

Similarly, if M is a right R-module, then

$$
\begin{aligned}
\mathfrak{R}: R^{\mathrm{op}} & \longrightarrow \operatorname{End}(M) \\
r & \longmapsto\{m \mapsto m r\}
\end{aligned}
$$

produces a ring homomorphism; and the converse is left to the reader. This proves the
IV.A.11. Theorem. Let R be a ring, M an abelian group. A left R-module structure on M is equivalent to a ring homomorphism $R \rightarrow$ $\operatorname{End}(M)$. A right R-module structure on M is equivalent to a ring homomorphism $R^{o p} \rightarrow \operatorname{End}(M)$.

From this point of view, the two notions are "the same" for a commutative ring R because $R=R^{\mathrm{op}}$.

For representations of G (cf. IV.A.2(g)), the homomorphism in IV.A. 11 takes the specific form of a ring homomorphism

$$
\mathbb{F}[G] \longrightarrow \operatorname{End}_{\mathbb{F}}(V)
$$

which is induced by linearizing a group homomorphism

$$
G \rightarrow \operatorname{Aut}_{\mathbb{F}}(V)
$$

The right-hand sides here denote \mathbb{F}-linear endo/auto-morphisms; this constraint on the $\mathbb{F}[G]$-module structure/ G-action comes from the assumption that $g .(f v)=f(g . v)$ in IV.A.2(g). If V is finite (say, n) dimensional, then $\operatorname{Aut}_{\mathbb{F}}(V) \cong \mathrm{GL}(n, \mathbb{F})$.

[^0]: ${ }^{1}$ Same as Defn. II.F.1, with G only taken to be a monoid.

