240 IV. MODULES
IV.E. Endomorphisms

Recall from IV.B.21-IV.B.22 that for a free module M of rank n over
a commutative ring R, sending endomorphisms to their matrix (with
respect to some base) yields a map

Endg(M) — M,(R)

which is in fact an isomorphism of rings and of R-modules. What
happens if M is no longer free? In this section we will give an answer
to this question in the case (henceforth assumed) that R is a PID. We
begin with some easy

IV.E.1. EXAMPLES. (a) Suppose M = Rz = R/(d) is a cyclic R-
module, and note that rz corresponds to 7 under the isomorphism.
The map

Endg(M) —R/(d)
(1)
is an isomorphism of rings and R-modules. [Why? Clearly (IV.E.2) is

(IV.E.2)

an R-module homomorphism. It is injective because 7 is determined
by where it sends a generator; and surjective because it sends

py := {multiplication by r} —— 7
for any 7 € R/(d). So then Endgr(M) consists entirely of y,’s, and
(IV.E.2) sends composition to multiplication.]
(b) If M = (R/(d))®", then writing &; for the “standard” generators
(& = (1,0,...,0), etc.), writing 17(&;) = ¥_; 7;;&; defines a map
Endgr(M) — M, (R/(d))
= (7ij)
which one also shows is an isomorphism (of rings and R-modules),
by combining the approach for free modues with that in (a).

(c) On the other hand, if M = &;R/(p;) with p; distinct primes of R,
then by Schur’s Lemma IV.B.32, Homg(R/(p;), R/ (p;)) = {0} for
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i # j. (Why?) Combining this with (a) yields
Endr(M) = @;Endr(R/(pi)) = ®iR/ (pi)-

Alternatively, one can use the Chinese Remainder Theorem (see the
proof of IV.C.25) to write M = R/ ([1p;), apply (a), and use the CRT
again on the RHS.

(d) Finally, if M = &;(R/(p;))®", then combining Schur’s Lemma
with (b) yields
Endr(M) = &My, (R/(pi)),

which is again an isomorphism as rings and as R-modules.

Now we turn to the general case: let

M=Rz;® - ®Rzs 2 Rz1 & ---®Rz; & R},

tor\(rM)
where { +t =s,ann(z;) = (4;),01 | -+ | ép,and 8y 1 = -- - = 5 = 0.
We can present M in terms of generators and relations as
R{eq,..., es)

M=R°/K = .
<51E1,. . .,5geg>

Our aim is to get a description of the endomorphism ring
S:= EndR(M)

in the spirit of the above examples, but in terms of the {J;}.
Recall the matrix description of endomorphisms of R*

6: Endg(R®) — M;(R)
ij— el = (nj) =: N,
where 7j(e;) = Y ;n;je;. Given 7j € Endgr(R®), we can ask when it

makes sense modulo K, as an endomorphism of M (= R°/K). Evi-
dently,

o ij defines an elementy € S <= 7j(K) C K; and
o ij defines the zero elementin S <= 7(R®) C K.
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For ¥ € R®, we have

i
FcK «— = Y  dre — e[i]e( )RS =: DR®
ds

(for some r; € R)

(thinking of R® as column vectors on the RHS). Hence

7(K) CK <= 1j(%) € K (VX € K)
[apply.[] ~| <= NDwv € DR® (Vv € R®)
[applytov =ey,...,e; ~| <= ND C DM;(R)
ﬁ N € Mg,

and
ii(R°) CK <= Nove DR (Vo € R°)
<= N € DM;(R) =: Js.
def.
Note that M is a subring of Ms(R): given N, N’ € Mg, we can write
(N'N)D = N'(ND) = N'(DM') = (N'D)M’ = (DM)M’ = DM”

with M, M’,M"” € M;(R); and so N'N € Mg. Furthermore, Js C
M is a (two-sided) ideal: given N € Mg,

NJs = NDM,(R) C DM(R) = Js
and JsN = DM,(R)N C DM,(R) = Js.

So Mg/ Js is a ring (and an R-module!); and we have the

IV.E.3. THEOREM. 0 induces an isomorphism
6:S i) Mg/ Ts
of rings (and R-modules).

PROOF. We just did it! To briefly recapitulate: applying 6 = ] |
to the numerator and denominator of the RHS of

ey _ 7 € Endg(R®) | 7(K) C K}
§ = Endg(M) = Endr(R/K) = 15 Endlf(Rs) [ 7(Rs) C K}

yields exactly Mg/ Js. O




IV.E. ENDOMORPHISMS 243

IV.E.4. REMARK. Note that we can thnk of § as “taking the ma-
trix with respect to zy,...,zs” even though this is not a base in the
standard sense.

Now consider the conditions defining Mg if s = 2: keeping in
mind that 1|4, (and denoting by r;; arbitrary elements of R), we have

_ (1M1 N ey (MM & _ (& 11 712
N_(nzlnzz)EMS (7121”22)( 52>_< (52>(721722)
PR oynyy anpp \ _ [ d1r11 d1r2
(517121 dongy )\ Garn1 Goran

<= My € (%)’

SO 11 = 1y %, with n;, and the other n;; arbitrary elements of R.
(Note that if 6, = 0 # 61, this would make ny; = 0.) Furthermore,
we have
npnpy _ (6 ri1r2) — ( %1rn 6112
N € -.75 — (1’121 nZZ) - ( ! 52) (7’21 722) - <(521’21 (521’22)

<~ Mnq1,N12 € ((51) and 191,12 € ((52)

The upshot is that, for elements of 0(S) = Mg/ Js, we need to
consider 111 and n1, as elements of R/ (1), np; as an element of
($£)/(52), and ng in R/ (52).

More generally, for any s, this analysis leads to the following
specifications for entries in the “regions” of the s X s matrix N (cor-
responding via 6 to elements of S) as shown:

O i<jl:  mER/G) -
() i>6j<: ;=0 (1)
(V) ij>¢:  myeR ) | av)
so we can write 1;; := ngjg—; in (I) as above, with nfj € R/((Sj)_ In the

event that M is torsion, / = s and we don’t have regions (III) and
(IV).

An immediate consequence is

IV.E.5. COROLLARY. The center of S = Endgr(M) is R.
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PROOF. Let ¢ € S be the endomorphism with matrix given by*
O(eis) = ejs. (Note that this is possible because the (i,s)™ entry lies
in region (I) or (IV), never (II).) This endomorphism sends zs +— z;
and kills all other z;. So given 77 € C(S) (in the center), and writing
N = 6(n), we have

U(ZS) = 7/(855 (ZS)) = eSS(W(Zs)) = &ss (Ziniszi) = ) iNis€ssZi = NssZs
and
77(2]') = W(stZS) = 8]'5(11(25)) = 8]'S(Einiszi) = Zinissjs(zi) = NssZj,

so that 7 is simply multiplication by 755 — which, being in region (I)
or (IV), can be any element of R. O

Assume henceforth that M is torsion. As S is an R-module:

(a) if R = Z, then M = G is a finite abelian group, and S = Endz(G)
also has the structure of a finite abelian group, with a (finite) order;
while

(b) if R = F[A], then M = V is an F-vector space on which A acts by
a linear transformation T € Endg(V), and S = Endg (V) itself
has the structure of an [F-vector space, with a (finite) dimension.

So we can take the theory for a test-drive to see if we can compute
the italicized numbers. For (a), we have the

IV.E.6. COROLLARY. Consider any finite abelian group, written in the
form G = Zy, X - -+ X Ly, withmy | - - - | ms. Then the number of group
homomorphisms from G to itself is

S
. 25—2j+1
|Endz(G) —Hm]. .
j=1

PROOF. With S = Endz(G), one counts the possible choices for
the n;; in a matrix N € Ms/Js. For (I) i < j, nj; € Z/(m;) = Zim,;
while for (I) i > j, n;; = nfj% with nf]. € Z/(mj) = Zw,;. So to
compute |S| = | Mg/ Ts|, we simply have to take the product of all

22Recall that e;; is the matrix with (i, j ) entry 1 and all other entries 0.
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entries of the matrix

mpy mp myp --- Ny
my mop Ny mo
my mp mz --- M3

which gives the result. O
For (b), notice that
S = Endg (V) = {n € Endp(V) | #T = Ty}

is the centralizer of T. Writing [T] = B and ,[f] = Z with respect to
some basis of V, S is identified with?>

(S =) Endgy (F") = {Z € My(F) | ZB = BZ},
the ring of matrices commuting with B.

IV.E.7. COROLLARY. Let B € M, (FF), with normal form
nf(Al, — B) = diag(1,...,1,81(A),...,8(A)).
Then dimg(S) = Y31 (25 — 2j + 1) deg(4;(A)).

PROOF. Once again, we use 6 to identify S with s x s matrices
N with entries (I) n;; € F[A]/(6;(A)) or (I) n;; = n%% (and ngj €
IF[A]/(6;(A)))- So these n;;’s each lie in a vector space of dimension
(I) deg(0;) resp. (II) deg(d;), and we can record these degrees in a
matrix exactly like that in the last proof. Only this time, to get the
dimension of S, we add these entries rather than multiplying them.

O

Call the transformation T cyclic if its action on V makes the latter
into a cyclic F[A]-module (thatis, s = 1).

IV.E.8. COROLLARY. A linear transformation T € Endg(V') is cyclic
<= the only transformations commuting with T are polynomials in T.

23Here A acts on F" via B.
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PROOF. First let T be an arbitrary transformation, and take d =
deg(mt) = deg(Js) to be the degree of the minimal polynomial. The
polynomials in T certainly commute with T, and so

(IV.E.9) F[A]/(mr) = F[T] < Endg(V).

We have dim(RHS) = d + Z;;ll (25 — 2j + 1) deg(4;) by IV.E.7, and
dim(LHS) = d. But then V is cyclic <= s =1 <= dim(RHS) is
d <= (IVE.9)is anisomorphism <= the centralizer of T consists
of polynomials in T. O

IV.E.10. EXAMPLES. (i) The matrices commuting with a Jordan
block are polynomials in the Jordan block.

(ii) Consider the matrix

acting on V = Q*. This is in rational canonical form, hence the com-
panion matrix for § = 41 (s = 1), and we accordingly write

V=Q[Al/(6(A), A=At +A3+A24A+1

This is cyclic, and so IV.E.8 applies.

But we can also recognize J as the 51

cyclotomic polynomial,
and thus V = Q|(5] as the corresponding cyclotomic number field.
So IV.E.8 tells us that Endg, (V) = Q[s] realizes the multiplicative
action of the number field on itself via 4 x 4 rational matrices that
are polynomials in B. In particular, B corresponds to (5 itself.

If we replace V by V¢ = C*#,
Ve =CA/(6(A) = &1, C[A)/ (A — ) =

= End¢(Ve) = € x € x € x C is represented by diagonal
matrices with respect to the (complex) eigenbasis for B.
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Notice that in going from Q to C, the dimension as a vector space
(over Q resp. C) does not change, but the ring structure does dra-
matically — from a field to a non-domain!

(iii) Let V = C3. Recall from Example IV.D.12 that
111
B=|111
111

is similar to its rational and Jordan forms

0 0
B = 0 and B’ = 0
1

)

W

3

From B’, we see thats = 2, §; = A and §, = A% — 3, from which
IV.E.7 yields

dime (Endcpy (V) = 3deg(d1) + 1deg(d2) = 5.

But what the ring structure of S = End¢, (V) is like, is much
clearer from B”, which yields the decomposition into primary cyclic
submodules V = (C[A]/(A))®? ® C[A]/(A — 3). From there, we
can use IVE.3(d) to compute S = M;(C) x C as a ring, since both
C[A]/(A) and C[A]/ (A — 3) are isomorphic to C as rings.



