IV.D. Applications to linear algebra

Let $T \in \operatorname{End}_{\mathbb{F}}(V) \backslash\{0\}$ be a nontrivial linear transformation of a finite-dimensional vector space V over a field \mathbb{F}. Take $\left\{x_{i}\right\}_{i=1}^{n} \subset V$ to be a basis and $B:={ }_{\underline{x}}[T]$ to be the corresponding matrix, with entries $b_{i j} \in \mathbb{F}$. We have that $V=\oplus_{i=1}^{n} \mathbb{F} x_{i}=\sum_{i=1}^{n} \mathbb{F}[\lambda] x_{i}$, where V has the structure of an $\mathbb{F}[\lambda]$-module by $P(\lambda) v:=P(T) v$ (for any polynomial $P(\lambda) \in \mathbb{F}[\lambda]$). Since $\mathbb{F}[\lambda]$ is not f.g. as an \mathbb{F}-module, V must be a (f.g.) torsion $\mathbb{F}[\lambda]$-module.

We have a short-exact sequence

$$
\begin{aligned}
& K:=\operatorname{ker}(\eta) \hookrightarrow \mathbb{F}[\lambda]^{n} \xrightarrow{\eta} V \\
& \mathbf{e}_{i} \mapsto x_{i}
\end{aligned}
$$

of $\mathbb{F}[\lambda]$-modules, in which K must be free with generators $\left\{f_{i}\right\}_{i=1}^{n}$. To obtain the $\left(d_{j}\right)$ which will be annihilators of the $\mathbb{F}[\lambda] z_{j}$ in the structure theorem decomposition, we must find (then put in normal form) a matrix whose columns express the $\left\{f_{j}\right\}$ in terms of the $\left\{\mathbf{e}_{i}\right\}$. To wit:
IV.D.1. Lemma. $A:=\lambda \mathbb{1}_{n}-B$ is a relations matrix for V.

Proof. We need to specify the $\left\{f_{j}\right\}$. Put

$$
f_{j}:=\lambda \mathbf{e}_{j}-\sum_{i=1}^{n} b_{i j} \mathbf{e}_{i} .
$$

Clearly $\eta\left(f_{j}\right)=\lambda \eta\left(\mathbf{e}_{j}\right)-\sum_{i} b_{i j} \eta\left(\mathbf{e}_{i}\right)=T\left(x_{j}\right)-\sum_{i} b_{i j} x_{i}=0$, by definition of B. So $f_{j} \in K(\forall j)$.

To see that they generate K, suppose $0=\eta\left(\sum_{j} P_{j}(\lambda) \mathbf{e}_{j}\right)$ for some polynomials P_{j}. By repeatedly applying $\lambda^{k} \mathbf{e}_{j}=\lambda^{k-1} \lambda \mathbf{e}_{j}=\lambda^{k-1} f_{j}+$ $\sum_{i} b_{i j} \lambda^{k-1} \mathbf{e}_{j}$, we may rewrite this as $0=\eta\left(\sum_{j} Q_{j}(\lambda) f_{j}+\sum_{i} \beta_{i} \mathbf{e}_{i}\right)$ with $\beta_{i} \in \mathbb{F}$. That is, $0=\sum_{j} Q_{j}(T) \eta\left(f_{j}\right)^{00}+\sum_{i} \beta_{i} x_{i} \Longrightarrow \beta_{i}=0(\forall i)$. Hence $\sum_{j} P_{j}(\lambda) \mathbf{e}_{j}=\sum_{j} Q_{j}(\lambda) f_{j} \in \mathbb{F}[\lambda]\left\langle f_{1}, \ldots, f_{n}\right\rangle$.
IV.D.2. REMARK. In fact, we can prove that $\left\{f_{j}\right\}$ is a base for K over $\mathbb{F}[\lambda]$: given $\sum_{j} h_{j}(\lambda) f_{j}=0$, we have

$$
\left(\sum_{i} h_{i}(\lambda) \lambda \mathbf{e}_{i}=\right) \sum_{j} h_{j}(\lambda) \lambda \mathbf{e}_{j}=\sum_{i, j} h_{j}(\lambda) b_{i j} \mathbf{e}_{i} \quad\left(\text { in } \mathbb{F}[\lambda]^{n}\right)
$$

$\Longrightarrow h_{i}(\lambda) \lambda=\sum_{j} h_{j}(\lambda) b_{i j}$ (in $\mathbb{F}[\lambda]$) for each i. But this is impossible: consider i such that h_{i} is of maximal degree: then $\operatorname{deg}($ LHS $)>$ deg (RHS).

Apply the normal form algorithm to obtain bases $\left\{e_{i}^{\prime}\right\}$ and $\left\{f_{j}^{\prime}\right\}$ (for $\mathbb{F}[\lambda]^{n}$ resp. K) related by

$$
\begin{align*}
Q\left(\lambda \mathbb{1}_{n}-B\right) P & =\operatorname{diag}\left(d_{1}, \ldots, d_{k_{0}}, d_{k_{0}+1}, \ldots, d_{n}\right) \\
& =\operatorname{diag}\left(1, \ldots, 1, \delta_{1}, \ldots, \delta_{s}\right) \tag{IV.D.3}
\end{align*}
$$

in the notation of the structure theorem and its proof (with $k=n$ and $\ell=s$ since V is torsion). That is, $f_{i}^{\prime}=d_{i} e_{i}^{\prime}$ is our new base for $K=\operatorname{ker}(\eta)$.

Now put $\eta\left(e_{i}^{\prime}\right)=: x_{i}^{\prime}$. This is not a basis for V as a vector space $(\mathbb{F}-$ module), since $x_{1}^{\prime}, \ldots, x_{k_{0}}^{\prime}=0$. However, the remaining nonzero elements $x_{k_{0}+1}^{\prime}=: z_{1}, \ldots, x_{n}^{\prime}=: z_{s}$ must generate V as an $\mathbb{F}[\lambda]$-module; and indeed by the structure theorem we have

$$
V=\mathbb{F}[\lambda] z_{1} \oplus \cdots \oplus \mathbb{F}[\lambda] z_{s} \cong \mathbb{F}[\lambda] /\left(\delta_{1}\right) \oplus \cdots \oplus \mathbb{F}[\lambda] /\left(\delta_{s}\right)
$$

with $\delta_{1}|\cdots| \delta_{s}$ nonzero nonunits, i.e. polynomials of positive degree.

The canonical forms. The direct sum decomposition in (IV.D.4) also expresses V as an internal direct sum of s subspaces, whose dimensions obviously must add to n. We start by examining the matrix of the restriction of T to one such subspace.

Pick an $i \in\{1, \ldots, s\}$ and write

$$
\delta_{i}=: F(\lambda)=\lambda^{m}+F_{m-1} \lambda^{m-1}+\cdots+F_{0} .
$$

Since δ_{i} has degree m,

$$
\begin{equation*}
z_{i}, T z_{i}, \ldots, T^{m-1} z_{i} \tag{IV.D.5}
\end{equation*}
$$

are linearly independent over \mathbb{F} and span $\mathbb{F}[\lambda] z_{i}$. Moreover,

$$
\begin{aligned}
0=F(\lambda) z_{i}=F(T) z_{i} \Longrightarrow & T\left(T^{m-1} z_{i}\right)=T^{m} z_{i}=\left(T^{m}-F(T)\right) z_{i} \\
& =-F_{0} z_{i}-F_{1} T z_{i}-\cdots-F_{m-1} T^{m-1} z_{i}
\end{aligned}
$$

We conclude that in the basis (IV.D.5) of $\mathbb{F}[\lambda] z_{i}$, the restriction $\left.T\right|_{\mathbb{F}[\lambda] z_{i}}$ has matrix

$$
C_{F}:=\left(\begin{array}{cccccc}
0 & & & & & -F_{0} \tag{IV.D.6}\\
1 & 0 & & & & -F_{1} \\
& 1 & 0 & & & -F_{2} \\
& & 1 & \ddots & & \vdots \\
& & & \ddots & 0 & -F_{m-2} \\
& & & & 1 & -F_{m-1}
\end{array}\right)
$$

which is called the companion matrix of the monic polynomial F.
Doing the same thing for each of the subspaces in (IV.D.3) we find first that

$$
\underline{\tilde{z}}:=\left\{z_{1}, T z_{1}, \ldots, T^{\operatorname{deg}\left(\delta_{1}\right)-1} ; \ldots ; z_{s}, T z_{s}, \ldots, T^{\operatorname{deg}\left(\delta_{s}\right)-1} z_{s}\right\}
$$

is a basis of V; in particular, $\sum_{i=1}^{S} \operatorname{deg}\left(\delta_{s}\right)=n$. Writing T in this basis produces a block diagonal matrix with $\operatorname{deg}\left(\delta_{i}\right) \times \operatorname{deg}\left(\delta_{i}\right)$ blocks

$$
\begin{equation*}
\underline{\underline{z}}[T]=\operatorname{diag}\left(C_{\delta_{1}}, \ldots, C_{\delta_{s}}\right) \tag{IV.D.7}
\end{equation*}
$$

which is called the rational canonical form of the original matrix B. The point, of course, is that this new matrix is similar to B : taking $S:=\underline{\tilde{z}}_{\underline{z}}\left[\mathrm{id}_{V}\right]_{\underline{x}}$ the change-of-basis matrix, we have $S B S^{-1}=$ (IV.D.7).

Next, assume that the $\left\{\delta_{i}\right\}$ can be completely factored into linear factors ${ }^{20}$ over \mathbb{F}. In this case we get more useful bases for each subspace $\mathbb{F}[\lambda] z_{i}$ by decomposing it into primary cyclic submodules.

For example, if $\delta_{i}=\left(\lambda-\alpha_{1}\right)^{e_{1}}\left(\lambda-\alpha_{2}\right)^{e_{2}}$, take $y=\left(\lambda-\alpha_{2}\right)^{e_{2}} z_{i}$ and $w=\left(\lambda-\alpha_{1}\right)^{e_{1}} z_{i}$, and observe that by (IV.C.26),

$$
\begin{equation*}
\mathbb{F}[\lambda] z_{i}=\mathbb{F}[\lambda] y \oplus \mathbb{F}[\lambda] w \cong \frac{\mathbb{F}[\lambda]}{\left(\left(\lambda-\alpha_{1}\right)^{e_{1}}\right)} \oplus \frac{\mathbb{F}[\lambda]}{\left(\left(\lambda-\alpha_{2}\right)^{e_{2}}\right)} \tag{IV.D.8}
\end{equation*}
$$

Clearly $\left\{y,\left(T-\alpha_{1}\right) y,\left(T-\alpha_{1}\right)^{2} y, \ldots,\left(T-\alpha_{1}\right)^{e_{1}-1} y\right\}$ is an \mathbb{F}-basis for $\mathbb{F}[\lambda] y$, and similarly for $\mathbb{F}[\lambda] w$. Writing the restriction of T to $\mathbb{F}[\lambda] y$

[^0]with respect to this basis gives the $e_{1} \times e_{1}$ matrix
\[

J_{e_{1}}\left(\alpha_{1}\right):=\left($$
\begin{array}{ccccc}
\alpha_{1} & & & & \tag{IV.D.9}\\
1 & \alpha_{1} & & & \\
& 1 & \ddots & & \\
& & \ddots & \alpha_{1} & \\
& & & 1 & \alpha_{1}
\end{array}
$$\right)
\]

since

$$
\left\{\begin{array}{l}
T y=\left(T-\alpha_{1}\right) y+\alpha_{1} y \\
T\left(\left(T-\alpha_{1}\right) y\right)=\left(T-\alpha_{1}\right)^{e_{1}} y+\alpha_{1}\left(T-\alpha_{1}\right) y \\
\text { etc. }
\end{array}\right.
$$

Repeating this process for each δ_{i} yields, as before, a basis for V. Writing T with respect to this basis produces a block diagonal matrix

$$
\begin{equation*}
\operatorname{diag}\left(J_{e_{1}}\left(\alpha_{1}\right), J_{e_{2}}\left(\alpha_{2}\right), \ldots\right) \tag{IV.D.10}
\end{equation*}
$$

called the Jordan canonical form, which is again similar to B.
IV.D.11. Definition. The Jordan form reveals the generalized eigenspaces E_{α} of V with respect to T. We set

$$
E_{\alpha}(T):=\mathcal{A}_{(\lambda-\alpha)}(V)=\left\{v \in V \mid(\lambda-\alpha)^{k} v=0 \text { for some } k \in \mathbb{N}\right\}
$$

Clearly this is the span of the basis elements corresponding to the blocks $J_{e_{i}}\left(\alpha_{i}\right)$ in (IV.D.10) with $\alpha_{i}=\alpha$, so that

$$
\operatorname{dim}\left(E_{\alpha}(T)\right)=\sum_{i: \alpha_{i}=\alpha} e_{i} .
$$

To summarize, Jordan canonical form corresponds to the primary cyclic decomposition of V as an $\mathbb{F}[\lambda]$-module, and the rational canonical form to the (less refined) decomposition in the structure theorem. Let's try a basic
IV.D.12. ExAMPLE. We recall from Example IV.C.17, that for

$$
B=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

we have $\operatorname{nf}\left(\lambda \mathbb{1}_{3}-B\right)=\operatorname{diag}\left(1, \lambda, \lambda^{2}-3 \lambda\right)$. Hence

$$
V=\mathbb{F}[\lambda] z_{1} \oplus \mathbb{F}[\lambda] z_{2} \cong \mathbb{F}[\lambda] /(\lambda) \oplus \mathbb{F}[\lambda] /\left(\lambda^{2}-3 \lambda\right),
$$

and with respect to the basis $\underline{\tilde{z}}=\left\{z_{1}, z_{2}, T z_{2}\right\}$ we get the rational canonical form

$$
\left(\begin{array}{l|ll}
0 & 0 & 0 \\
\hline 0 & 0 & 0 \\
0 & 1 & 3
\end{array}\right)
$$

since $T\left(z_{1}\right)=0, T\left(z_{2}\right)=T z_{2}$, and $T\left(T z_{2}\right)=T^{2} z_{2}=3 T z_{2}$ (from $T^{2}-3 T=0$ on $\left.\mathbb{F}[\lambda] z_{2}\right)$.

For the Jordan form, we factor $\delta_{2}(\lambda)=\lambda^{2}-3 \lambda=\lambda(\lambda-3)$ to further decompose V into primary cyclic modules:

$$
\begin{aligned}
V & =\mathbb{F}[\lambda] z_{1} \oplus \mathbb{F}[\lambda]\left(T-3 \mathrm{id}_{V}\right) z_{2} \oplus \mathbb{F}[\lambda] T z_{2} \\
& \cong \mathbb{F}[\lambda] /(\lambda) \oplus \mathbb{F}[\lambda] /(\lambda) \oplus \mathbb{F}[\lambda] /(\lambda-3)
\end{aligned}
$$

Of course, T kills the first two generators and $T\left(T z_{2}\right)=3\left(T z_{2}\right)$ so the Jordan form is

$$
\left(\begin{array}{c|c:c}
0 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hdashline 0 & 0 & 3
\end{array}\right)
$$

and $\operatorname{dim}\left(E_{0}(B)\right)=2, \operatorname{dim}\left(E_{3}(B)\right)=1$. After all, if a matrix can be diagonalized, the Jordan form is diagonal. This happens precisely when the δ_{i} (taken individually) have no repeated linear factors.

One thing you may wonder is how to find the basis (or change-of-basis matrix) which puts B in rational or Jordan canonical form. We have (writing $\theta: K \hookrightarrow \mathbb{F}[\lambda]^{n}$ for the inclusion)

$$
\begin{aligned}
e^{\prime}[\theta]_{f^{\prime}} & =\operatorname{nf}\left(\lambda \mathbb{1}_{3}-B\right)=Q\left(\lambda \mathbb{1}_{3}-B\right) P \\
& ={ }_{e^{\prime}}\left[\mathrm{id}_{\mathbb{F}[\lambda]^{n}}\right]_{\mathbf{e}} \cdot \mathbf{e}[\theta]_{f} \cdot{ }_{f}\left[\mathrm{id}_{K}\right]_{f^{\prime}},
\end{aligned}
$$

so that $Q={ }_{e^{\prime}}[\mathrm{id}]_{\mathbf{e}} \Longrightarrow$ columns of $\left.Q^{-1}=\mathbf{e}^{[\mathrm{id}]}\right]_{e^{\prime}}$ yield the e^{\prime}-basis (written in the e-basis). One builds the basis $\underline{\underline{z}}$ for the rational (or Jordan) form from the $x_{i}^{\prime}:=\eta\left(e_{i}^{\prime}\right)$ for $i=k_{0}+1, \ldots, n$. Noting that
$x_{j}:=\eta\left(\mathbf{e}_{j}\right)$, if (say) the last column of Q^{-1} is

$$
\mathbf{e}\left[e_{n}^{\prime}\right]=\left(\begin{array}{c}
p_{1}(\lambda) \\
\vdots \\
p_{n}(\lambda)
\end{array}\right)=\sum \lambda^{k}\left(\begin{array}{c}
a_{1}^{(k)} \\
\vdots \\
a_{n}^{(k)}
\end{array}\right)
$$

then applying η yields ${ }^{21}$

$$
\underline{x}\left[x_{n}^{\prime}\right]=\sum_{k} \underline{x}\left[T^{k}\right]\left(\begin{array}{c}
a_{1}^{(k)} \\
\vdots \\
a_{n}^{(k)}
\end{array}\right)=\sum_{k} B^{k}\left(\begin{array}{c}
a_{1}^{(k)} \\
\vdots \\
a_{n}^{(k)}
\end{array}\right) .
$$

But this is a bit ugly and there are often better ways to proceed:
IV.D.13. Example. The matrix

$$
B=\left(\begin{array}{cccc}
2 & -1 & 1 & -1 \\
-1 & 2 & -2 & 1 \\
0 & 1 & 1 & 1 \\
0 & -1 & 1 & 0
\end{array}\right)
$$

has characteristic polynomial

$$
p_{B}(\lambda)=\operatorname{det}\left(\lambda \mathbb{1}_{4}-B\right)=(\lambda-1)^{3}(\lambda-2) .
$$

This guides the selection of our basis: this is straightforward for eigenvalue 2 , as

$$
E_{2}(B)=\operatorname{ker}\left(B-2 \mathbb{1}_{4}\right)=\left\langle\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right)\right\rangle=:\left\langle v_{1}\right\rangle
$$

For eigenvalue 1, first find bases for kernels of powers of $(B-\mathbb{1})$:

$$
\begin{aligned}
\operatorname{ker}(B-\mathbb{1}) & =\left\langle\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right)\right\rangle \\
\subset \operatorname{ker}\left((B-\mathbb{1})^{2}\right) & =\left\langle\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right)\right\rangle \\
\subset E_{1}(B)=\operatorname{ker}\left((B-\mathbb{1})^{3}\right) & =\left\langle\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right\rangle .
\end{aligned}
$$

[^1](So far, the bases for kernels are easily computed by taking rref of $B-2 \mathbb{1}, B-\mathbb{1},(B-\mathbb{1})^{2}$, and $(B-\mathbb{1})^{3}$.) It is the last basis vector for $E_{1}(B)$ that generates it as a $\mathbb{Q}[\lambda]$-module, and we choose its cyclic images as our remaining basis vectors for V :
\[

v_{2}:=\left($$
\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}
$$\right) \mapsto v_{3}:=(B-\mathbb{1}) v_{2}=\left($$
\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}
$$\right) \mapsto v_{4}:=(B-\mathbb{1})^{2} v_{2}=\left($$
\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}
$$\right) .
\]

Taking S to be the matrix with columns given by the $\left\{v_{i}\right\}$, we get

$$
B=S\left(\begin{array}{c|lll}
2 & & & \\
\hline & 1 & & \\
& 1 & 1 & \\
& & 1 & 1
\end{array}\right) S^{-1}
$$

The minimal polynomial. We previously used this term for an element of an algebraic extension of a field. But it makes sense for any finitely generated torsion module M over a PID R, by the structure theorem. In the notation of IV.C.18, since the free part is zero ($t=0$ and $\ell=s$), each direct summand is annihilated by some δ_{i}. Since all of these divide δ_{s}, we have $\delta_{s} M=\{0\}$. Conversely, if $r M=\{0\}$ for some $r \in R$, then $r \in\left(\delta_{1}\right) \cap \cdots \cap\left(\delta_{s}\right)=\left(\delta_{s}\right)$. So $\left(\delta_{s}\right) \subset R$ is the set of all elements annihilating M.

So in the special case under study here (cf. (IV.D.4)), $\left(d_{n}\right) \subset \mathbb{F}[\lambda]$ is the annihilator of V. An immediate consequence is the
IV.D.14. THEOREM. $d_{n}(T)\left(=\delta_{s}(T)\right)$ is the zero transformation, and if $F \in \mathbb{F}[\lambda]$ satisfies $F(T)=0$, then $d_{n} \mid F$. The same holds with " B " [resp. "matrix"] replacing " T " [resp. "transformation"].

Proof. For the second part, just note that $F(\lambda) V=\{0\} \Longleftrightarrow$ $F(T) v=0(\forall v \in V) \Longleftrightarrow F(T) x_{i}=0(\forall i) \Longleftrightarrow F(B)=0$.
IV.D.15. DEFINITION. $d_{n}(\lambda)$ is the minimal polynomial of T (or $B)$. We will henceforth write this m_{T} (or m_{B}).
IV.D.16. PROPOSITION. (a) $m_{B}(\lambda)=\frac{\operatorname{det}(\lambda \mathbb{1}-B)}{\left\{\begin{array}{c}\text { monic gcd of }(n-1) \times(n-1) \\ \text { minors of } \lambda \mathbb{1}-B\end{array}\right\}}$.
(b) m_{B} and $p_{B}:=\operatorname{det}(\lambda \mathbb{1}-B)$ are invariant under similarity.

Proof. (a) This is just $d_{n}=\Delta_{n} / \Delta_{n-1}$.
(b) If $B^{\prime}=S B S^{-1}, S \in G L_{n}(\mathbb{F})$, then B and B^{\prime} are matrices of the same T (with respect to different bases of V). The invariant factors d_{i} in $\mathbb{F}[\lambda]$ are defined for the $\mathbb{F}[\lambda]$-module V, which itself depends only on T.

Notice that the coefficients of powers of λ in $p_{B}(\lambda)$ are therefore polynomials in the entries of B that are invariant under similarity transformation (conjugation by an invertible S). These include the trace and determinant.

Finally we have the
IV.D.17. Corollary (Cayley-Hamilton). $p_{B}(B)=0$.

Proof. We have $p_{T}(\lambda):=\operatorname{det}\left(\lambda \mathrm{id}_{V}-T\right)=d_{s+1}(\lambda) \cdots d_{n}(\lambda)$, hence $p_{T}(T)=d_{s+1}(T) \cdots d_{n}(T)=0\left(\right.$ since $\left.d_{n}(T)=0\right)$.

This looks much simpler than the proofs in linear algebra courses, because we have already proved a more difficult result using module theory. In any case, writing $p_{B}(B)=\operatorname{det}(B \mathbb{1}-B)=\operatorname{det}(0)=0$ is still wrong, because you have to first expand the determinant and then substitute in the matrix, not the other way around!

[^0]: ${ }^{20}$ This is always true if \mathbb{F} is algebraically closed, which is to say that every polynomial over \mathbb{F} has a root in \mathbb{F}. For instance, \mathbb{C} is algebraically closed.

[^1]: ${ }^{21}$ This is essentially what [Jacobson] does in the Example on his pp. 198-199, though as usual his convention is the transpose of that used in these notes.

