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IV.D. Applications to linear algebra

Let T ∈ EndF(V)\{0} be a nontrivial linear transformation of a
finite-dimensional vector space V over a field F. Take {xi}n

i=1 ⊂ V to
be a basis and B := x[T] to be the corresponding matrix, with entries
bij ∈ F. We have that V = ⊕n

i=1Fxi = ∑n
i=1 F[λ]xi, where V has the

structure of an F[λ]-module by P(λ)v := P(T)v (for any polynomial
P(λ) ∈ F[λ]). Since F[λ] is not f.g. as an F-module, V must be a (f.g.)
torsion F[λ]-module.

We have a short-exact sequence

K := ker(η) ↪→ F[λ]n
η
� V

ei 7→ xi

of F[λ]-modules, in which K must be free with generators { fi}n
i=1. To

obtain the (dj) which will be annihilators of the F[λ]zj in the struc-
ture theorem decomposition, we must find (then put in normal form)
a matrix whose columns express the { f j} in terms of the {ei}. To wit:

IV.D.1. LEMMA. A := λ1n − B is a relations matrix for V.

PROOF. We need to specify the { f j}. Put

f j := λej −
n

∑
i=1

bijei.

Clearly η( f j) = λη(ej)− ∑i bijη(ei) = T(xj)− ∑i bijxi = 0, by defi-
nition of B. So f j ∈ K (∀j).

To see that they generate K, suppose 0 = η(∑j Pj(λ)ej) for some
polynomials Pj. By repeatedly applying λkej = λk−1λej = λk−1 f j +

∑i bijλ
k−1ej, we may rewrite this as 0 = η(∑j Qj(λ) f j + ∑i βiei) with

βi ∈ F. That is, 0 = ∑j Qj(T)��
��*0

η( f j) + ∑i βixi =⇒ βi = 0 (∀i). Hence
∑j Pj(λ)ej = ∑j Qj(λ) f j ∈ F[λ]〈 f1, . . . , fn〉. �

IV.D.2. REMARK. In fact, we can prove that { f j} is a base for K over
F[λ]: given ∑j hj(λ) f j = 0, we have

(∑
i

hi(λ)λei =) ∑
j

hj(λ)λej = ∑
i,j

hj(λ)bijei (in F[λ]n)



IV.D. APPLICATIONS TO LINEAR ALGEBRA 233

=⇒ hi(λ)λ = ∑j hj(λ)bij (in F[λ]) for each i. But this is impossi-
ble: consider i such that hi is of maximal degree: then deg(LHS) >

deg(RHS).

Apply the normal form algorithm to obtain bases {e′i} and { f ′j}
(for F[λ]n resp. K) related by

Q(λ1n − B)P = diag(d1, . . . , dk0 , dk0+1, . . . , dn)

= diag(1, . . . , 1, δ1, . . . , δs)
(IV.D.3)

in the notation of the structure theorem and its proof (with k = n
and ` = s since V is torsion). That is, f ′i = die′i is our new base for
K = ker(η).

Now put η(e′i) =: x′i. This is not a basis for V as a vector space (F-
module), since x′1, . . . , x′k0

= 0. However, the remaining nonzero ele-
ments x′k0+1 =: z1, . . ., x′n =: zs must generate V as an F[λ]-module;
and indeed by the structure theorem we have

(IV.D.4) V = F[λ]z1 ⊕ · · · ⊕F[λ]zs ∼= F[λ]/(δ1)⊕ · · · ⊕F[λ]/(δs),

with δ1 | · · · | δs nonzero nonunits, i.e. polynomials of positive
degree.

The canonical forms. The direct sum decomposition in (IV.D.4)
also expresses V as an internal direct sum of s subspaces, whose di-
mensions obviously must add to n. We start by examining the matrix
of the restriction of T to one such subspace.

Pick an i ∈ {1, . . . , s} and write

δi =: F(λ) = λm + Fm−1λm−1 + · · ·+ F0.

Since δi has degree m,

(IV.D.5) zi, Tzi, . . . , Tm−1zi

are linearly independent over F and span F[λ]zi. Moreover,

0 = F(λ)zi = F(T)zi =⇒ T(Tm−1zi) = Tmzi = (Tm − F(T))zi

= −F0zi − F1Tzi − · · · − Fm−1Tm−1zi.
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We conclude that in the basis (IV.D.5) of F[λ]zi, the restriction T|F[λ]zi

has matrix

(IV.D.6) CF :=



0 −F0

1 0 −F1

1 0 −F2

1 . . . ...
. . . 0 −Fm−2

1 −Fm−1


,

which is called the companion matrix of the monic polynomial F.
Doing the same thing for each of the subspaces in (IV.D.3) we find

first that

z̃ := {z1, Tz1, . . . , Tdeg(δ1)−1; . . . ; zs, Tzs, . . . , Tdeg(δs)−1zs}

is a basis of V; in particular, ∑s
i=1 deg(δs) = n. Writing T in this basis

produces a block diagonal matrix with deg(δi)× deg(δi) blocks

(IV.D.7) z̃[T] = diag(Cδ1 , . . . , Cδs)

which is called the rational canonical form of the original matrix B.
The point, of course, is that this new matrix is similar to B: taking
S := z̃[idV ]x the change-of-basis matrix, we have SBS−1 = (IV.D.7).

Next, assume that the {δi} can be completely factored into lin-
ear factors20 over F. In this case we get more useful bases for each
subspace F[λ]zi by decomposing it into primary cyclic submodules.

For example, if δi = (λ − α1)
e1(λ − α2)

e2 , take y = (λ − α2)
e2zi

and w = (λ− α1)
e1zi, and observe that by (IV.C.26),

(IV.D.8) F[λ]zi = F[λ]y⊕F[λ]w ∼=
F[λ]

((λ− α1)e1)
⊕ F[λ]

((λ− α2)e2)
.

Clearly {y, (T− α1)y, (T− α1)
2y, . . . , (T− α1)

e1−1y} is an F-basis for
F[λ]y, and similarly for F[λ]w. Writing the restriction of T to F[λ]y

20This is always true if F is algebraically closed, which is to say that every polyno-
mial over F has a root in F. For instance, C is algebraically closed.
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with respect to this basis gives the e1 × e1 matrix

(IV.D.9) Je1(α1) :=



α1

1 α1

1 . . .
. . . α1

1 α1


since 

Ty = (T − α1)y + α1y
T((T − α1)y) = (T − α1)

e1y + α1(T − α1)y
etc.

Repeating this process for each δi yields, as before, a basis for V.
Writing T with respect to this basis produces a block diagonal matrix

(IV.D.10) diag(Je1(α1), Je2(α2), . . . )

called the Jordan canonical form, which is again similar to B.

IV.D.11. DEFINITION. The Jordan form reveals the generalized
eigenspaces Eα of V with respect to T. We set

Eα(T) := A(λ−α)(V) = {v ∈ V | (λ− α)kv = 0 for some k ∈N}.

Clearly this is the span of the basis elements corresponding to the
blocks Jei(αi) in (IV.D.10) with αi = α, so that

dim(Eα(T)) = ∑
i : αi=α

ei.

To summarize, Jordan canonical form corresponds to the primary
cyclic decomposition of V as an F[λ]-module, and the rational canon-
ical form to the (less refined) decomposition in the structure theorem.
Let’s try a basic

IV.D.12. EXAMPLE. We recall from Example IV.C.17, that for

B =

1 1 1
1 1 1
1 1 1

 ,
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we have nf(λ13 − B) = diag(1, λ, λ2 − 3λ). Hence

V = F[λ]z1 ⊕F[λ]z2
∼= F[λ]/(λ) ⊕ F[λ]/(λ2 − 3λ),

and with respect to the basis z̃ = {z1, z2, Tz2} we get the rational
canonical form  0 0 0

0 0 0
0 1 3


since T(z1) = 0, T(z2) = Tz2, and T(Tz2) = T2z2 = 3Tz2 (from
T2 − 3T = 0 on F[λ]z2).

For the Jordan form, we factor δ2(λ) = λ2 − 3λ = λ(λ − 3) to
further decompose V into primary cyclic modules:

V = F[λ]z1 ⊕ F[λ](T − 3 idV)z2 ⊕ F[λ]Tz2

∼= F[λ]/(λ) ⊕ F[λ]/(λ) ⊕ F[λ]/(λ− 3).

Of course, T kills the first two generators and T(Tz2) = 3(Tz2) so
the Jordan form is  0 0 0

0 0 0
0 0 3


and dim(E0(B)) = 2, dim(E3(B)) = 1. After all, if a matrix can be
diagonalized, the Jordan form is diagonal. This happens precisely
when the δi (taken individually) have no repeated linear factors.

One thing you may wonder is how to find the basis (or change-
of-basis matrix) which puts B in rational or Jordan canonical form.
We have (writing θ : K ↪→ F[λ]n for the inclusion)

e′ [θ] f ′ = nf(λ13 − B) = Q(λ13 − B)P

= e′ [idF[λ]n ]e · e[θ] f · f [idK] f ′ ,

so that Q = e′ [id]e =⇒ columns of Q−1 = e[id]e′ yield the e′-basis
(written in the e-basis). One builds the basis z̃ for the rational (or
Jordan) form from the x′i := η(e′i) for i = k0 + 1, . . . , n. Noting that
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xj := η(ej), if (say) the last column of Q−1 is

e[e′n] =

p1(λ)
...

pn(λ)

 = ∑ λk


a(k)1

...

a(k)n

 ,

then applying η yields21

x[x′n] = ∑
k

x[Tk]


a(k)1

...

a(k)n

 = ∑
k

Bk


a(k)1

...

a(k)n

 .

But this is a bit ugly and there are often better ways to proceed:

IV.D.13. EXAMPLE. The matrix

B =


2 −1 1 −1
−1 2 −2 1
0 1 1 1
0 −1 1 0


has characteristic polynomial

pB(λ) = det(λ14 − B) = (λ− 1)3(λ− 2).

This guides the selection of our basis: this is straightforward for
eigenvalue 2, as

E2(B) = ker(B− 214) =

〈( −2
1
1
0

)〉
=: 〈v1〉.

For eigenvalue 1, first find bases for kernels of powers of (B− 1):

ker(B− 1) =

〈( 0
−1
0
1

)〉
⊂ ker((B− 1)2) =

〈( 0
−1
0
1

)
,
( −1

0
1
0

)〉
⊂ E1(B) = ker((B− 1)3) =

〈( 0
−1
0
1

)
,
( −1

0
1
0

)
,
( 0

0
0
1

)〉
.

21This is essentially what [Jacobson] does in the Example on his pp. 198-199,
though as usual his convention is the transpose of that used in these notes.
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(So far, the bases for kernels are easily computed by taking rref of
B− 21, B− 1, (B− 1)2, and (B− 1)3.) It is the last basis vector for
E1(B) that generates it as a Q[λ]-module, and we choose its cyclic
images as our remaining basis vectors for V:

v2 :=
( 0

0
0
1

)
7→ v3 := (B−1)v2 =

( −1
1
1
−1

)
7→ v4 := (B−1)2v2 =

( 0
−1
0
1

)
.

Taking S to be the matrix with columns given by the {vi}, we get

B = S


2

1
1 1

1 1

 S−1.

The minimal polynomial. We previously used this term for an
element of an algebraic extension of a field. But it makes sense for
any finitely generated torsion module M over a PID R, by the struc-
ture theorem. In the notation of IV.C.18, since the free part is zero
(t = 0 and ` = s), each direct summand is annihilated by some
δi. Since all of these divide δs, we have δsM = {0}. Conversely, if
rM = {0} for some r ∈ R, then r ∈ (δ1) ∩ · · · ∩ (δs) = (δs). So
(δs) ⊂ R is the set of all elements annihilating M.

So in the special case under study here (cf. (IV.D.4)), (dn) ⊂ F[λ]

is the annihilator of V. An immediate consequence is the

IV.D.14. THEOREM. dn(T) (= δs(T)) is the zero transformation, and
if F ∈ F[λ] satisfies F(T) = 0, then dn | F. The same holds with “B”
[resp. “matrix”] replacing “T” [resp. “transformation”].

PROOF. For the second part, just note that F(λ)V = {0} ⇐⇒
F(T)v = 0 (∀v ∈ V) ⇐⇒ F(T)xi = 0 (∀i) ⇐⇒ F(B) = 0. �

IV.D.15. DEFINITION. dn(λ) is the minimal polynomial of T (or
B). We will henceforth write this mT (or mB).

IV.D.16. PROPOSITION. (a) mB(λ) =
det(λ1−B){

monic gcd of (n−1)× (n−1)

minors of λ1− B

} .

(b) mB and pB := det(λ1− B) are invariant under similarity.
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PROOF. (a) This is just dn = ∆n/∆n−1.
(b) If B′ = SBS−1, S ∈ GLn(F), then B and B′ are matrices of the
same T (with respect to different bases of V). The invariant factors di

in F[λ] are defined for the F[λ]-module V, which itself depends only
on T. �

Notice that the coefficients of powers of λ in pB(λ) are therefore
polynomials in the entries of B that are invariant under similarity transfor-
mation (conjugation by an invertible S). These include the trace and
determinant.

Finally we have the

IV.D.17. COROLLARY (Cayley-Hamilton). pB(B) = 0.

PROOF. We have pT(λ) := det(λidV − T) = ds+1(λ) · · · dn(λ),
hence pT(T) = ds+1(T) · · · dn(T) = 0 (since dn(T) = 0). �

This looks much simpler than the proofs in linear algebra courses,
because we have already proved a more difficult result using mod-
ule theory. In any case, writing pB(B) = det(B1− B) = det(0) = 0
is still wrong, because you have to first expand the determinant and
then substitute in the matrix, not the other way around!


