IV.E. Endomorphisms

Recall from IV.B.21-IV.B. 22 that for a free module M of rank n over a commutative ring R, sending endomorphisms to their matrix (with respect to some base) yields a map

$$
\operatorname{End}_{R}(M) \xrightarrow{\cong} M_{n}(R)
$$

which is in fact an isomorphism of rings and of R-modules. What happens if M is no longer free? In this section we will give an answer to this question in the case (henceforth assumed) that R is a PID. We begin with some easy
IV.E.1. Examples. (a) Suppose $M=R z \cong R /(d)$ is a cyclic R module, and note that $r z$ corresponds to \bar{r} under the isomorphism. The map

$$
\begin{align*}
\operatorname{End}_{R}(M) & \longrightarrow R /(d) \\
\eta & \longmapsto \eta(\overline{1}) \tag{IV.E.2}
\end{align*}
$$

is an isomorphism of rings and R-modules. [Why? Clearly (IV.E.2) is an R-module homomorphism. It is injective because η is determined by where it sends a generator; and surjective because it sends

$$
\mu_{r}:=\{\text { multiplication by } r\} \longmapsto \bar{r}
$$

for any $\bar{r} \in R /(d)$. So then $\operatorname{End}_{R}(M)$ consists entirely of $\mu_{r}{ }^{\prime}$ s, and (IV.E.2) sends composition to multiplication.]
(b) If $M \cong(R /(d))^{\oplus n}$, then writing $\overline{\mathbf{e}}_{i}$ for the "standard" generators $\left(\overline{\mathbf{e}}_{1}=(\overline{1}, \overline{0}, \ldots, \overline{0})\right.$, etc. $)$, writing $\eta\left(\overline{\mathbf{e}}_{j}\right)=\sum_{i} \bar{r}_{i j} \overline{\mathbf{e}}_{i}$ defines a map

$$
\begin{aligned}
\operatorname{End}_{R}(M) & \rightarrow M_{n}(R /(d)) \\
\eta & \mapsto\left(\bar{r}_{i j}\right)
\end{aligned}
$$

which one also shows is an isomorphism (of rings and R-modules), by combining the approach for free modues with that in (a).
(c) On the other hand, if $M \cong \oplus_{i} R /\left(p_{i}\right)$ with p_{i} distinct primes of R, then by Schur's Lemma IV.B.32, $\operatorname{Hom}_{R}\left(R /\left(p_{i}\right), R /\left(p_{j}\right)\right)=\{0\}$ for
$i \neq j$. (Why?) Combining this with (a) yields

$$
\operatorname{End}_{R}(M) \cong \oplus_{i} \operatorname{End}_{R}\left(R /\left(p_{i}\right)\right) \cong \oplus_{i} R /\left(p_{i}\right)
$$

Alternatively, one can use the Chinese Remainder Theorem (see the proof of IV.C.25) to write $M \cong R /\left(\Pi p_{i}\right)$, apply (a), and use the CRT again on the RHS.
(d) Finally, if $M \cong \oplus_{i}\left(R /\left(p_{i}\right)\right)^{\oplus n_{i}}$, then combining Schur's Lemma with (b) yields

$$
\operatorname{End}_{R}(M) \cong \oplus_{i} M_{n_{i}}\left(R /\left(p_{i}\right)\right)
$$

which is again an isomorphism as rings and as R-modules.

Now we turn to the general case: let

$$
M=R z_{1} \oplus \cdots \oplus R z_{S} \cong \underbrace{R z_{1} \oplus \cdots \oplus R z_{\ell}}_{\operatorname{tor}(M)} \oplus R^{t}
$$

where $\ell+t=s, \operatorname{ann}\left(z_{i}\right)=\left(\delta_{i}\right), \delta_{1}|\cdots| \delta_{\ell}$, and $\delta_{\ell+1}=\cdots=\delta_{s}=0$. We can present M in terms of generators and relations as

$$
M \cong R^{s} / K=\frac{R\left\langle\mathbf{e}_{1}, \ldots, \mathbf{e}_{s}\right\rangle}{\left\langle\delta_{1} \mathbf{e}_{1}, \ldots, \delta_{\ell} \mathbf{e}_{\ell}\right\rangle}
$$

Our aim is to get a description of the endomorphism ring

$$
S:=\operatorname{End}_{R}(M)
$$

in the spirit of the above examples, but in terms of the $\left\{\delta_{i}\right\}$.
Recall the matrix description of endomorphisms of R^{s}

$$
\begin{aligned}
\theta: \operatorname{End}_{R}\left(R^{s}\right) & \stackrel{\cong}{\longrightarrow} M_{s}(R) \\
\tilde{\eta} & \longmapsto \mathbf{e}[\tilde{\eta}]=:\left(n_{i j}\right)=: N,
\end{aligned}
$$

where $\tilde{\eta}\left(\mathbf{e}_{j}\right)=\sum_{i} n_{i j} \mathbf{e}_{i}$. Given $\tilde{\eta} \in \operatorname{End}_{R}\left(R^{s}\right)$, we can ask when it makes sense modulo K, as an endomorphism of $M\left(=R^{s} / K\right)$. Evidently,

- $\tilde{\eta}$ defines an element $\eta \in S \Longleftrightarrow \tilde{\eta}(K) \subseteq K$; and
- $\tilde{\eta}$ defines the zero element in $S \Longleftrightarrow \tilde{\eta}\left(R^{s}\right) \subseteq K$.

For $\tilde{x} \in R^{s}$, we have

$$
\tilde{x} \in K \Longleftrightarrow \tilde{x}=\underset{\left(\sum_{i=1}^{\ell} d_{i} r_{i} \mathbf{e}_{i}\right.}{\text { for some } \left._{i} \in R\right)} \text { } \Longleftrightarrow \mathrm{e}[\tilde{x}] \in\left(\begin{array}{lll}
\delta_{1} & & \\
& \ddots & \\
& & \\
& \delta_{s}
\end{array}\right) R^{s}=: D R^{s}
$$

(thinking of R^{s} as column vectors on the RHS). Hence

$$
\begin{aligned}
\tilde{\eta}(K) \subseteq K & \Longleftrightarrow \tilde{\eta}(\tilde{x}) \in K(\forall \tilde{x} \in K) \\
{\left[\text { apply }_{\mathrm{e}}[] \rightsquigarrow\right] } & \Longleftrightarrow N D v \in D R^{s}\left(\forall v \in R^{s}\right) \\
{\left[\text { apply to } v=\mathbf{e}_{1}, \ldots, \mathbf{e}_{s} \rightsquigarrow\right] } & \Longleftrightarrow N D \subset M_{s}(R) \\
& \Longleftrightarrow N \in \mathcal{M}_{S}
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{\eta}\left(R^{s}\right) \subseteq K & \Longleftrightarrow N v \in D R^{s}\left(\forall v \in R^{s}\right) \\
& \Longleftrightarrow N \in D M_{s}(R) \underset{\text { def. }}{=} \cdot \mathcal{J}_{S}
\end{aligned}
$$

Note that \mathcal{M}_{S} is a subring of $M_{S}(R)$: given $N, N^{\prime} \in \mathcal{M}_{S}$, we can write

$$
\left(N^{\prime} N\right) D=N^{\prime}(N D)=N^{\prime}\left(D \mathrm{M}^{\prime}\right)=\left(N^{\prime} D\right) \mathrm{M}^{\prime}=(D \mathrm{M}) \mathrm{M}^{\prime}=D \mathrm{M}^{\prime \prime}
$$

with $\mathrm{M}, \mathrm{M}^{\prime}, \mathrm{M}^{\prime \prime} \in M_{s}(R)$; and so $N^{\prime} N \in \mathcal{M}_{S}$. Furthermore, $\mathcal{J}_{S} \subset$ \mathcal{M}_{S} is a (two-sided) ideal: given $N \in \mathcal{M}_{S}$,

$$
\begin{aligned}
& N \mathcal{J}_{S}=N D M_{s}(R) \subset D M_{S}(R)=\mathcal{J}_{S} \\
& \text { and } \mathcal{J}_{S} N=D M_{S}(R) N \subset D M_{S}(R)=\mathcal{J}_{S} \text {. }
\end{aligned}
$$

So $\mathcal{M}_{S} / \mathcal{J}_{S}$ is a ring (and an R-module!); and we have the
IV.E.3. THEOREM. θ induces an isomorphism

$$
\bar{\theta}: S \xrightarrow{\cong} \mathcal{M}_{S} / \mathcal{J}_{S}
$$

of rings (and R-modules).
Proof. We just did it! To briefly recapitulate: applying $\left.\theta=\mathbf{e}^{[}\right]$ to the numerator and denominator of the RHS of

$$
S=\operatorname{End}_{R}(M)=\operatorname{End}_{R}\left(R^{s} / K\right)=\frac{\left\{\tilde{\eta} \in \operatorname{End}_{R}\left(R^{s}\right) \mid \tilde{\eta}(K) \subseteq K\right\}}{\left\{\tilde{\eta} \in \operatorname{End}_{R}\left(R^{s}\right) \mid \tilde{\eta}\left(R^{s}\right) \subseteq K\right\}}
$$

yields exactly $\mathcal{M}_{S} / \mathcal{J}_{S}$.
IV.E.4. REmARK. Note that we can thnk of $\bar{\theta}$ as "taking the matrix with respect to $z_{1}, \ldots, z_{s}^{\prime \prime}$ even though this is not a base in the standard sense.

Now consider the conditions defining \mathcal{M}_{S} if $s=2$: keeping in mind that $\delta_{1} \mid \delta_{2}$ (and denoting by $r_{i j}$ arbitrary elements of R), we have

$$
\begin{aligned}
N=\left(\begin{array}{ll}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{array}\right) \in \mathcal{M}_{S} & \Longleftrightarrow\binom{n_{11} n_{12}}{n_{21}}\binom{\delta_{12}}{\delta_{22}}=\binom{\delta_{1}}{\delta_{2}}\left(\begin{array}{l}
r_{11} r_{12} \\
r_{21} \\
r_{22}
\end{array}\right) \\
& \Longleftrightarrow\left(\begin{array}{l}
\delta_{1} n_{11} \delta_{2} n_{12} \\
\delta_{1} n_{21} \\
\delta_{22} \delta_{22}
\end{array}\right)=\left(\begin{array}{l}
\delta_{1} r_{11} \delta_{1} r_{12} \\
\delta_{2} r_{21} \\
\delta_{2} r_{22}
\end{array}\right) \\
& \Longleftrightarrow n_{21} \in\left(\frac{\delta_{2}}{\delta_{1}},\right.
\end{aligned}
$$

so $n_{21}=n_{21}^{\prime} \frac{\delta_{2}}{\delta_{1}}$, with n_{21}^{\prime} and the other $n_{i j}$ arbitrary elements of R. (Note that if $\delta_{2}=0 \neq \delta_{1}$, this would make $n_{21}=0$.) Furthermore, we have

$$
\begin{aligned}
N \in \mathcal{J}_{S} & \Longleftrightarrow\left(\begin{array}{ll}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{array}\right)=\left(\begin{array}{l}
\delta_{1} \\
\\
\delta_{2}
\end{array}\right)\binom{r_{11} r_{12}}{r_{21} r_{22}}=\binom{\delta_{1} r_{11} \delta_{1} r_{12}}{\delta_{2} r_{21} \delta_{2} r_{22}} \\
& \Longleftrightarrow n_{11}, n_{12} \in\left(\delta_{1}\right) \text { and } n_{21}, n_{22} \in\left(\delta_{2}\right) .
\end{aligned}
$$

The upshot is that, for elements of $\bar{\theta}(S)=\mathcal{M}_{S} / \mathcal{J}_{S}$, we need to consider n_{11} and n_{12} as elements of $R /\left(\delta_{1}\right), n_{21}$ as an element of $\left(\frac{\delta_{2}}{\delta_{1}}\right) /\left(\delta_{2}\right)$, and n_{22} in $R /\left(\delta_{2}\right)$.

More generally, for any s, this analysis leads to the following specifications for entries in the "regions" of the $s \times s$ matrix N (corresponding via $\bar{\theta}$ to elements of S) as shown:

$$
\left\{\begin{array}{lll}
\text { (I) } & i \leq j, \ell: & n_{i j} \in R /\left(\delta_{i}\right) \\
\text { (II) } & j<i \leq \ell: & n_{i j} \in\left(\frac{\delta_{i}}{\delta_{j}}\right) /\left(\delta_{i}\right) \\
\text { (III) } & i>\ell ; j \leq \ell: & n_{i j}=0 \\
\text { (IV) } & i, j>\ell: & n_{i j} \in R
\end{array} \quad\left(\begin{array}{rr|r}
\ddots & \text { (I) } & \\
\text { (II) } \\
\text { (II) } & \ddots & \\
\hline(\text { III }) & \text { (IV) }
\end{array}\right)\right.
$$

so we can write $n_{i j}:=n_{i j}^{\prime} \frac{\delta_{i}}{\delta_{j}}$ in (II) as above, with $n_{i j}^{\prime} \in R /\left(\delta_{j}\right)$. In the event that M is torsion, $\ell=s$ and we don't have regions (III) and (IV).

An immediate consequence is
IV.E.5. Corollary. The center of $S=\operatorname{End}_{R}(M)$ is R.

Proof. Let $\varepsilon_{i s} \in S$ be the endomorphism with matrix given by ${ }^{22}$ $\bar{\theta}\left(\varepsilon_{i s}\right)=\mathbf{e}_{i s}$. (Note that this is possible because the $(i, s)^{\text {th }}$ entry lies in region (I) or (IV), never (II).) This endomorphism sends $z_{s} \mapsto z_{i}$ and kills all other z_{j}. So given $\eta \in C(S)$ (in the center), and writing $N=\bar{\theta}(\eta)$, we have

$$
\eta\left(z_{s}\right)=\eta\left(\varepsilon_{s s}\left(z_{s}\right)\right)=\varepsilon_{s s}\left(\eta\left(z_{s}\right)\right)=\varepsilon_{s s}\left(\sum_{i} n_{i s} z_{i}\right)=\sum_{i} n_{i s} \varepsilon_{s s} z_{i}=n_{s s} z_{s}
$$

and

$$
\eta\left(z_{j}\right)=\eta\left(\varepsilon_{j s} z_{s}\right)=\varepsilon_{j s}\left(\eta\left(z_{s}\right)\right)=\varepsilon_{j s}\left(\sum_{i} n_{i s} z_{i}\right)=\sum_{i} n_{i s} \varepsilon_{j s}\left(z_{i}\right)=n_{s s} z_{j}
$$

so that η is simply multiplication by $n_{s} s$ - which, being in region (I) or (IV), can be any element of R.

Assume henceforth that M is torsion. As S is an R-module:
(a) if $R=\mathbb{Z}$, then $M=G$ is a finite abelian group, and $S=\operatorname{End}_{\mathbb{Z}}(G)$ also has the structure of a finite abelian group, with a (finite) order; while
(b) if $R=\mathbb{F}[\lambda]$, then $M=V$ is an \mathbb{F}-vector space on which λ acts by a linear transformation $T \in \operatorname{End}_{\mathbb{F}}(V)$, and $S=\operatorname{End}_{\mathbb{F}[\lambda]}(V)$ itself has the structure of an \mathbb{F}-vector space, with a (finite) dimension.
So we can take the theory for a test-drive to see if we can compute the italicized numbers. For (a), we have the
IV.E.6. COROLLARY. Consider any finite abelian group, written in the form $G \cong \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{s}}$ with $m_{1}|\cdots| m_{s}$. Then the number of group homomorphisms from G to itself is

$$
\left|\operatorname{End}_{\mathbb{Z}}(G)\right|=\prod_{j=1}^{s} m_{j}^{2 s-2 j+1}
$$

Proof. With $S=\operatorname{End}_{\mathbb{Z}}(G)$, one counts the possible choices for the $n_{i j}$ in a matrix $N \in \mathcal{M}_{S} / \mathcal{J}_{S}$. For (I) $i \leq j, n_{i j} \in \mathbb{Z} /\left(m_{i}\right)=\mathbb{Z}_{m_{i}}$; while for (II) $i>j, n_{i j}=n_{i j}^{\prime} \frac{m_{i}}{m_{j}}$ with $n_{i j}^{\prime} \in \mathbb{Z} /\left(m_{j}\right)=\mathbb{Z}_{m_{j}}$. So to compute $|S|=\left|\mathcal{M}_{S} / \mathcal{J}_{S}\right|$, we simply have to take the product of all

[^0]entries of the matrix
\[

\left($$
\begin{array}{ccccc}
m_{1} & m_{1} & m_{1} & \cdots & m_{1} \\
m_{1} & m_{2} & m_{2} & \cdots & m_{2} \\
m_{1} & m_{2} & m_{3} & \cdots & m_{3} \\
\vdots & \vdots & \vdots & \ddots & \\
m_{1} & m_{2} & m_{3} & &
\end{array}
$$\right)
\]

which gives the result.
For (b), notice that

$$
S=\operatorname{End}_{\mathbb{F}[\lambda]}(V)=\left\{\eta \in \operatorname{End}_{\mathbb{F}}(V) \mid \eta T=T \eta\right\}
$$

is the centralizer of T. Writing $\underline{x}[T]=B$ and $\underline{x}[\eta]=Z$ with respect to some basis of V, S is identified with ${ }^{23}$

$$
(S \cong) \operatorname{End}_{\mathbb{F}[\lambda]}\left(\mathbb{F}^{n}\right)=\left\{Z \in M_{n}(\mathbb{F}) \mid Z B=B Z\right\}
$$

the ring of matrices commuting with B.
IV.E.7. Corollary. Let $B \in M_{n}(\mathbb{F})$, with normal form

$$
\operatorname{nf}\left(\lambda \mathbb{1}_{n}-B\right)=\operatorname{diag}\left(1, \ldots, 1, \delta_{1}(\lambda), \ldots, \delta_{s}(\lambda)\right)
$$

Then $\operatorname{dim}_{\mathbb{F}}(S)=\sum_{j=1}^{S}(2 s-2 j+1) \operatorname{deg}\left(\delta_{j}(\lambda)\right)$.
Proof. Once again, we use $\bar{\theta}$ to identify S with $s \times s$ matrices N with entries (I) $n_{i j} \in \mathbb{F}[\lambda] /\left(\delta_{i}(\lambda)\right)$ or (II) $n_{i j}=n_{i j}^{\prime} \delta_{j}(\lambda)$ (and $n_{i j}^{\prime} \in$ $\mathbb{F}[\lambda] /\left(\delta_{j}(\lambda)\right)$). So these $n_{i j}$'s each lie in a vector space of dimension (I) $\operatorname{deg}\left(\delta_{i}\right)$ resp. (II) $\operatorname{deg}\left(\delta_{j}\right)$, and we can record these degrees in a matrix exactly like that in the last proof. Only this time, to get the dimension of S, we add these entries rather than multiplying them.

Call the transformation T cyclic if its action on V makes the latter into a cyclic $\mathbb{F}[\lambda]$-module (that is, $s=1$).
IV.E.8. Corollary. A linear transformation $T \in \operatorname{End}_{\mathbb{F}}(V)$ is cyclic \Longleftrightarrow the only transformations commuting with T are polynomials in T.

[^1]Proof. First let T be an arbitrary transformation, and take $d=$ $\operatorname{deg}\left(m_{T}\right)=\operatorname{deg}\left(\delta_{s}\right)$ to be the degree of the minimal polynomial. The polynomials in T certainly commute with T, and so

$$
\begin{equation*}
\mathbb{F}[\lambda] /\left(m_{T}\right)=: \mathbb{F}[T] \hookrightarrow \operatorname{End}_{\mathbb{F}[\lambda]}(V) \tag{IV.E.9}
\end{equation*}
$$

We have $\operatorname{dim}($ RHS $)=d+\sum_{j=1}^{s-1}(2 s-2 j+1) \operatorname{deg}\left(\delta_{j}\right)$ by IV.E.7, and $\operatorname{dim}($ LHS $)=d$. But then V is cyclic $\Longleftrightarrow s=1 \Longleftrightarrow \operatorname{dim}($ RHS $)$ is $d \Longleftrightarrow$ (IV.E.9) is an isomorphism \Longleftrightarrow the centralizer of T consists of polynomials in T.
IV.E.10. Examples. (i) The matrices commuting with a Jordan block are polynomials in the Jordan block.
(ii) Consider the matrix

$$
B=\left(\begin{array}{llll}
& & & -1 \\
1 & & & -1 \\
& 1 & & -1 \\
& & 1 & -1
\end{array}\right)
$$

acting on $V=\mathbb{Q}^{4}$. This is in rational canonical form, hence the companion matrix for $\delta=\delta_{1}(s=1)$, and we accordingly write

$$
V=\mathbb{Q}[\lambda] /(\delta(\lambda)), \quad \delta(\lambda)=\lambda^{4}+\lambda^{3}+\lambda^{2}+\lambda+1
$$

This is cyclic, and so IV.E. 8 applies.
But we can also recognize δ as the $5^{\text {th }}$ cyclotomic polynomial, and thus $V \cong \mathbb{Q}\left[\zeta_{5}\right]$ as the corresponding cyclotomic number field. So IV.E. 8 tells us that $\operatorname{End}_{\mathbb{Q}[\lambda]}(V) \cong \mathbb{Q}\left[\zeta_{5}\right]$ realizes the multiplicative action of the number field on itself via 4×4 rational matrices that are polynomials in B. In particular, B corresponds to ζ_{5} itself.

If we replace V by $V_{\mathbb{C}}=\mathbb{C}^{4}$,

$$
V_{\mathbb{C}}=\mathbb{C}[\lambda] /(\delta(\lambda))=\oplus_{j=1}^{4} \mathbb{C}[\lambda] /\left(\lambda-\zeta_{5}^{j}\right) \cong \mathbb{C}^{4}
$$

$\Longrightarrow \operatorname{End}_{\mathbb{C}[\lambda]}\left(V_{\mathbb{C}}\right)=\mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C}$ is represented by diagonal matrices with respect to the (complex) eigenbasis for B.

Notice that in going from Q to C, the dimension as a vector space (over \mathbb{Q} resp. \mathbb{C}) does not change, but the ring structure does dramatically - from a field to a non-domain!
(iii) Let $V=\mathbb{C}^{3}$. Recall from Example IV.D. 12 that

$$
B=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

is similar to its rational and Jordan forms

$$
B^{\prime}=\left(\begin{array}{l|ll}
0 & & \\
\hline & 0 & 0 \\
& 1 & 3
\end{array}\right) \quad \text { and } \quad B^{\prime \prime}=\left(\begin{array}{c|c|c}
0 & & \\
\hline & 0 & \\
\hline & & 3
\end{array}\right) .
$$

From B^{\prime}, we see that $s=2, \delta_{1}=\lambda$ and $\delta_{2}=\lambda^{2}-3 \lambda$, from which IV.E. 7 yields

$$
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{End}_{\mathbb{C}[\lambda]}(V)\right)=3 \operatorname{deg}\left(\delta_{1}\right)+1 \operatorname{deg}\left(\delta_{2}\right)=5
$$

But what the ring structure of $S=\operatorname{End}_{\mathbb{C}[\lambda]}(V)$ is like, is much clearer from $B^{\prime \prime}$, which yields the decomposition into primary cyclic submodules $V \cong(\mathbb{C}[\lambda] /(\lambda))^{\oplus 2} \oplus \mathbb{C}[\lambda] /(\lambda-3)$. From there, we can use IV.E.3(d) to compute $S \cong M_{2}(\mathbb{C}) \times \mathbb{C}$ as a ring, since both $\mathbb{C}[\lambda] /(\lambda)$ and $\mathbb{C}[\lambda] /(\lambda-3)$ are isomorphic to \mathbb{C} as rings.

[^0]: ${ }^{22}$ Recall that $\mathbf{e}_{i j}$ is the matrix with $(i, j)^{\text {th }}$ entry 1 and all other entries 0 .

[^1]: ${ }^{23}$ Here λ acts on \mathbb{F}^{n} via B.

