
IV.C. MODULES OVER A PID 211

IV.C. Modules over a PID

Let R be a principal ideal domain, and M an R-module. (Since R
is commutative, left vs. right is immaterial.) We begin with a simple
statement about generators and relations (which indeed has nothing
to do with R being a PID).

IV.C.1. PROPOSITION. M is finitely generated ⇐⇒ M ∼= Rn/K
(with K an R-submodule of Rn).

PROOF. (⇐= ): M = R〈ē1, . . . , ēn〉.
( =⇒ ): If M = R〈x1, . . . , xn〉 (i.e. M is f.g.), then define η : Rn � M
by ∑i riei 7→ ∑i rixi; by the Fundamental Thm., M ∼= Rn/ ker(η). �

The following generalizes II.K.4 (Z-module case) and a standard
linear algebra result (F-module case).

IV.C.2. THEOREM. Any submodule K of Rn is isomorphic to Rn0 , for
some n0 ≤ n.

PROOF. The result holds trivially for n = 0.
Assume it “for n − 1” and consider the projection π : Rn � R

sending ∑i riei 7→ r1, with ker(π) ∼= Rn−1.
If π(K) = {0} then we’re done by induction. (Why?)
Otherwise, as an R-submodule of R, π(K) is an ideal — in a PID.

So we have π(K) = (r) for some r ∈ R\{0}, and moreover this
r = π(κ) for some κ ∈ K. Observe that ann(κ) = {0} since κ ∈ Rn

and R is a domain.
Now any k ∈ K can be written in the form

k = (k− π(k)
r κ) + π(k)

r κ ∈ (ker(π) ∩ K) + Rκ,

since π(k − π(k)
r κ) = π(k) − π(k)

r r = 0. Moreover, we have that
(ker(π)∩ K)∩ Rκ = {0}, as rκ ∈ ker(π) =⇒ 0 = π(rκ) = rπ(κ) =

rr =⇒ r = 0 =⇒ rκ = 0. By the direct-sum theorem IV.B.25, it
now follows that

K = (ker(π) ∩ K)⊕ Rκ.
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Applying the inductive assumption to the submodule (ker(π)∩K) ⊂
Rn−1, it takes the form Rm0 for some m0 ≤ n − 1. Finally, since
ann(κ) = {0}, Rκ ∼= R; and K ∼= Rm0+1. �

We want to get from “ugly” presentations M ∼= Rn/K to “nice”
ones like Rx1 ⊕ · · · ⊕ Rxk ⊕ Rr. The starting point is to write K with
respect to a base. More precisely, given a submodule K ⊂ Rn, we

may compose the isomorphism Rn0
∼=→ K guaranteed by IV.C.2 —

or, more generally, any surjective homomorphism Rm � K — with the
inclusion K ↪→ Rn to get an R-module homomorphism

Rm θ→ Rn

e′j 7→ θ(e′j) =: aj (j = 1, . . . , m)
(IV.C.3)

whose image is K.

IV.C.4. DEFINITION. The n × m matrix of θ with respect to the
standard bases ({e′j} of Rm, {ei} of Rn) is

e[θ]e′ := A :=
( ↑ ↑

a1 ··· am

↓ ↓

)
.

A is called a relations matrix for M := Rn/K, and we can write11

M ∼= Rn/θ(Rm)
in
=

bases
Rn/A · Rm =

R〈e1, . . . , en〉
R〈∑i a1

i ei, . . . , ∑i am
i ei〉

.

Our hopes are pinned on transforming A into something nice, for
which we have to revisit the elementary matrices from §III.C. Recall
that

GLn(R) := invertible n× n matrices with entries in R

= n× n matrices with entries in R and det ∈ R∗,

e.g. for R = Z we need det = ±1.

IV.C.5. EXAMPLE. The elementary matrices of (III.C.4) belong to
GLn(R). We will need some notation for these:

11The notation R〈· · ·〉 simply means all R-linear combinations of the elements in-
side the angle brackets; aj

i means the ith entry of aj.
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• T(n)
ij (a) := 1n + aeij, where a ∈ R, has inverse Tij(−a):

• P(n)
ij := 1n + eij + eji − eii − ejj = P(n)

ji is its own inverse.

• D(n)
i (u) := 1n + (u− 1)eii, where u ∈ R∗, has inverse D(n)

i (u−1).

IV.C.6. PROPOSITION. Let A be an n×m relations matrix for (a f.g.
R-module) M. Let P ∈ GLn(R), Q ∈ GLm(R). Then PAQ is a relations
matrix for M.

PROOF. P corresponds to a change of basis {ei} 7→ {ẽi} for Rn,
and Q to a change of basis {e′j} 7→ {ẽ′j} for Rm: that is, P = ẽ[idRn ]e
(i.e. ek = ∑i pikẽi), while Q = e′ [idRm ]ẽ′ (i.e. ẽ′` = ∑j qj`e′j). So

PAQ = ẽ[idRn ]e · e[θ]e′ · e′ [idRm ]ẽ′ = ẽ[θ]ẽ′

is just a matrix of θ with respect to different bases of Rm and Rn. �

In practice, you may not need to keep track of how the bases
change, but just to find some PAQ which is in a nice form (the nor-
mal form below). At the risk of beating elementary matrices into the
ground:

IV.C.7. EXAMPLE. Let’s see how to compute various “PAQ’s”.
Here A is any n× n matrix over R.

To get this matrix from A do the following (to A)

T(n)
ij (a) · A add a×(row j) to (row i)

A · T(m)
ij (a) add a×(column i) to (column j)

P(n)
ij · A swap rows i and j

A · P(m)
ij swap columns i and j

D(n)
i (u) · A multiply row i by u

A · D(m)
i (u) multiply column i by u

The operations on the RHS of the table will be called elementary
operations (EOs).
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The structure theorem for Z-modules. We are now going to state
and prove the main results for abelian groups (R = Z). Later we will
generalize the proof, first to the case where R a Euclidean domain,
and then to the general PID case.

IV.C.8. LEMMA-DEFINITION. Every A ∈ Mn×m(Z) can be trans-
formed by EOs into a matrix in normal form:(

D 0
0 0

)
, (D | 0) ,

(
D
0

)
, D, or 0

}
henceforth summarized

by “

(
D 0

0 0

)
”,

with D = diag(d1, d2, . . . , dk) a diagonal matrix and d1 | d2 | · · · | dk.

IV.C.9. THE FUNDAMENTAL THEOREM OF FINITELY GENERATED

ABELIAN GROUPS/Z-MODULES (FTFGAG). Any finitely generated
abelian group G may be expressed uniquely in the form

(IV.C.10) Zd1 × · · · ×Zdk︸ ︷︷ ︸
Gtor

× Zr︸︷︷︸
G/Gtor

where di ≥ 2 and d1 | d2 | · · · | dk.

EASY PART OF PROOF (ASSUMING LEMMA IV.C.8). Putting every-
thing together:

• G finitely generated =⇒ G ∼= Zn/K with relations matrix A.
• Lemma IV.C.8 =⇒ EOs convert A to normal form.
• Example IV.C.7 =⇒ the resulting matrix is of the form PAQ with

P ∈ GLn(Z) and Q ∈ GLm(Z).
• Prop. IV.C.6 =⇒ PAQ is a relations matrix for G.

Conclude that

G ∼= Zn/(PAQ)(Zm) = Zn/
(

D 0

0 0

)
Zm

=
Z〈X1, . . . , Xn〉
〈d1X1, . . . , dkXk〉

= Zd1 × · · · ×Zdk
×Zn−k ,
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where r = n − k is the number of complete rows of zeroes in the
normal form.12 �

IV.C.11. DEFINITION. In IV.C.9, r is the rank (of the free part) of
G, and d1, . . . , dk the torsion exponents (or invariant factors) of G.
(G is finite ⇐⇒ r = 0.)

IV.C.12. EXAMPLE. Consider

G :=
Z〈X, Y, Z〉

〈11X− 21Y− 10Z, X− 6Y− 5Z〉 =
Z3

K
.

Clearly K ∼= Z2, and in the “standard” bases (cf. IV.C.4) we have

A =

 11 1
−21 −6
−10 −5

 .

Applying EOs, we reduce to normal form:

add (−11)×(col. 2)

to (col. 1)
//
( 0 1

45 −6
45 −5

) subtract (row 2)

from (row 3)
//
( 0 1

45 −6
0 1

) subtract (row 1)

from (row 3)
//
( 0 1

45 −6
0 0

)

add 6×(row 1)

to (row 2)
//
( 0 1

45 0
0 0

) swap

cols. 1 and 2
//

1 0
0 45
0 0

,

concluding that d1 = 1, d2 = 45, r = 1, and

G ∼=
Z〈X̃, Ỹ, Z̃〉
〈X̃, 45Ỹ〉

= Z45 ×Z.

We now return to the proofs.

12Here I am writing {Xi} for the base of Zn corresponding to the {ei} in the first
line.
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PROOF OF IV.C.8. Let A ∈ Mn×m(Z), and write

aij := (i, j)th entry of A, Rs := sth row of A,

and Ct := tth column of A.

A row or column will be said to be cleared if it has only one nonzero
entry. As we change A by EOs, it will (at intermediate steps) have
the form 

d1 0
. . .

0 dk

0

0 A′

 ,

with d1 | d2 | · · · | dk, and A′ not of the form
d ← 0→
↑
0
↓
∗

 .

We will write ast | A′ if ast divides all entries of A′. Recall that for
q ∈ Q, the floor function bqc is defined to be the greatest integer less
than or equal to q.

On the next page, we present an algorithm for reducing A to nor-
mal form. The goal is to reach (4) and reduce the size of A′ (i.e.
increase k by 1). Since one either progresses all the way around the
outer semicircle ((1) → (2) → (4)) or reduces |ast| upon return-
ing to (0) (which cannot reduce indefinitely!), the algorithm termi-
nates. �
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EO Normalization Algorithm (R = Z):

(1)

(0)

(4)
(2)

(3)

Take ast :=

nonzero entry of A′

with smallest absolute

value. Multiply Rs by

sign of ast (to make

it positive).

“Reduce Ct mod ast”:

replace each Ri by

Ri − b ait
ast
cRs.

Input A

(n×m integer
matrix)

Move ast to

upper left of A′: swap

Rs with 1st row of A′,

then swap Ct with 1st

column of A′.

Output(
D 0
0 0

)

C
t cleared

Rs cleared, ast | A′

R s
cle

ar
ed

,

a st
- A
′

A ′
= 0

C t
not cle

ared

C
t cleared,

R
s not clearedC

t ,R
s

cleared,ast -
A
′

C t, R
s
cle

ared
,

a st
| A
′

(re
place

A
′ )

“Reduce Rs mod ast”:

replace each Cj by

Cj − b
asj
ast
cCt.

ast - some aij,

so reduce aij mod ast:

add Rs to Ri , and then

subtract b aij
ast
cCt

from Cj
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PROOF OF UNIQUENESS IN IV.C.9. Suppose that

G ∼= Zd1 × · · · ×Zdk
×Zr

(†)∼= Ze1 × · · · ×Ze` ×Zs,

where d1 | · · · | dk and e1 | · · · | e` (with di, ej ≥ 2). We must show
that r = s, k = `, and dj = ej (∀j = 1, . . . k).

First, because the LHS and RHS of (†) are isomorphic groups.
they have isomorphic torsion and free parts:

(a) Zd1 × · · · ×Zdk
∼= Ze1 × · · · ×Ze` , (b) Zr ∼= Zs.

Now (b) =⇒ the “cokernels” of multiplication by 2 are the same:

Zr

2 ·Zr
∼=

Zs

2 ·Zs =⇒ (Z/2Z)r ∼= (Z/2Z)s =⇒ 2r = 2s

whence r = s.13

Next, letAm(G) denote the number of elements of order dividing
m; then (a) =⇒ Ae1(Ze1 × · · · ×Ze`) = Ae1(Zd1 × · · · ×Zdk

). By
an easy calculation, this yields

gcd(e1, e1) · gcd(e1, e2) · · · gcd(e1, e`) = gcd(e1, d1) · · · gcd(e1, dk)

hence

e`1 =
k

∏
j=1

gcd(e1, dj) ≤ ek
1,

from which we conclude that ` ≤ k. A symmetric argument shows
` ≥ k, so ` = k; in particular, the above inequality is an equality
so that gcd(e1, dj) = e1 (∀j) =⇒ e1 | dj (∀j). Again, a symmetric
argument (taking Ad1 on both sides of (a)) shows d1 | ej (∀j). But
then d1 | e1 and e1 | d1 =⇒ e1 = d1.

Repeating the argument starting with

Ae2(Ze1 × · · · ×Zek) = Ae2(Zd1 × · · · ×Zdk
)

gives

gcd(e2, e1) ·
k

∏
j=2

gcd(e2, ej) = gcd(e2 , d1)
(=e1)

·
k

∏
j=2

gcd(e2, dj)

13If you prefer, you can argue using II.K.4 that r ≤ s and s ≤ r.
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=⇒ ek−1
2 =

k

∏
j=2

gcd(e2, ej) =
k

∏
j=2

gcd(e2, dj) ≤ ek−1
2 .

Clearly the inequality is an equality, and so gcd(e2, dj) = e2 hence
e2 | dj for each j. On the other hand, taking Ad2 of both sides gives
d2 | ej. So d2 | e2 and e2 | d2 =⇒ d2 = e2.

Continue in this manner until you get all dj = ej. �

Using the Chinese Remainder Theorem to decompose the Zdj

factors in (IV.C.10) yields the

IV.C.13. COROLLARY (p-primary version of FTFGAG). Any finitely
generated abelian group G may be expressed (uniquely up to rearrangement
of factors) in the form

Zp
r1
1
× · · · ×Zp

rk
k
×Zr,

where the {pi} are not-necessarily-distinct primes.

IV.C.14. REMARK. The abelian groups of order pn (p prime) are
in 1-to-1 correspondence with the partitions of n:

n = n1 + · · ·+ nk (n1 ≤ · · · ≤ nk) ←→ Zpn1 × · · · ×Zpnk .

Together with IV.C.13, this allows you to find all abelian groups of a
given order: e.g., for order 360 = 23325, we have

G ∼= {Z23 or (Z21 ×Z22) or (Z21 ×Z21 ×Z21)}

× {Z32 or (Z31 ×Z31)} ×Z5.

IV.C.15. EXAMPLE. Let’s see how to transform a more compli-
cated matrix than the one in IV.C.12 into normal form, by applying
the EO Normalization Algorithm. (You won’t need to follow the
algorithm this precisely in working problems. The point of going
through this example is to know what to do if you get stuck!)

A =


4 −10 −2 20 30
0 28 −2 −60 90
3 −3 −2 6 −9
7 −7 −4 14 −21

 .
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(0) A′ = A, ast = a33 = −2. Changing the sign of R3 yields(
4 −10 −2 20 30
0 28 −2 −60 90
−3 3 2 −6 9
7 −7 −4 14 −21

)
.

(1) Reduce C3 mod 2 (replace R1, R2, R4 by R1 + R3, R2 + R3, R4 + 2R3):(
1 −7 0 14 39
−3 31 0 −66 99
−3 3 2 −6 9
1 −1 0 2 3

)
.

(2) Reduce R3 mod 2: (
1 −7 0 14 39
−3 31 0 −66 99
1 1 2 0 1
1 −1 0 2 −3

)
.

Since R3 is not cleared, we must return to (0):
(0) ast = a11 = 1.
(1) Reduce C1 mod 1: (

1 −7 0 14 39
0 10 0 −24 216
0 8 2 −14 −38
0 6 0 −12 −42

)
.

(2) Reduce R1 mod 1: 
1 0 0 0 0

0 10 0 −24 216

0 8 2 −14 −38

0 6 0 −12 −42

.

which displays our new 3× 4 A′. Step (4) does nothing.
(0) ast = a33 = 2.
(1) done.
(2) Reduce R3 mod 2: 

1 0 0 0 0

0 10 0 −24 216

0 0 2 0 0

0 6 0 −12 −42

.

(4) Swap m33 to top left position in A′:
1 0 0 0 0

0 2 0 0 0

0 0 10 −24 216

0 0 6 −12 −42
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and reset A′ to be the smaller 2× 3 matrix.
(0) ast = a43 = 6.
(1) Reduce C3 mod 6 (subtract R4 from R3):

1 0 0 0 0

0 2 0 0 0

0 0 4 −12 258

0 0 6 −12 −42

.

Since C3 is not cleared, we return to
(0) ast = a33 = 4.
(1) Reduce C3 mod 4 (subtract R3 from R4):

1 0 0 0 0

0 2 0 0 0

0 0 4 −12 258

0 0 2 0 −300

.

Good grief! C3 is still not cleared!
(0) ast = a43 = 2.
(1) Reduce C3 mod 2: 

1 0 0 0 0

0 2 0 0 0

0 0 0 −12 858

0 0 2 0 −300

.

(2) Reduce R4 mod 2: 
1 0 0 0 0

0 2 0 0 0

0 0 0 −12 858

0 0 2 0 0

.

(4) Swap a43 to the top left position in A′:
1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 −12 858


and reset A′ to be the smaller 1× 2 matrix.

(0) ast = a44 = −12. Change the sign, bypass (1), and
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(2) Reduce R4 mod 12: 
1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 12 6

.

Since R4 is not cleared, we return to
(0) ast = a45 = 6.
(2) Reduce R4 mod 6: 

1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 0 6

.

(4) Swap the last two columns and replace A′:
1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 6 0

 = (D | 0).

At last, we arrive at the normal form!
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The structure theorem in the general case. Again let R be a PID.

IV.C.16. LEMMA-DEFINITION. Every A ∈ Mn×m(R) can be trans-
formed by invertible row and column operations14 into a matrix in normal
form 

d1
. . .

dk

0

0 0

 =: nf(A)

where the invariant factors d1 | · · · | dk are unique up to units. (The
matrix nf(A) itself is thus well-defined up to units.)

PROOF. We break this into two parts: existence and uniqueness.

Step 1A : Reduction to normal form for R a Euclidean domain.

Let δ : R\{0} → Z>0 be a Euclidean function. We describe how
to modify the EO Normalization Algorithm above:

(0’) Take ast to the nonzero entry of A′ with smallest δ.

Ct Cj


· · · · ·

Ri · ait · aij ·
· · · · ·

Rs · ast · asj ·
· · · · ·

(1’) Subtract (for each i) qRs from Ri, where ait = qast + r (replaces
ait by r, with δ(r) < δ(ast)).

(2’) Subtract (for each j) q̃Ct from Cj, where asj = q̃ast + r̃ (replaces
asj by r̃, with δ(r̃) < δ(ast)).

(3’) (a) Add Rs (cleared) to Ri; then (b) subtract q′Ct from Cj where
aij = q′ast + r′ (replaces aij by r′, with δ(r′) < δ(ast)).

(4’) Swap ast to the upper left of A′.

14i.e. A 7→ PAQ, P and Q invertible over R. EOs will not in general be enough,
but suffice for Euclidean domains.
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Again one either proceeds all the way around the outer semicircle
((1′) → (2′) → (4′)), or reduces δ(ast), so the process must termi-
nate.

Step 1B : Reduction to normal form in general.

Let ` : R\{0} → N be the length function. (Since R is a PID,
R is a UFD, and this is well-defined.) For (0”), we take ast to be the
nonzero entry of A′ with smallest ` (e.g. a unit, if there is one). (4”) is
the same as (4’). We need replacements for (1’), (2’), and (3’)(b) when
ast - ait (resp. asj, aij), since the Euclidean algorithm isn’t available.

In fact, EOs won’t suffice. Though (1”) [resp. (2”) and (3”)(b)]
will still be given by row [resp. column] operations, or (equiva-
lently) left- [resp. right-]multiplication by invertible matrices, the
operations/matrices involved are of a slightly more general nature.

For (2”), here is what we can do.15 Set a := ast, b := asj, and let
x, y ∈ R be such that

xa + yb = d := gcd(a, b),

z := b
d , w := − a

d . Right-multiplication by

Ct Cj



1
. . .

1
Rt x z

1
. . .

1
Rj y w

1
. . .

1

replaces . . . Ct Cj ast asj

by . . . xCt + yCj zCt + wCj xast + yasj = d zast + wasj = 0

15The analogues for (1”) and (3”)(b) are essentially the same and left to you.



IV.C. MODULES OVER A PID 225

which may “undo” our clearing of Cj.16 But this is not a problem,
as it creates a new entry (“d” in the (s, t) place) with length `(d) <

`(ast) (where `(ast) was the previous shortest length). So as before,
the minimal length is reduced each time we return to (0”) without
passing through (4”) and reducing the size of A′.

Step 2 : Uniqueness of the invariant factors.

Define ∆i(A) := gcd{i× i minors of A} and

r(A) := max{i | ∆i(A) 6= 0} (“determinantal rank”).

By multilinearity of determinants, any i × i minor of PAQ (where
P ∈ Mn×n(R), Q ∈ Mm×m(R)) is an R-linear combination of i × i
minors of A. Hence ∆i(A) | ∆i(PAQ) in R. But if P, Q are invertible,
this applies in reverse and

∆i(A) ∼ ∆i(PAQ).

Now suppose

PAQ =


d1

. . .
dk

0

0 0

 , P′AQ′ =


d′1

. . .
d′k

0

0 0

 .

On the one hand, direct computation implies{
∆i(PAQ) = d1 · · · di

∆i(P′AQ′) = d′1 · · · d′i
(∀i).

On the other, ∆i(PAQ) ∼ ∆i(A) ∼ ∆i(P′AQ′) (∀i). We conclude that
di ∼ d′i (∀i) and k = r(A) = `. �

IV.C.17. EXAMPLE. For an n × n matrix A over F[λ] (F a field),
we can take

∆n−1(A) = monic gcd of entries of adj(A)

16This was already a feature of the original Step (3), though not of Step (2).
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and

∆n(A) = det(A)/(coefficient of highest power of λ)

since we are free to multiply the ∆i by units.
Suppose B is an n × n matrix over F, and A = λ1n − B. The

characteristic polynomial of B is

pB(λ) = ∆n(A) =
n

∏
i=1

di(A).

We will show (later) that

dn(A) =
∆n(A)

∆n−1(A)

is the minimal polynomial mB(λ) of B. For instance, consider

B =

1 1 1
1 1 1
1 1 1

 .

We reduce A to normal form with row and column operations:

A = λ13 − B =

λ− 1 −1 −1
−1 λ− 1 −1
−1 −1 λ− 1

 7→
 −1 λ− 1 −1

λ− 1 −1 −1
−1 −1 λ− 1



7→

1 0 0
0 λ2 − 2λ −λ

0 −λ λ

 7→
1

−λ λ2 − 2λ

0 λ2 − 3λ

 7→
1

λ

λ2 − 3λ


︸ ︷︷ ︸

=nf(A)

.

Conclude that the invariant factors of A are d1(A) = 1, d2(A) = λ,
and d3(A) = λ2− 3λ; the last of these is indeed the minimal polyno-
mial of B:

B2 − 3B =

3 3 3
3 3 3
3 3 3

− 3

1 1 1
1 1 1
1 1 1

 = 0.

We are finally ready to state and prove our main result:
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IV.C.18. THE STRUCTURE THEOREM FOR FINITELY GENERATED

MODULES OVER A PID. Any f.g. module M over R may be expressed
(up to isomorphism) uniquely in the form

(IV.C.19) R/(δ1)⊕ · · · ⊕ R/(δ`) ⊕ Rt ,

where the δi /∈ R∗ and δ1| · · · |δ`.
More precisely, M is an internal direct sum of cyclic modules:

(IV.C.20)

{
M = Rz1 ⊕ · · · ⊕ Rzs (zi ∈ M)

where ann(z1) ⊃ · · · ⊃ ann(zs) ;

and the annihlator ideals (hence also the number s) are uniquely deter-
mined.

As we saw in the Z-module case, the uniqueness part does not
follow from the uniqueness of the di in the normal form for A. (There
are obviously many presentations Rn/K of M, with different n.) What
we can do immediately is the existence part:

PROOF OF (IV.C.19)-(IV.C.20) (EXISTENCE OF DECOMPOSITION).
We have

M ∼= Rn/K ∼= Rn/θ(Rm) ∼= Rn/A·Rm ∼= Rn/PAQ·Rm,

with the last step given by change of bases for Rn, Rm. By IV.C.16

we may arrange to have PAQ = nf(A) =

(
D 0

0 0

)
(with D =

diag(d1, . . . , dk)) hence

M ∼= Rn/
(

D 0

0 0

)
·Rm.

That is, there is an R-module homomorphism

ρ : Rn � M

ei 7→ ρ(ei) =: xi

with kernel K = R〈d1e1, . . . , dkek〉 ⊆ Rn, where d1| · · · |dk ( =⇒
(d1) ⊃ · · · ⊃ (dk)).
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Since ρ is surjective, M = ∑n
i=1 Rxi. We describe these sum-

mands: for any i, we have 0 = rxi (= rρ(ei) = ρ(rei)) ⇐⇒ rei ∈ K.

• If i > k, rei ∈ K ⇐⇒ r = 0 hence ann(xi) = {0} and Rxi
∼= R.

• If i < k, rei ∈ K ⇐⇒ di|r. So ann(xi) = (di) and Rxi
∼= R/(di).

Finally, 0 = ∑i rixi = ρ(∑i riei) =⇒ ∑i riei ∈ K (∀i) =⇒ di|ri (∀i)
=⇒ each rixi = 0. So the homomorphism ⊕iRxi � M is injective,
and M = ⊕n

i=1Rxi
∼= R/(d1)⊕ · · · ⊕ R/(dk)⊕ Rn−k.

Now it may be that none, some, or all of the {di} are units; as-
sume that the units are d1, . . . , dk0 (here 0 ≤ k0 ≤ k). Then Rxi = {0}
for i = 1, . . . , k0. Writing ` := k − k0, δi := dk0+i, t := n − k,
s := n− k0, and zi := xk0+i yields the specific forms of the decom-
positon shown in IV.C.19 and (IV.C.20). �

Uniqueness considerations. Finishing the proof of the structure
theorem requires some preliminary results about decomposing tor-
sion modules.

IV.C.21. DEFINITION. The torsion submodule of an R-module M
is

tor(M) := {x ∈ M | rx = 0 for some r ∈ R\{0}}.
M is a torsion module if M = tor(M).

IV.C.22. PROPOSITION. A f.g. module M over a PID R is an internal
direct sum of the form tor(M)⊕ Rt.

PROOF. By the existence part of the structure theorem (that we
have now proved),

M = Rz1 ⊕ · · · ⊕ Rzs ∼= R/(d1)⊕ · · · ⊕ R/(d`)⊕ R⊕ · · · ⊕ R.︸ ︷︷ ︸
t copies

Given m = ∑`
i=1 rizi + ∑s

i=`+1 rizi ∈ tor(M), there exists r ∈ R\{0}
such that 0 = rm = ∑`

i=1 rrizi + ∑s
i=`+1 rrizi. Since M is a direct sum,

0 = (rri)zi for i = 1, . . . , s. But for i > `, ann(zi) = {0} =⇒ rri = 0
=⇒ ri = 0 (as R is a domain). So tor(M) ⊂ R/(d1)⊕ · · · ⊕ R/(d`).
The reverse inclusion is clear. �
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IV.C.23. DEFINITION. Let p ∈ R be a prime. The p-primary com-
ponent of M is

Ap(M) := {x ∈ M | pkx = 0 for some k ∈N}.

IV.C.24. LEMMA. Let p1, . . . , p` be a list of distinct17 primes in R.
Then ∑`

i=1Api(M) = ⊕`
i=1Api(M) (⊂ tor(M)).

PROOF. By induction, it suffices to show that

Ap1 ∩∑`
i=2Api(M) = {0}.

Given x in the LHS, we have pk1
1 x = 0 = pk2

2 · · · p
k`
` x for some ki ∈N.

But as the primes are distinct, gcd(pk1
1 , pk2

2 · · · p
k`
` ) = 1. So there exist

m, n ∈ R such that x = 1x = (mpk1
1 + npk2

2 · · · p
k`
` )x = 0. �

IV.C.25. THEOREM. Assume M is a f.g. torsion module over a PID R.
Then M = ⊕p∈R primeAp(M) ∼= ⊕iR/(pei

i ), where pi are not necessar-
ily distinct primes in R and ei ∈ Z>0. Both direct sums are finite, which
is to say that Ap(M) is nonzero for only finitely many18 primes.

PROOF. We know M = ⊕k
j=1R/(dj), dj ∈ R\{0} and d1| · · · |dk.

Moreover, dj = ∏m
`=1 p

ej`
` (∀j) for some list of distinct primes {p`}

(and {ej` ∈N}). So we will almost be through if we can check that

R/(dj) = ⊕m
`=1R/(p

ej`
` ).

(Note that d1| · · · |dk =⇒ e1` ≤ e2` ≤ · · · ≤ ek` for each `.) By
induction, this reduces to the following module-theoretic version of
the Chinese Remainder Theorem:

(IV.C.26) R/( f g) ∼= R/( f )⊕ R/(g) if ( f , g) = R.

To see this, let x be a generator of the LHS and rx an arbitrary el-
ement. Then ( f , g) = R =⇒ ∃ ri ∈ R with r1 f + r2g = r =⇒
rx = r1 f x + r2gx =⇒

R/( f g) = Rx = R f x + Rgx.

17This means non-associate: they don’t generate the same ideal.
18Again, we are thinking of primes “up to units”; or equivalently, in terms of the
corresponding prime ideals.
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Next, g( f x) = ( f g)x = 0 =⇒ (g) ⊂ ann( f x); while 0 = r( f x)
=⇒ r f ∈ ( f g) =⇒ r f = r′ f g =⇒ r = r′g =⇒ r ∈ (g). So
R f x ∼= R/(g), and similarly Rgx ∼= R/( f ). Finally, y ∈ R f x ∩ Rgx
=⇒ gy = 0 = f y =⇒ y = 1y = (r′1 f + r′2g)y = 0, finishing off
(IV.C.26).

So we have proved

M ∼=
finite⊕

i

R/(pei
i ),

and moreover the proofs of (IV.C.26) and (IV.C.19) show that the di-
rect sum is internal. Therefore, we are reduced to
(IV.C.27)

If M = ⊕j,`Rxj` = ⊕j,`R/(p
ej`
` ), then Ap`(M) = ⊕jR/(p

ej`
` ) (∀`).

Clearly one has “⊇” on the right. To see the reverse inclusion “⊆”,
we need Ap`0

(M) ∩ ⊕j,` 6=`0 R/(p
ej`
` ) = {0}. But the “⊕j,` 6=`0” here

belongs to ∑` 6=`0
Ap`(M), so we are done by the proof of Lemma

IV.C.24. �

IV.C.28. REMARK. We can view the isomorphism in the last the-
orem as an internal direct sum. The summands R/(pei

i ) are called
primary cyclic submodules of M, and the pei

i are the elementary di-
visors of M.

We are at last ready for the

PROOF OF UNIQUENESS IN IV.C.18. Assume

M = Rz1 ⊕ · · · ⊕ Rzs = Rw1 ⊕ · · · ⊕ Rwr,

with annihilators (invariant factors) d1| · · · |ds resp. d′1| · · · |d′r. The
last few annihilators in each list may be zero. The number of these
trivial annihilators is the same on each side, as M/tor(M) has well-
defined rank (R is commutative). So we may assume that M = tor(M)

and all the di, d′j are nonzero.
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Next, decompose all the Rzi resp. Rwj into sums of primary cyclic
submodules, viz.

M = ⊕` ⊕s
j=1 R/(p

ej`
` ) = ⊕` ⊕r

k=1 R/(pe′k`
` ).

If these factors are the same, there is only one way to put them back
together to get d1| · · · |ds and d′1| · · · |d′r, and this will prove they are
the same set of divisors. Since

Ap`(M) = ⊕s
j=1R/(p

ej`
` ) = ⊕r

k=1R/(pe′k`
` ),

we may assume that M = Ap(M) for a single prime p ∈ R.
Considering the filtration19 by R-submodules

M ⊃ pM ⊃ p2M ⊃ · · · ,

each pn M
pn+1 M =: M(n) is an R/(p)-module (since pM(n) = 0). Since

(p) is prime and R is a PID, (p) is in fact maximal, and R/(p) a field,
making M(n) a vector space. Writing

M = Ap(M) = ⊕s
j=1R/(pej) = ⊕r

k=1R/(pe′k) ,

we have

M(n) =
s⊕

j=1

(pn)/(pej)

(pn+1)/(pej)
=

s⊕
j=1

{
0, if ej ≤ n

(pn)
(pn+1)

, otherwise

(and also the same with s resp. ej replaced by r resp. e′k).
Let Dn resp. D′n be the number of ej resp. e′k greater than n. Since

R/(p)→ (pn)/(pn+1)

r̄ 7−→ r̄pn

is an isomorphism of R/(p)-modules, we find that

M(n) ∼= (R/(p))Dn ∼= (R/(p))D′n

as a vector space over the field R/(p). Hence Dn = D′n. Since n was
arbitrary, we conclude that (up to reordering) the ej and e′k are the
same. �

19a nested sequence of submodules, usually indexed by a set of integers.


